File size: 2,246 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

from torch import Tensor


def _check_input(
    x: Tensor, y: Optional[Tensor] = None, zero_diagonal: Optional[bool] = None
) -> tuple[Tensor, Tensor, bool]:
    """Check that input has the right dimensionality and sets the ``zero_diagonal`` argument if user has not set it.

    Args:
        x: tensor of shape ``[N,d]``
        y: if provided, a tensor of shape ``[M,d]``
        zero_diagonal: determines if the diagonal of the distance matrix should be set to zero

    """
    if x.ndim != 2:
        raise ValueError(f"Expected argument `x` to be a 2D tensor of shape `[N, d]` but got {x.shape}")

    if y is not None:
        if y.ndim != 2 or y.shape[1] != x.shape[1]:
            raise ValueError(
                "Expected argument `y` to be a 2D tensor of shape `[M, d]` where"
                " `d` should be same as the last dimension of `x`"
            )
        zero_diagonal = False if zero_diagonal is None else zero_diagonal
    else:
        y = x.clone()
        zero_diagonal = True if zero_diagonal is None else zero_diagonal
    return x, y, zero_diagonal


def _reduce_distance_matrix(distmat: Tensor, reduction: Optional[str] = None) -> Tensor:
    """Reduction of distance matrix.

    Args:
        distmat: a ``[N,M]`` matrix
        reduction: string determining how to reduce along last dimension

    """
    if reduction == "mean":
        return distmat.mean(dim=-1)
    if reduction == "sum":
        return distmat.sum(dim=-1)
    if reduction is None or reduction == "none":
        return distmat
    raise ValueError(f"Expected reduction to be one of `['mean', 'sum', None]` but got {reduction}")