File size: 5,745 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import torch
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.utilities.prints import rank_zero_warn


def _nominal_input_validation(nan_strategy: str, nan_replace_value: Optional[float]) -> None:
    if nan_strategy not in ["replace", "drop"]:
        raise ValueError(
            f"Argument `nan_strategy` is expected to be one of `['replace', 'drop']`, but got {nan_strategy}"
        )
    if nan_strategy == "replace" and not isinstance(nan_replace_value, (float, int)):
        raise ValueError(
            "Argument `nan_replace` is expected to be of a type `int` or `float` when `nan_strategy = 'replace`, "
            f"but got {nan_replace_value}"
        )


def _compute_expected_freqs(confmat: Tensor) -> Tensor:
    """Compute the expected frequenceis from the provided confusion matrix."""
    margin_sum_rows, margin_sum_cols = confmat.sum(1), confmat.sum(0)
    return torch.einsum("r, c -> rc", margin_sum_rows, margin_sum_cols) / confmat.sum()


def _compute_chi_squared(confmat: Tensor, bias_correction: bool) -> Tensor:
    """Chi-square test of independenc of variables in a confusion matrix table.

    Adapted from: https://github.com/scipy/scipy/blob/v1.9.2/scipy/stats/contingency.py.

    """
    expected_freqs = _compute_expected_freqs(confmat)
    # Get degrees of freedom
    df = expected_freqs.numel() - sum(expected_freqs.shape) + expected_freqs.ndim - 1
    if df == 0:
        return torch.tensor(0.0, device=confmat.device)

    if df == 1 and bias_correction:
        diff = expected_freqs - confmat
        direction = diff.sign()
        confmat += direction * torch.minimum(0.5 * torch.ones_like(direction), direction.abs())

    return torch.sum((confmat - expected_freqs) ** 2 / expected_freqs)


def _drop_empty_rows_and_cols(confmat: Tensor) -> Tensor:
    """Drop all rows and columns containing only zeros.

    Example:
        >>> from torch import randint
        >>> from torchmetrics.functional.nominal.utils import _drop_empty_rows_and_cols
        >>> matrix = randint(10, size=(4, 3))
        >>> matrix[1, :] = matrix[:, 1] = 0
        >>> matrix
        tensor([[2, 0, 6],
                [0, 0, 0],
                [0, 0, 0],
                [3, 0, 4]])
        >>> _drop_empty_rows_and_cols(matrix)
        tensor([[2, 6],
                [3, 4]])

    """
    confmat = confmat[confmat.sum(1) != 0]
    return confmat[:, confmat.sum(0) != 0]


def _compute_phi_squared_corrected(
    phi_squared: Tensor,
    num_rows: int,
    num_cols: int,
    confmat_sum: Tensor,
) -> Tensor:
    """Compute bias-corrected Phi Squared."""
    return torch.max(
        torch.tensor(0.0, device=phi_squared.device),
        phi_squared - ((num_rows - 1) * (num_cols - 1)) / (confmat_sum - 1),
    )


def _compute_rows_and_cols_corrected(num_rows: int, num_cols: int, confmat_sum: Tensor) -> tuple[Tensor, Tensor]:
    """Compute bias-corrected number of rows and columns."""
    rows_corrected = num_rows - (num_rows - 1) ** 2 / (confmat_sum - 1)
    cols_corrected = num_cols - (num_cols - 1) ** 2 / (confmat_sum - 1)
    return rows_corrected, cols_corrected


def _compute_bias_corrected_values(
    phi_squared: Tensor, num_rows: int, num_cols: int, confmat_sum: Tensor
) -> tuple[Tensor, Tensor, Tensor]:
    """Compute bias-corrected Phi Squared and number of rows and columns."""
    phi_squared_corrected = _compute_phi_squared_corrected(phi_squared, num_rows, num_cols, confmat_sum)
    rows_corrected, cols_corrected = _compute_rows_and_cols_corrected(num_rows, num_cols, confmat_sum)
    return phi_squared_corrected, rows_corrected, cols_corrected


def _handle_nan_in_data(
    preds: Tensor,
    target: Tensor,
    nan_strategy: Literal["replace", "drop"] = "replace",
    nan_replace_value: Optional[float] = 0.0,
) -> tuple[Tensor, Tensor]:
    """Handle ``NaN`` values in input data.

    If ``nan_strategy = 'replace'``, all ``NaN`` values are replaced with ``nan_replace_value``.
    If ``nan_strategy = 'drop'``, all rows containing ``NaN`` in any of two vectors are dropped.

    Args:
        preds: 1D tensor of categorical (nominal) data
        target: 1D tensor of categorical (nominal) data
        nan_strategy: Indication of whether to replace or drop ``NaN`` values
        nan_replace_value: Value to replace ``NaN`s when ``nan_strategy = 'replace```

    Returns:
        Updated ``preds`` and ``target`` tensors which contain no ``Nan``

    Raises:
        ValueError: If ``nan_strategy`` is not from ``['replace', 'drop']``.
        ValueError: If ``nan_strategy = replace`` and ``nan_replace_value`` is not of a type ``int`` or ``float``.

    """
    if nan_strategy == "replace":
        return preds.nan_to_num(nan_replace_value), target.nan_to_num(nan_replace_value)
    rows_contain_nan = torch.logical_or(preds.isnan(), target.isnan())
    return preds[~rows_contain_nan], target[~rows_contain_nan]


def _unable_to_use_bias_correction_warning(metric_name: str) -> None:
    rank_zero_warn(
        f"Unable to compute {metric_name} using bias correction. Please consider to set `bias_correction=False`."
    )