File size: 4,462 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import torch
from torch import Tensor, tensor


def _compute_bef(x: Tensor, block_size: int = 8) -> Tensor:
    """Compute block effect.

    Args:
        x: input image
        block_size: integer indication the block size

    Returns:
        Computed block effect

    Raises:
        ValueError:
            If the image is not a grayscale image

    """
    (
        _,
        channels,
        height,
        width,
    ) = x.shape
    if channels > 1:
        raise ValueError(f"`psnrb` metric expects grayscale images, but got images with {channels} channels.")

    h = torch.arange(width - 1)
    h_b = torch.tensor(range(block_size - 1, width - 1, block_size))
    h_bc = torch.tensor(list(set(h.tolist()).symmetric_difference(h_b.tolist())))

    v = torch.arange(height - 1)
    v_b = torch.tensor(range(block_size - 1, height - 1, block_size))
    v_bc = torch.tensor(list(set(v.tolist()).symmetric_difference(v_b.tolist())))

    d_b = (x[:, :, :, h_b] - x[:, :, :, h_b + 1]).pow(2.0).sum()
    d_bc = (x[:, :, :, h_bc] - x[:, :, :, h_bc + 1]).pow(2.0).sum()
    d_b += (x[:, :, v_b, :] - x[:, :, v_b + 1, :]).pow(2.0).sum()
    d_bc += (x[:, :, v_bc, :] - x[:, :, v_bc + 1, :]).pow(2.0).sum()

    n_hb = height * (width / block_size) - 1
    n_hbc = (height * (width - 1)) - n_hb
    n_vb = width * (height / block_size) - 1
    n_vbc = (width * (height - 1)) - n_vb
    d_b /= n_hb + n_vb
    d_bc /= n_hbc + n_vbc
    t = math.log2(block_size) / math.log2(min(height, width)) if d_b > d_bc else 0
    return t * (d_b - d_bc)


def _psnrb_compute(
    sum_squared_error: Tensor,
    bef: Tensor,
    num_obs: Tensor,
    data_range: Tensor,
) -> Tensor:
    """Computes peak signal-to-noise ratio.

    Args:
        sum_squared_error: Sum of square of errors over all observations
        bef: block effect
        num_obs: Number of predictions or observations
        data_range: the range of the data. If None, it is determined from the data (max - min).

    """
    sum_squared_error = sum_squared_error / num_obs + bef
    if data_range > 2:
        return 10 * torch.log10(data_range**2 / sum_squared_error)
    return 10 * torch.log10(1.0 / sum_squared_error)


def _psnrb_update(preds: Tensor, target: Tensor, block_size: int = 8) -> tuple[Tensor, Tensor, Tensor]:
    """Updates and returns variables required to compute peak signal-to-noise ratio.

    Args:
        preds: Predicted tensor
        target: Ground truth tensor
        block_size: Integer indication the block size

    """
    sum_squared_error = torch.sum(torch.pow(preds - target, 2))
    num_obs = tensor(target.numel(), device=target.device)
    bef = _compute_bef(preds, block_size=block_size)
    return sum_squared_error, bef, num_obs


def peak_signal_noise_ratio_with_blocked_effect(
    preds: Tensor,
    target: Tensor,
    block_size: int = 8,
) -> Tensor:
    r"""Computes `Peak Signal to Noise Ratio With Blocked Effect` (PSNRB) metrics.

    .. math::
        \text{PSNRB}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)-\text{B}(I, J)}\right)

    Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function.

    Args:
        preds: estimated signal
        target: groun truth signal
        block_size: integer indication the block size

    Return:
        Tensor with PSNRB score

    Example:
        >>> from torch import rand
        >>> from torchmetrics.functional.image import peak_signal_noise_ratio_with_blocked_effect
        >>> preds = rand(1, 1, 28, 28)
        >>> target = rand(1, 1, 28, 28)
        >>> peak_signal_noise_ratio_with_blocked_effect(preds, target)
        tensor(7.8402)

    """
    data_range = target.max() - target.min()
    sum_squared_error, bef, num_obs = _psnrb_update(preds, target, block_size=block_size)
    return _psnrb_compute(sum_squared_error, bef, num_obs, data_range)