File size: 15,816 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.regression.utils import _check_data_shape_to_num_outputs
from torchmetrics.utilities.checks import _check_same_shape
from torchmetrics.utilities.data import _bincount, _cumsum, dim_zero_cat
from torchmetrics.utilities.enums import EnumStr
class _MetricVariant(EnumStr):
"""Enumerate for metric variants."""
A = "a"
B = "b"
C = "c"
@staticmethod
def _name() -> str:
return "variant"
class _TestAlternative(EnumStr):
"""Enumerate for test alternative options."""
TWO_SIDED = "two-sided"
LESS = "less"
GREATER = "greater"
@staticmethod
def _name() -> str:
return "alternative"
def _sort_on_first_sequence(x: Tensor, y: Tensor) -> tuple[Tensor, Tensor]:
"""Sort sequences in an ascent order according to the sequence ``x``."""
# We need to clone `y` tensor not to change an object in memory
y = torch.clone(y)
x, y = x.T, y.T
x, perm = x.sort()
for i in range(x.shape[0]):
y[i] = y[i][perm[i]]
return x.T, y.T
def _concordant_element_sum(x: Tensor, y: Tensor, i: int) -> Tensor:
"""Count a total number of concordant pairs in a single sequence."""
return torch.logical_and(x[i] < x[(i + 1) :], y[i] < y[(i + 1) :]).sum(0).unsqueeze(0)
def _count_concordant_pairs(preds: Tensor, target: Tensor) -> Tensor:
"""Count a total number of concordant pairs in given sequences."""
return torch.cat([_concordant_element_sum(preds, target, i) for i in range(preds.shape[0])]).sum(0)
def _discordant_element_sum(x: Tensor, y: Tensor, i: int) -> Tensor:
"""Count a total number of discordant pairs in a single sequences."""
return (
torch.logical_or(
torch.logical_and(x[i] > x[(i + 1) :], y[i] < y[(i + 1) :]),
torch.logical_and(x[i] < x[(i + 1) :], y[i] > y[(i + 1) :]),
)
.sum(0)
.unsqueeze(0)
)
def _count_discordant_pairs(preds: Tensor, target: Tensor) -> Tensor:
"""Count a total number of discordant pairs in given sequences."""
return torch.cat([_discordant_element_sum(preds, target, i) for i in range(preds.shape[0])]).sum(0)
def _convert_sequence_to_dense_rank(x: Tensor, sort: bool = False) -> Tensor:
"""Convert a sequence to the rank tensor."""
# Sort if a sequence has not been sorted before
if sort:
x = x.sort(dim=0).values
_ones = torch.zeros(1, x.shape[1], dtype=torch.int32, device=x.device)
return _cumsum(torch.cat([_ones, (x[1:] != x[:-1]).int()], dim=0), dim=0)
def _get_ties(x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
"""Get a total number of ties and staistics for p-value calculation for a given sequence."""
ties = torch.zeros(x.shape[1], dtype=x.dtype, device=x.device)
ties_p1 = torch.zeros(x.shape[1], dtype=x.dtype, device=x.device)
ties_p2 = torch.zeros(x.shape[1], dtype=x.dtype, device=x.device)
for dim in range(x.shape[1]):
n_ties = _bincount(x[:, dim])
n_ties = n_ties[n_ties > 1]
ties[dim] = (n_ties * (n_ties - 1) // 2).sum()
ties_p1[dim] = (n_ties * (n_ties - 1.0) * (n_ties - 2)).sum()
ties_p2[dim] = (n_ties * (n_ties - 1.0) * (2 * n_ties + 5)).sum()
return ties, ties_p1, ties_p2
def _get_metric_metadata(
preds: Tensor, target: Tensor, variant: _MetricVariant
) -> tuple[
Tensor,
Tensor,
Optional[Tensor],
Optional[Tensor],
Optional[Tensor],
Optional[Tensor],
Optional[Tensor],
Optional[Tensor],
Tensor,
]:
"""Obtain statistics to calculate metric value."""
preds, target = _sort_on_first_sequence(preds, target)
concordant_pairs = _count_concordant_pairs(preds, target)
discordant_pairs = _count_discordant_pairs(preds, target)
n_total = torch.tensor(preds.shape[0], device=preds.device)
preds_ties = target_ties = None
preds_ties_p1 = preds_ties_p2 = target_ties_p1 = target_ties_p2 = None
if variant != _MetricVariant.A:
preds = _convert_sequence_to_dense_rank(preds)
target = _convert_sequence_to_dense_rank(target, sort=True)
preds_ties, preds_ties_p1, preds_ties_p2 = _get_ties(preds)
target_ties, target_ties_p1, target_ties_p2 = _get_ties(target)
return (
concordant_pairs,
discordant_pairs,
preds_ties,
preds_ties_p1,
preds_ties_p2,
target_ties,
target_ties_p1,
target_ties_p2,
n_total,
)
def _calculate_tau(
preds: Tensor,
target: Tensor,
concordant_pairs: Tensor,
discordant_pairs: Tensor,
con_min_dis_pairs: Tensor,
n_total: Tensor,
preds_ties: Optional[Tensor],
target_ties: Optional[Tensor],
variant: _MetricVariant,
) -> Tensor:
"""Calculate Kendall's tau from metric metadata."""
if variant == _MetricVariant.A:
return con_min_dis_pairs / (concordant_pairs + discordant_pairs)
if variant == _MetricVariant.B:
total_combinations: Tensor = n_total * (n_total - 1) // 2
if preds_ties is None:
preds_ties = torch.tensor(0.0, dtype=total_combinations.dtype, device=total_combinations.device)
if target_ties is None:
target_ties = torch.tensor(0.0, dtype=total_combinations.dtype, device=total_combinations.device)
denominator = (total_combinations - preds_ties) * (total_combinations - target_ties)
return con_min_dis_pairs / torch.sqrt(denominator)
preds_unique = torch.tensor([len(p.unique()) for p in preds.T], dtype=preds.dtype, device=preds.device)
target_unique = torch.tensor([len(t.unique()) for t in target.T], dtype=target.dtype, device=target.device)
min_classes = torch.minimum(preds_unique, target_unique)
return 2 * con_min_dis_pairs / ((min_classes - 1) / min_classes * n_total**2)
def _get_p_value_for_t_value_from_dist(t_value: Tensor) -> Tensor:
"""Obtain p-value for a given Tensor of t-values. Handle ``nan`` which cannot be passed into torch distributions.
When t-value is ``nan``, a resulted p-value should be alson ``nan``.
"""
device = t_value
normal_dist = torch.distributions.normal.Normal(torch.tensor([0.0]).to(device), torch.tensor([1.0]).to(device))
is_nan = t_value.isnan()
t_value = t_value.nan_to_num()
p_value = normal_dist.cdf(t_value)
return p_value.where(~is_nan, torch.tensor(float("nan"), dtype=p_value.dtype, device=p_value.device))
def _calculate_p_value(
con_min_dis_pairs: Tensor,
n_total: Tensor,
preds_ties: Optional[Tensor],
preds_ties_p1: Optional[Tensor],
preds_ties_p2: Optional[Tensor],
target_ties: Optional[Tensor],
target_ties_p1: Optional[Tensor],
target_ties_p2: Optional[Tensor],
variant: _MetricVariant,
alternative: Optional[_TestAlternative],
) -> Tensor:
"""Calculate p-value for Kendall's tau from metric metadata."""
t_value_denominator_base = n_total * (n_total - 1) * (2 * n_total + 5)
if variant == _MetricVariant.A:
t_value = 3 * con_min_dis_pairs / torch.sqrt(t_value_denominator_base / 2)
else:
m = n_total * (n_total - 1)
t_value_denominator: Tensor = (
t_value_denominator_base
- (preds_ties_p2 if preds_ties_p2 is not None else 0)
- (target_ties_p2 if target_ties_p2 is not None else 0)
) / 18
t_value_denominator += (
2 * (preds_ties if preds_ties is not None else 0) * (target_ties if target_ties is not None else 0)
) / m
t_value_denominator += (
(preds_ties_p1 if preds_ties_p1 is not None else 0)
* (target_ties_p1 if target_ties_p1 is not None else 0)
/ (9 * m * (n_total - 2))
)
t_value = con_min_dis_pairs / torch.sqrt(t_value_denominator)
if alternative == _TestAlternative.TWO_SIDED:
t_value = torch.abs(t_value)
if alternative in [_TestAlternative.TWO_SIDED, _TestAlternative.GREATER]:
t_value *= -1
p_value = _get_p_value_for_t_value_from_dist(t_value)
if alternative == _TestAlternative.TWO_SIDED:
p_value *= 2
return p_value
def _kendall_corrcoef_update(
preds: Tensor,
target: Tensor,
concat_preds: Optional[List[Tensor]] = None,
concat_target: Optional[List[Tensor]] = None,
num_outputs: int = 1,
) -> tuple[List[Tensor], List[Tensor]]:
"""Update variables required to compute Kendall rank correlation coefficient.
Args:
preds: Sequence of data
target: Sequence of data
concat_preds: List of batches of preds sequence to be concatenated
concat_target: List of batches of target sequence to be concatenated
num_outputs: Number of outputs in multioutput setting
Raises:
RuntimeError: If ``preds`` and ``target`` do not have the same shape
"""
concat_preds = concat_preds or []
concat_target = concat_target or []
# Data checking
_check_same_shape(preds, target)
_check_data_shape_to_num_outputs(preds, target, num_outputs)
if num_outputs == 1:
preds = preds.unsqueeze(1)
target = target.unsqueeze(1)
concat_preds.append(preds)
concat_target.append(target)
return concat_preds, concat_target
def _kendall_corrcoef_compute(
preds: Tensor,
target: Tensor,
variant: _MetricVariant,
alternative: Optional[_TestAlternative] = None,
) -> tuple[Tensor, Optional[Tensor]]:
"""Compute Kendall rank correlation coefficient, and optionally p-value of corresponding statistical test.
Args:
Args:
preds: Sequence of data
target: Sequence of data
variant: Indication of which variant of Kendall's tau to be used
alternative: Alternative hypothesis for for t-test. Possible values:
- 'two-sided': the rank correlation is nonzero
- 'less': the rank correlation is negative (less than zero)
- 'greater': the rank correlation is positive (greater than zero)
"""
(
concordant_pairs,
discordant_pairs,
preds_ties,
preds_ties_p1,
preds_ties_p2,
target_ties,
target_ties_p1,
target_ties_p2,
n_total,
) = _get_metric_metadata(preds, target, variant)
con_min_dis_pairs = concordant_pairs - discordant_pairs
tau = _calculate_tau(
preds, target, concordant_pairs, discordant_pairs, con_min_dis_pairs, n_total, preds_ties, target_ties, variant
)
p_value = (
_calculate_p_value(
con_min_dis_pairs,
n_total,
preds_ties,
preds_ties_p1,
preds_ties_p2,
target_ties,
target_ties_p1,
target_ties_p2,
variant,
alternative,
)
if alternative
else None
)
# Squeeze tensor if num_outputs=1
if tau.shape[0] == 1:
tau = tau.squeeze()
p_value = p_value.squeeze() if p_value is not None else None
return tau.clamp(-1, 1), p_value
def kendall_rank_corrcoef(
preds: Tensor,
target: Tensor,
variant: Literal["a", "b", "c"] = "b",
t_test: bool = False,
alternative: Optional[Literal["two-sided", "less", "greater"]] = "two-sided",
) -> Union[Tensor, tuple[Tensor, Tensor]]:
r"""Compute `Kendall Rank Correlation Coefficient`_.
.. math::
tau_a = \frac{C - D}{C + D}
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs.
.. math::
tau_b = \frac{C - D}{\sqrt{(C + D + T_{preds}) * (C + D + T_{target})}}
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs and :math:`T` represents
a total number of ties.
.. math::
tau_c = 2 * \frac{C - D}{n^2 * \frac{m - 1}{m}}
where :math:`C` represents concordant pairs, :math:`D` stands for discordant pairs, :math:`n` is a total number
of observations and :math:`m` is a ``min`` of unique values in ``preds`` and ``target`` sequence.
Definitions according to Definition according to `The Treatment of Ties in Ranking Problems`_.
Args:
preds: Sequence of data of either shape ``(N,)`` or ``(N,d)``
target: Sequence of data of either shape ``(N,)`` or ``(N,d)``
variant: Indication of which variant of Kendall's tau to be used
t_test: Indication whether to run t-test
alternative: Alternative hypothesis for t-test. Possible values:
- 'two-sided': the rank correlation is nonzero
- 'less': the rank correlation is negative (less than zero)
- 'greater': the rank correlation is positive (greater than zero)
Return:
Correlation tau statistic
(Optional) p-value of corresponding statistical test (asymptotic)
Raises:
ValueError: If ``t_test`` is not of a type bool
ValueError: If ``t_test=True`` and ``alternative=None``
Example (single output regression):
>>> from torchmetrics.functional.regression import kendall_rank_corrcoef
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> target = torch.tensor([3, -0.5, 2, 1])
>>> kendall_rank_corrcoef(preds, target)
tensor(0.3333)
Example (multi output regression):
>>> from torchmetrics.functional.regression import kendall_rank_corrcoef
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> target = torch.tensor([[3, -0.5], [2, 1]])
>>> kendall_rank_corrcoef(preds, target)
tensor([1., 1.])
Example (single output regression with t-test)
>>> from torchmetrics.functional.regression import kendall_rank_corrcoef
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> target = torch.tensor([3, -0.5, 2, 1])
>>> kendall_rank_corrcoef(preds, target, t_test=True, alternative='two-sided')
(tensor(0.3333), tensor(0.4969))
Example (multi output regression with t-test):
>>> from torchmetrics.functional.regression import kendall_rank_corrcoef
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> target = torch.tensor([[3, -0.5], [2, 1]])
>>> kendall_rank_corrcoef(preds, target, t_test=True, alternative='two-sided')
(tensor([1., 1.]), tensor([nan, nan]))
"""
if not isinstance(t_test, bool):
raise ValueError(f"Argument `t_test` is expected to be of a type `bool`, but got {type(t_test)}.")
if t_test and alternative is None:
raise ValueError("Argument `alternative` is required if `t_test=True` but got `None`.")
_variant = _MetricVariant.from_str(str(variant))
_alternative = _TestAlternative.from_str(str(alternative)) if t_test else None
_preds, _target = _kendall_corrcoef_update(
preds, target, [], [], num_outputs=1 if preds.ndim == 1 else preds.shape[-1]
)
tau, p_value = _kendall_corrcoef_compute(
dim_zero_cat(_preds),
dim_zero_cat(_target),
_variant, # type: ignore[arg-type] # todo
_alternative, # type: ignore[arg-type] # todo
)
if p_value is not None:
return tau, p_value
return tau
|