File size: 46,613 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import math
from typing import Optional, Union
import torch
from torch import Tensor
from torch.nn.functional import conv2d, conv3d, pad, unfold
from typing_extensions import Literal
from torchmetrics.utilities.checks import _check_same_shape
from torchmetrics.utilities.imports import _SCIPY_AVAILABLE
def _ignore_background(preds: Tensor, target: Tensor) -> tuple[Tensor, Tensor]:
"""Ignore the background class in the computation assuming it is the first, index 0."""
preds = preds[:, 1:] if preds.shape[1] > 1 else preds
target = target[:, 1:] if target.shape[1] > 1 else target
return preds, target
def check_if_binarized(x: Tensor) -> None:
"""Check if tensor is binarized.
Example:
>>> from torchmetrics.functional.segmentation.utils import check_if_binarized
>>> import torch
>>> check_if_binarized(torch.tensor([0, 1, 1, 0]))
"""
if not torch.all(x.bool() == x):
raise ValueError("Input x should be binarized")
def _unfold(x: Tensor, kernel_size: tuple[int, ...]) -> Tensor:
"""Unfold the input tensor to a matrix. Function supports 3d images e.g. (B, C, D, H, W).
Inspired by:
https://github.com/f-dangel/unfoldNd/blob/main/unfoldNd/unfold.py
Args:
x: Input tensor to be unfolded.
kernel_size: The size of the sliding blocks in each dimension.
"""
batch_size, channels = x.shape[:2]
n = x.ndim - 2
if n == 2:
return unfold(x, kernel_size)
kernel_size_numel = kernel_size[0] * kernel_size[1] * kernel_size[2]
repeat = [channels, 1] + [1 for _ in kernel_size]
weight = torch.eye(kernel_size_numel, device=x.device, dtype=x.dtype)
weight = weight.reshape(kernel_size_numel, 1, *kernel_size).repeat(*repeat)
unfold_x = conv3d(x, weight=weight, bias=None)
return unfold_x.reshape(batch_size, channels * kernel_size_numel, -1)
def generate_binary_structure(rank: int, connectivity: int) -> Tensor:
"""Translated version of the function from scipy.ndimage.morphology.
Args:
rank: The rank of the structuring element.
connectivity: The number of neighbors connected to a given pixel.
Returns:
The structuring element.
Examples::
>>> from torchmetrics.functional.segmentation.utils import generate_binary_structure
>>> import torch
>>> generate_binary_structure(2, 1)
tensor([[False, True, False],
[ True, True, True],
[False, True, False]])
>>> generate_binary_structure(2, 2)
tensor([[True, True, True],
[True, True, True],
[True, True, True]])
>>> generate_binary_structure(3, 2) # doctest: +NORMALIZE_WHITESPACE
tensor([[[False, True, False],
[ True, True, True],
[False, True, False]],
[[ True, True, True],
[ True, True, True],
[ True, True, True]],
[[False, True, False],
[ True, True, True],
[False, True, False]]])
"""
if connectivity < 1:
connectivity = 1
if rank < 1:
return torch.tensor([1], dtype=torch.uint8)
grids = torch.meshgrid([torch.arange(3) for _ in range(rank)], indexing="ij")
output = torch.abs(torch.stack(grids, dim=0) - 1)
output = torch.sum(output, dim=0)
return output <= connectivity
def binary_erosion(
image: Tensor, structure: Optional[Tensor] = None, origin: Optional[tuple[int, ...]] = None, border_value: int = 0
) -> Tensor:
"""Binary erosion of a tensor image.
Implementation inspired by answer to this question: https://stackoverflow.com/questions/56235733/
Args:
image: The image to be eroded, must be a binary tensor with shape ``(batch_size, channels, height, width)``.
structure: The structuring element used for the erosion. If no structuring element is provided, an element
is generated with a square connectivity equal to one.
origin: The origin of the structuring element.
border_value: The value to be used for the border.
Examples::
>>> from torchmetrics.functional.segmentation.utils import binary_erosion
>>> import torch
>>> image = torch.tensor([[[[0, 0, 0, 0, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 0, 0, 0, 0]]]])
>>> binary_erosion(image)
tensor([[[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]]], dtype=torch.uint8)
>>> binary_erosion(image, structure=torch.ones(4, 4))
tensor([[[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]]], dtype=torch.uint8)
"""
if not isinstance(image, Tensor):
raise TypeError(f"Expected argument `image` to be of type Tensor but found {type(image)}")
if image.ndim not in [4, 5]:
raise ValueError(f"Expected argument `image` to be of rank 4 or 5 but found rank {image.ndim}")
check_if_binarized(image)
# construct the structuring element if not provided
if structure is None:
structure = generate_binary_structure(image.ndim - 2, 1).int().to(image.device)
check_if_binarized(structure)
if origin is None:
origin = structure.ndim * (1,)
# first pad the image to have correct unfolding; here is where the origins is used
image_pad = pad(
image,
[x for i in range(len(origin)) for x in [origin[i], structure.shape[i] - origin[i] - 1]],
mode="constant",
value=border_value,
)
# Unfold the image to be able to perform operation on neighborhoods
image_unfold = _unfold(image_pad.float(), kernel_size=structure.shape)
strel_flatten = torch.flatten(structure).unsqueeze(0).unsqueeze(-1)
sums = image_unfold - strel_flatten.int()
# Take minimum over the neighborhood
result, _ = sums.min(dim=1)
# Reshape the image to recover initial shape
return (torch.reshape(result, image.shape) + 1).byte()
def distance_transform(
x: Tensor,
sampling: Optional[Union[Tensor, list[float]]] = None,
metric: Literal["euclidean", "chessboard", "taxicab"] = "euclidean",
engine: Literal["pytorch", "scipy"] = "pytorch",
) -> Tensor:
"""Calculate distance transform of a binary tensor.
This function calculates the distance transform of a binary tensor, replacing each foreground pixel with the
distance to the closest background pixel. The distance is calculated using the euclidean, chessboard or taxicab
distance.
The memory consumption of this function is in the worst cast N/2**2 where N is the number of pixel. Since we need
to compare all foreground pixels to all background pixels, the memory consumption is quadratic in the number of
pixels. The memory consumption can be reduced by using the ``scipy`` engine, which is more memory efficient but
should also be slower for larger images.
Args:
x: The binary tensor to calculate the distance transform of.
sampling: The sampling refers to the pixel spacing in the image, i.e. the distance between two adjacent pixels.
If not provided, the pixel spacing is assumed to be 1.
metric: The distance to use for the distance transform. Can be one of ``"euclidean"``, ``"chessboard"``
or ``"taxicab"``.
engine: The engine to use for the distance transform. Can be one of ``["pytorch", "scipy"]``. In general,
the ``pytorch`` engine is faster, but the ``scipy`` engine is more memory efficient.
Returns:
The distance transform of the input tensor.
Examples::
>>> from torchmetrics.functional.segmentation.utils import distance_transform
>>> import torch
>>> x = torch.tensor([[0, 0, 0, 0, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 1, 1, 0],
... [0, 0, 0, 0, 0]])
>>> distance_transform(x)
tensor([[0., 0., 0., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 2., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 0., 0., 0.]])
"""
if not isinstance(x, Tensor):
raise ValueError(f"Expected argument `x` to be of type `torch.Tensor` but got `{type(x)}`.")
if x.ndim != 2:
raise ValueError(f"Expected argument `x` to be of rank 2 but got rank `{x.ndim}`.")
if sampling is not None and not isinstance(sampling, list):
raise ValueError(
f"Expected argument `sampling` to either be `None` or of type `list` but got `{type(sampling)}`."
)
if metric not in ["euclidean", "chessboard", "taxicab"]:
raise ValueError(
f"Expected argument `metric` to be one of `['euclidean', 'chessboard', 'taxicab']` but got `{metric}`."
)
if engine not in ["pytorch", "scipy"]:
raise ValueError(f"Expected argument `engine` to be one of `['pytorch', 'scipy']` but got `{engine}`.")
if sampling is None:
sampling = [1, 1]
else:
if len(sampling) != 2:
raise ValueError(f"Expected argument `sampling` to have length 2 but got length `{len(sampling)}`.")
if engine == "pytorch":
x = x.float()
# calculate distance from every foreground pixel to every background pixel
i0, j0 = torch.where(x == 0)
i1, j1 = torch.where(x == 1)
dis_row = (i1.view(-1, 1) - i0.view(1, -1)).abs()
dis_col = (j1.view(-1, 1) - j0.view(1, -1)).abs()
# # calculate distance
h, _ = x.shape
if metric == "euclidean":
dis = ((sampling[0] * dis_row) ** 2 + (sampling[1] * dis_col) ** 2).sqrt()
if metric == "chessboard":
dis = torch.max(sampling[0] * dis_row, sampling[1] * dis_col).float()
if metric == "taxicab":
dis = (sampling[0] * dis_row + sampling[1] * dis_col).float()
# select only the closest distance
mindis, _ = torch.min(dis, dim=1)
z = torch.zeros_like(x).view(-1)
z[i1 * h + j1] = mindis
return z.view(x.shape)
if not _SCIPY_AVAILABLE:
raise ValueError(
"The `scipy` engine requires `scipy` to be installed. Either install `scipy` or use the `pytorch` engine."
)
from scipy import ndimage
if metric == "euclidean":
return ndimage.distance_transform_edt(x.cpu().numpy(), sampling)
return ndimage.distance_transform_cdt(x.cpu().numpy(), sampling, metric=metric)
def mask_edges(
preds: Tensor,
target: Tensor,
crop: bool = True,
spacing: Optional[Union[tuple[int, int], tuple[int, int, int]]] = None,
) -> Union[tuple[Tensor, Tensor], tuple[Tensor, Tensor, Tensor, Tensor]]:
"""Get the edges of binary segmentation masks.
Args:
preds: The predicted binary segmentation mask
target: The ground truth binary segmentation mask
crop: Whether to crop the edges to the region of interest. If ``True``, the edges are cropped to the bounding
spacing: The pixel spacing of the input images. If provided, the edges are calculated using the euclidean
Returns:
If spacing is not provided, a 2-tuple containing the edges of the predicted and target mask respectively is
returned. If spacing is provided, a 4-tuple containing the edges and areas of the predicted and target mask
respectively is returned.
"""
_check_same_shape(preds, target)
if preds.ndim not in [2, 3]:
raise ValueError(f"Expected argument `preds` to be of rank 2 or 3 but got rank `{preds.ndim}`.")
check_if_binarized(preds)
check_if_binarized(target)
if crop:
or_val = preds | target
if not or_val.any():
p, t = torch.zeros_like(preds), torch.zeros_like(target)
return p, t, p, t
# this seems to be working but does not seem to be right
preds, target = pad(preds, preds.ndim * [1, 1]), pad(target, target.ndim * [1, 1])
if spacing is None:
# no spacing, use binary erosion
be_pred = binary_erosion(preds.unsqueeze(0).unsqueeze(0)).squeeze() ^ preds
be_target = binary_erosion(target.unsqueeze(0).unsqueeze(0)).squeeze() ^ target
return be_pred, be_target
# use neighborhood to get edges
table, kernel = get_neighbour_tables(spacing, device=preds.device)
spatial_dims = len(spacing)
conv_operator = conv2d if spatial_dims == 2 else conv3d
volume = torch.stack([preds.unsqueeze(0), target.unsqueeze(0)], dim=0).float()
code_preds, code_target = conv_operator(volume, kernel.to(volume))
# edges
all_ones = len(table) - 1
edges_preds = (code_preds != 0) & (code_preds != all_ones)
edges_target = (code_target != 0) & (code_target != all_ones)
# # areas of edges
areas_preds = torch.index_select(table, 0, code_preds.view(-1).int()).view_as(code_preds)
areas_target = torch.index_select(table, 0, code_target.view(-1).int()).view_as(code_target)
return edges_preds[0], edges_target[0], areas_preds[0], areas_target[0]
def surface_distance(
preds: Tensor,
target: Tensor,
distance_metric: Literal["euclidean", "chessboard", "taxicab"] = "euclidean",
spacing: Optional[Union[Tensor, list[float]]] = None,
) -> Tensor:
"""Calculate the surface distance between two binary edge masks.
May return infinity if the predicted mask is empty and the target mask is not, or vice versa.
Args:
preds: The predicted binary edge mask.
target: The target binary edge mask.
distance_metric: The distance metric to use. One of `["euclidean", "chessboard", "taxicab"]`.
spacing: The spacing between pixels along each spatial dimension.
Returns:
A tensor with length equal to the number of edges in predictions e.g. `preds.sum()`. Each element is the
distance from the corresponding edge in `preds` to the closest edge in `target`.
Example::
>>> import torch
>>> from torchmetrics.functional.segmentation.utils import surface_distance
>>> preds = torch.tensor([[1, 1, 1, 1, 1],
... [1, 0, 0, 0, 1],
... [1, 0, 0, 0, 1],
... [1, 0, 0, 0, 1],
... [1, 1, 1, 1, 1]], dtype=torch.bool)
>>> target = torch.tensor([[1, 1, 1, 1, 0],
... [1, 0, 0, 1, 0],
... [1, 0, 0, 1, 0],
... [1, 0, 0, 1, 0],
... [1, 1, 1, 1, 0]], dtype=torch.bool)
>>> surface_distance(preds, target, distance_metric="euclidean", spacing=[1, 1])
tensor([0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 1.])
"""
if not (preds.dtype == torch.bool and target.dtype == torch.bool):
raise ValueError(f"Expected both inputs to be of type `torch.bool`, but got {preds.dtype} and {target.dtype}.")
if not torch.any(target):
dis = torch.inf * torch.ones_like(target)
else:
if not torch.any(preds):
dis = torch.inf * torch.ones_like(preds)
return dis[target]
dis = distance_transform(~target, sampling=spacing, metric=distance_metric)
return dis[preds]
def edge_surface_distance(
preds: Tensor,
target: Tensor,
distance_metric: Literal["euclidean", "chessboard", "taxicab"] = "euclidean",
spacing: Optional[Union[Tensor, list[float]]] = None,
symmetric: bool = False,
) -> Union[Tensor, tuple[Tensor, Tensor]]:
"""Extracts the edges from the input masks and calculates the surface distance between them.
Args:
preds: The predicted binary edge mask.
target: The target binary edge mask.
distance_metric: The distance metric to use. One of `["euclidean", "chessboard", "taxicab"]`.
spacing: The spacing between pixels along each spatial dimension.
symmetric: Whether to calculate the symmetric distance between the edges.
Returns:
A tensor with length equal to the number of edges in predictions e.g. `preds.sum()`. Each element is the
distance from the corresponding edge in `preds` to the closest edge in `target`. If `symmetric` is `True`, the
function returns a tuple containing the distances from the predicted edges to the target edges and vice versa.
"""
output = mask_edges(preds, target)
edges_preds, edges_target = output[0].bool(), output[1].bool()
if symmetric:
return (
surface_distance(edges_preds, edges_target, distance_metric=distance_metric, spacing=spacing),
surface_distance(edges_target, edges_preds, distance_metric=distance_metric, spacing=spacing),
)
return surface_distance(edges_preds, edges_target, distance_metric=distance_metric, spacing=spacing)
@functools.lru_cache
def get_neighbour_tables(
spacing: Union[tuple[int, int], tuple[int, int, int]], device: Optional[torch.device] = None
) -> tuple[Tensor, Tensor]:
"""Create a table that maps neighbour codes to the contour length or surface area of the corresponding contour.
Args:
spacing: The spacing between pixels along each spatial dimension.
device: The device on which the table should be created.
Returns:
A tuple containing as its first element the table that maps neighbour codes to the contour length or surface
area of the corresponding contour and as its second element the kernel used to compute the neighbour codes.
"""
if isinstance(spacing, tuple) and len(spacing) == 2:
return table_contour_length(spacing, device)
if isinstance(spacing, tuple) and len(spacing) == 3:
return table_surface_area(spacing, device)
raise ValueError("The spacing must be a tuple of length 2 or 3.")
def table_contour_length(spacing: tuple[int, int], device: Optional[torch.device] = None) -> tuple[Tensor, Tensor]:
"""Create a table that maps neighbour codes to the contour length of the corresponding contour.
Adopted from:
https://github.com/deepmind/surface-distance/blob/master/surface_distance/lookup_tables.py
Args:
spacing: The spacing between pixels along each spatial dimension. Should be a tuple of length 2.
device: The device on which the table should be created.
Returns:
A tuple containing as its first element the table that maps neighbour codes to the contour length of the
corresponding contour and as its second element the kernel used to compute the neighbour codes.
Example::
>>> from torchmetrics.functional.segmentation.utils import table_contour_length
>>> table, kernel = table_contour_length((2,2))
>>> table
tensor([0.0000, 1.4142, 1.4142, 2.0000, 1.4142, 2.0000, 2.8284, 1.4142, 1.4142,
2.8284, 2.0000, 1.4142, 2.0000, 1.4142, 1.4142, 0.0000])
>>> kernel
tensor([[[[8, 4],
[2, 1]]]])
"""
if not isinstance(spacing, tuple) and len(spacing) != 2:
raise ValueError("The spacing must be a tuple of length 2.")
first, second = spacing # spacing along the first and second spatial dimension respectively
diag = 0.5 * math.sqrt(first**2 + second**2)
table = torch.zeros(16, dtype=torch.float32, device=device)
for i in [1, 2, 4, 7, 8, 11, 13, 14]:
table[i] = diag
for i in [3, 12]:
table[i] = second
for i in [5, 10]:
table[i] = first
for i in [6, 9]:
table[i] = 2 * diag
kernel = torch.as_tensor([[[[8, 4], [2, 1]]]], device=device)
return table, kernel
@functools.lru_cache
def table_surface_area(spacing: tuple[int, int, int], device: Optional[torch.device] = None) -> tuple[Tensor, Tensor]:
"""Create a table that maps neighbour codes to the surface area of the corresponding surface.
Adopted from:
https://github.com/deepmind/surface-distance/blob/master/surface_distance/lookup_tables.py
Args:
spacing: The spacing between pixels along each spatial dimension. Should be a tuple of length 3.
device: The device on which the table should be created.
Returns:
A tuple containing as its first element the table that maps neighbour codes to the surface area of the
corresponding surface and as its second element the kernel used to compute the neighbour codes.
Example::
>>> from torchmetrics.functional.segmentation.utils import table_surface_area
>>> table, kernel = table_surface_area((2,2,2))
>>> table
tensor([0.0000, 0.8660, 0.8660, 2.8284, 0.8660, 2.8284, 1.7321, 4.5981, 0.8660,
1.7321, 2.8284, 4.5981, 2.8284, 4.5981, 4.5981, 4.0000, 0.8660, 2.8284,
1.7321, 4.5981, 1.7321, 4.5981, 2.5981, 5.1962, 1.7321, 3.6945, 3.6945,
6.2925, 3.6945, 6.2925, 5.4641, 4.5981, 0.8660, 1.7321, 2.8284, 4.5981,
1.7321, 3.6945, 3.6945, 6.2925, 1.7321, 2.5981, 4.5981, 5.1962, 3.6945,
5.4641, 6.2925, 4.5981, 2.8284, 4.5981, 4.5981, 4.0000, 3.6945, 6.2925,
5.4641, 4.5981, 3.6945, 5.4641, 6.2925, 4.5981, 5.6569, 3.6945, 3.6945,
2.8284, 0.8660, 1.7321, 1.7321, 3.6945, 2.8284, 4.5981, 3.6945, 6.2925,
1.7321, 2.5981, 3.6945, 5.4641, 4.5981, 5.1962, 6.2925, 4.5981, 2.8284,
4.5981, 3.6945, 6.2925, 4.5981, 4.0000, 5.4641, 4.5981, 3.6945, 5.4641,
5.6569, 3.6945, 6.2925, 4.5981, 3.6945, 2.8284, 1.7321, 2.5981, 3.6945,
5.4641, 3.6945, 5.4641, 5.6569, 3.6945, 2.5981, 3.4641, 5.4641, 2.5981,
5.4641, 2.5981, 3.6945, 1.7321, 4.5981, 5.1962, 6.2925, 4.5981, 6.2925,
4.5981, 3.6945, 2.8284, 5.4641, 2.5981, 3.6945, 1.7321, 3.6945, 1.7321,
1.7321, 0.8660, 0.8660, 1.7321, 1.7321, 3.6945, 1.7321, 3.6945, 2.5981,
5.4641, 2.8284, 3.6945, 4.5981, 6.2925, 4.5981, 6.2925, 5.1962, 4.5981,
1.7321, 3.6945, 2.5981, 5.4641, 2.5981, 5.4641, 3.4641, 2.5981, 3.6945,
5.6569, 5.4641, 3.6945, 5.4641, 3.6945, 2.5981, 1.7321, 2.8284, 3.6945,
4.5981, 6.2925, 3.6945, 5.6569, 5.4641, 3.6945, 4.5981, 5.4641, 4.0000,
4.5981, 6.2925, 3.6945, 4.5981, 2.8284, 4.5981, 6.2925, 5.1962, 4.5981,
5.4641, 3.6945, 2.5981, 1.7321, 6.2925, 3.6945, 4.5981, 2.8284, 3.6945,
1.7321, 1.7321, 0.8660, 2.8284, 3.6945, 3.6945, 5.6569, 4.5981, 6.2925,
5.4641, 3.6945, 4.5981, 5.4641, 6.2925, 3.6945, 4.0000, 4.5981, 4.5981,
2.8284, 4.5981, 6.2925, 5.4641, 3.6945, 5.1962, 4.5981, 2.5981, 1.7321,
6.2925, 3.6945, 3.6945, 1.7321, 4.5981, 2.8284, 1.7321, 0.8660, 4.5981,
5.4641, 6.2925, 3.6945, 6.2925, 3.6945, 3.6945, 1.7321, 5.1962, 2.5981,
4.5981, 1.7321, 4.5981, 1.7321, 2.8284, 0.8660, 4.0000, 4.5981, 4.5981,
2.8284, 4.5981, 2.8284, 1.7321, 0.8660, 4.5981, 1.7321, 2.8284, 0.8660,
2.8284, 0.8660, 0.8660, 0.0000])
>>> kernel
tensor([[[[[128, 64],
[ 32, 16]],
[[ 8, 4],
[ 2, 1]]]]])
"""
if not isinstance(spacing, tuple) and len(spacing) != 3:
raise ValueError("The spacing must be a tuple of length 3.")
zeros = [0.0, 0.0, 0.0]
table = torch.tensor(
[
[zeros, zeros, zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[[-0.125, -0.125, 0.125], zeros, zeros, zeros],
[[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], zeros, zeros],
[[0.125, -0.125, 0.125], zeros, zeros, zeros],
[[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], zeros, zeros],
[[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[-0.125, 0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, 0.125, 0.125], zeros, zeros],
[[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], zeros, zeros],
[[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros, zeros],
[[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], zeros],
[[-0.5, 0.0, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[0.5, 0.0, 0.0], [0.5, 0.0, 0.0], zeros, zeros],
[[0.125, -0.125, -0.125], zeros, zeros, zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], zeros, zeros],
[[-0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, -0.5, 0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, 0.0, -0.5], [0.25, 0.25, 0.25], [-0.125, -0.125, -0.125], zeros],
[[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]],
[[-0.125, 0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.125, -0.125, -0.125], zeros],
[[0.125, 0.125, 0.125], [0.375, 0.375, 0.375], [0.0, -0.25, 0.25], [-0.25, 0.0, 0.25]],
[[0.125, -0.125, -0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros],
[[0.375, 0.375, 0.375], [0.0, 0.25, -0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]],
[[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.125, 0.125, 0.125]],
[[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], zeros],
[[0.125, -0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], zeros, zeros],
[[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], zeros],
[[0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.125, -0.125, 0.125], [-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], zeros],
[[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[-0.375, -0.375, 0.375], [-0.0, 0.25, 0.25], [0.125, 0.125, -0.125], [-0.25, -0.0, -0.25]],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros],
[[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.25, 0.25, -0.25], [0.25, 0.25, -0.25], [0.125, 0.125, -0.125], [-0.125, -0.125, 0.125]],
[[0.125, -0.125, 0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros],
[[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], [0.125, -0.125, 0.125]],
[[0.0, 0.25, -0.25], [0.375, -0.375, -0.375], [-0.125, 0.125, 0.125], [0.25, 0.25, 0.0]],
[[-0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], zeros, zeros],
[[0.0, 0.5, 0.0], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125], zeros],
[[0.0, 0.5, 0.0], [0.125, -0.125, 0.125], [-0.25, 0.25, -0.25], zeros],
[[0.0, 0.5, 0.0], [0.0, -0.5, 0.0], zeros, zeros],
[[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.125, -0.125, 0.125], zeros],
[[-0.375, -0.375, -0.375], [-0.25, 0.0, 0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]],
[[0.125, 0.125, 0.125], [0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]],
[[0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125], zeros],
[[-0.125, 0.125, 0.125], [0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], zeros],
[[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[-0.375, 0.375, -0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]],
[[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], zeros],
[[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0]],
[[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.125, -0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], zeros],
[[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], zeros, zeros],
[[-0.125, -0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[-0.125, -0.125, 0.125], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], zeros],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], zeros, zeros],
[[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.375, -0.375, 0.375], [0.0, -0.25, -0.25], [-0.125, 0.125, -0.125], [0.25, 0.25, 0.0]],
[[-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], zeros],
[[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[-0.25, 0.25, -0.25], [-0.25, 0.25, -0.25], [-0.125, 0.125, -0.125], [-0.125, 0.125, -0.125]],
[[-0.25, 0.0, -0.25], [0.375, -0.375, -0.375], [0.0, 0.25, -0.25], [-0.125, 0.125, 0.125]],
[[0.5, 0.0, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], zeros, zeros],
[[-0.0, 0.0, 0.5], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], zeros],
[[-0.25, -0.0, -0.25], [-0.375, 0.375, 0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, 0.125]],
[[0.0, 0.0, -0.5], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], zeros],
[[-0.0, 0.0, 0.5], [0.0, 0.0, 0.5], zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]],
[[0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5], zeros],
[[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25]],
[[0.125, -0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros],
[[0.25, 0.0, 0.25], [-0.375, -0.375, 0.375], [-0.25, 0.25, 0.0], [-0.125, -0.125, 0.125]],
[[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros],
[[0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros, zeros],
[[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25], zeros],
[[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25]],
[[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.125, -0.125, -0.125], zeros],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]],
[[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.5, 0.0, -0.0], [0.25, -0.25, -0.25], [0.125, -0.125, -0.125], zeros],
[[-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]],
[[0.375, -0.375, 0.375], [0.0, 0.25, 0.25], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]],
[[0.0, -0.5, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.375, -0.375, 0.375], [0.25, -0.25, 0.0], [0.0, 0.25, 0.25], [-0.125, -0.125, 0.125]],
[[-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.0, 0.0, 0.5], zeros],
[[0.125, 0.125, 0.125], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25], zeros],
[[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], zeros, zeros],
[[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.125, 0.125, 0.125]],
[[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125], zeros],
[[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], [0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], [0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125], zeros],
[[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.125, 0.125, 0.125]],
[[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], zeros, zeros],
[[0.125, 0.125, 0.125], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25], zeros],
[[-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.0, 0.0, 0.5], zeros],
[[-0.375, -0.375, 0.375], [0.25, -0.25, 0.0], [0.0, 0.25, 0.25], [-0.125, -0.125, 0.125]],
[[0.0, -0.5, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[0.375, -0.375, 0.375], [0.0, 0.25, 0.25], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]],
[[-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125]],
[[0.5, 0.0, -0.0], [0.25, -0.25, -0.25], [0.125, -0.125, -0.125], zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, 0.125, 0.125]],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros],
[[0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.125, -0.125, -0.125], zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25], [0.0, 0.25, 0.25]],
[[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125]],
[[-0.125, -0.125, 0.125], [0.0, -0.25, 0.25], [0.0, 0.25, -0.25], zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros, zeros],
[[0.125, 0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros],
[[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.25, 0.0, 0.25], [-0.375, -0.375, 0.375], [-0.25, 0.25, 0.0], [-0.125, -0.125, 0.125]],
[[0.125, -0.125, 0.125], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], zeros],
[[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25], [0.25, 0.0, 0.25]],
[[-0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], [0.125, -0.125, 0.125]],
[[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], [-0.125, 0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5], zeros],
[[0.125, 0.125, 0.125], [0.125, 0.125, 0.125], [0.25, 0.25, 0.25], [0.0, 0.0, 0.5]],
[[-0.0, 0.0, 0.5], [0.0, 0.0, 0.5], zeros, zeros],
[[0.0, 0.0, -0.5], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], zeros],
[[-0.25, -0.0, -0.25], [-0.375, 0.375, 0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, 0.125]],
[[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], zeros],
[[-0.0, 0.0, 0.5], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.25, 0.0, 0.25], [0.25, 0.0, -0.25], zeros, zeros],
[[0.5, 0.0, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[-0.25, 0.0, -0.25], [0.375, -0.375, -0.375], [0.0, 0.25, -0.25], [-0.125, 0.125, 0.125]],
[[-0.25, 0.25, -0.25], [-0.25, 0.25, -0.25], [-0.125, 0.125, -0.125], [-0.125, 0.125, -0.125]],
[[-0.0, 0.5, 0.0], [-0.25, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[-0.125, -0.125, 0.125], [-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros, zeros],
[[0.375, -0.375, 0.375], [0.0, -0.25, -0.25], [-0.125, 0.125, -0.125], [0.25, 0.25, 0.0]],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.0, 0.0, 0.5], [0.25, -0.25, 0.25], [0.125, -0.125, 0.125], zeros],
[[0.0, -0.25, 0.25], [0.0, -0.25, 0.25], zeros, zeros],
[[-0.125, -0.125, 0.125], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], zeros],
[[-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[-0.125, -0.125, 0.125], zeros, zeros, zeros],
[[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], zeros],
[[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.125, -0.125, 0.125], zeros],
[[-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [-0.25, -0.25, 0.0], [0.25, 0.25, -0.0]],
[[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], zeros],
[[-0.375, 0.375, -0.375], [-0.25, -0.25, 0.0], [-0.125, 0.125, -0.125], [-0.25, 0.0, 0.25]],
[[0.0, 0.5, 0.0], [0.25, 0.25, -0.25], [-0.125, -0.125, 0.125], [-0.125, -0.125, 0.125]],
[[-0.125, 0.125, 0.125], [0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], zeros],
[[0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125], zeros],
[[0.125, 0.125, 0.125], [0.0, -0.5, 0.0], [-0.25, -0.25, -0.25], [-0.125, -0.125, -0.125]],
[[-0.375, -0.375, -0.375], [-0.25, 0.0, 0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]],
[[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], [0.125, -0.125, 0.125], zeros],
[[0.0, 0.5, 0.0], [0.0, -0.5, 0.0], zeros, zeros],
[[0.0, 0.5, 0.0], [0.125, -0.125, 0.125], [-0.25, 0.25, -0.25], zeros],
[[0.0, 0.5, 0.0], [-0.25, 0.25, 0.25], [0.125, -0.125, -0.125], zeros],
[[0.25, -0.25, 0.0], [-0.25, 0.25, 0.0], zeros, zeros],
[[-0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.0, 0.25, -0.25], [0.375, -0.375, -0.375], [-0.125, 0.125, 0.125], [0.25, 0.25, 0.0]],
[[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], [0.125, -0.125, 0.125]],
[[0.125, -0.125, 0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros],
[[0.25, 0.25, -0.25], [0.25, 0.25, -0.25], [0.125, 0.125, -0.125], [-0.125, -0.125, 0.125]],
[[-0.0, 0.0, 0.5], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], [-0.125, 0.125, 0.125], zeros],
[[-0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[-0.375, -0.375, 0.375], [-0.0, 0.25, 0.25], [0.125, 0.125, -0.125], [-0.25, -0.0, -0.25]],
[[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], [0.125, -0.125, 0.125], zeros],
[[0.125, -0.125, 0.125], [-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], zeros],
[[0.125, -0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.0, -0.5, 0.0], [0.125, 0.125, -0.125], [0.25, 0.25, -0.25], zeros],
[[0.0, -0.25, 0.25], [0.0, 0.25, -0.25], zeros, zeros],
[[0.125, 0.125, 0.125], [0.125, -0.125, 0.125], zeros, zeros],
[[0.125, -0.125, 0.125], zeros, zeros, zeros],
[[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], zeros],
[[-0.5, 0.0, 0.0], [-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.125, 0.125, 0.125]],
[[0.375, 0.375, 0.375], [0.0, 0.25, -0.25], [-0.125, -0.125, -0.125], [-0.25, 0.25, 0.0]],
[[0.125, -0.125, -0.125], [0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros],
[[0.125, 0.125, 0.125], [0.375, 0.375, 0.375], [0.0, -0.25, 0.25], [-0.25, 0.0, 0.25]],
[[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], [0.125, -0.125, -0.125], zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[-0.125, 0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[-0.125, -0.125, -0.125], [-0.25, -0.25, -0.25], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125]],
[[-0.125, -0.125, 0.125], [0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros],
[[0.0, 0.0, -0.5], [0.25, 0.25, 0.25], [-0.125, -0.125, -0.125], zeros],
[[0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, -0.5, 0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[-0.125, -0.125, 0.125], [0.125, -0.125, -0.125], zeros, zeros],
[[0.0, -0.25, -0.25], [0.0, 0.25, 0.25], zeros, zeros],
[[0.125, -0.125, -0.125], zeros, zeros, zeros],
[[0.5, 0.0, 0.0], [0.5, 0.0, 0.0], zeros, zeros],
[[-0.5, 0.0, 0.0], [-0.25, 0.25, 0.25], [-0.125, 0.125, 0.125], zeros],
[[0.5, 0.0, 0.0], [0.25, -0.25, 0.25], [-0.125, 0.125, -0.125], zeros],
[[0.25, -0.25, 0.0], [0.25, -0.25, 0.0], zeros, zeros],
[[0.5, 0.0, 0.0], [-0.25, -0.25, 0.25], [-0.125, -0.125, 0.125], zeros],
[[-0.25, 0.0, 0.25], [-0.25, 0.0, 0.25], zeros, zeros],
[[0.125, 0.125, 0.125], [-0.125, 0.125, 0.125], zeros, zeros],
[[-0.125, 0.125, 0.125], zeros, zeros, zeros],
[[0.5, 0.0, -0.0], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], zeros],
[[0.125, -0.125, 0.125], [-0.125, -0.125, 0.125], zeros, zeros],
[[-0.25, -0.0, -0.25], [0.25, 0.0, 0.25], zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[[-0.25, -0.25, 0.0], [0.25, 0.25, -0.0], zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[[0.125, 0.125, 0.125], zeros, zeros, zeros],
[zeros, zeros, zeros, zeros],
],
dtype=torch.float32,
device=device,
)
space = torch.as_tensor(
[[[spacing[1] * spacing[2], spacing[0] * spacing[2], spacing[0] * spacing[1]]]],
device=device,
dtype=table.dtype,
)
norm = torch.linalg.norm(table * space, dim=-1)
table = norm.sum(-1)
kernel = torch.as_tensor([[[[[128, 64], [32, 16]], [[8, 4], [2, 1]]]]], device=device)
return table, kernel
|