File size: 6,248 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import torch
from torch import Tensor, tensor
from typing_extensions import Literal

from torchmetrics.utilities import rank_zero_warn, reduce


def _psnr_compute(
    sum_squared_error: Tensor,
    num_obs: Tensor,
    data_range: Tensor,
    base: float = 10.0,
    reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
) -> Tensor:
    """Compute peak signal-to-noise ratio.

    Args:
        sum_squared_error: Sum of square of errors over all observations
        num_obs: Number of predictions or observations
        data_range: the range of the data. If None, it is determined from the data (max - min).
           ``data_range`` must be given when ``dim`` is not None.
        base: a base of a logarithm to use
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'`` or ``None``: no reduction will be applied

    Example:
        >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
        >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
        >>> data_range = target.max() - target.min()
        >>> sum_squared_error, num_obs = _psnr_update(preds, target)
        >>> _psnr_compute(sum_squared_error, num_obs, data_range)
        tensor(2.5527)

    """
    psnr_base_e = 2 * torch.log(data_range) - torch.log(sum_squared_error / num_obs)
    psnr_vals = psnr_base_e * (10 / torch.log(tensor(base)))
    return reduce(psnr_vals, reduction=reduction)


def _psnr_update(
    preds: Tensor,
    target: Tensor,
    dim: Optional[Union[int, tuple[int, ...]]] = None,
) -> tuple[Tensor, Tensor]:
    """Update and return variables required to compute peak signal-to-noise ratio.

    Args:
        preds: Predicted tensor
        target: Ground truth tensor
        dim: Dimensions to reduce PSNR scores over provided as either an integer or a list of integers.
            Default is None meaning scores will be reduced across all dimensions.

    """
    if not preds.is_floating_point():
        preds = preds.to(torch.float32)
    if not target.is_floating_point():
        target = target.to(torch.float32)

    if dim is None:
        sum_squared_error = torch.sum(torch.pow(preds - target, 2))
        num_obs = tensor(target.numel(), device=target.device)
        return sum_squared_error, num_obs

    diff = preds - target
    sum_squared_error = torch.sum(diff * diff, dim=dim)

    dim_list = [dim] if isinstance(dim, int) else list(dim)
    if not dim_list:
        num_obs = tensor(target.numel(), device=target.device)
    else:
        num_obs = tensor(target.size(), device=target.device)[dim_list].prod()
        num_obs = num_obs.expand_as(sum_squared_error)

    return sum_squared_error, num_obs


def peak_signal_noise_ratio(
    preds: Tensor,
    target: Tensor,
    data_range: Optional[Union[float, tuple[float, float]]] = None,
    base: float = 10.0,
    reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
    dim: Optional[Union[int, tuple[int, ...]]] = None,
) -> Tensor:
    """Compute the peak signal-to-noise ratio.

    Args:
        preds: estimated signal
        target: groun truth signal
        data_range:
            the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then
            the range is calculated as the difference and input is clamped between the values.
            The ``data_range`` must be given when ``dim`` is not None.
        base: a base of a logarithm to use
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'`` or None``: no reduction will be applied

        dim:
            Dimensions to reduce PSNR scores over provided as either an integer or a list of integers. Default is
            None meaning scores will be reduced across all dimensions.

    Return:
        Tensor with PSNR score

    Raises:
        ValueError:
            If ``dim`` is not ``None`` and ``data_range`` is not provided.

    Example:
        >>> from torchmetrics.functional.image import peak_signal_noise_ratio
        >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
        >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
        >>> peak_signal_noise_ratio(pred, target)
        tensor(2.5527)

    .. attention::
        Half precision is only support on GPU for this metric.

    """
    if dim is None and reduction != "elementwise_mean":
        rank_zero_warn(f"The `reduction={reduction}` will not have any effect when `dim` is None.")

    if data_range is None:
        if dim is not None:
            # Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to calculate
            # `data_range` in the future.
            raise ValueError("The `data_range` must be given when `dim` is not None.")

        data_range = target.max() - target.min()  # type: ignore[assignment]
    elif isinstance(data_range, tuple):
        preds = torch.clamp(preds, min=data_range[0], max=data_range[1])
        target = torch.clamp(target, min=data_range[0], max=data_range[1])
        data_range = tensor(data_range[1] - data_range[0])  # type: ignore[assignment]
    else:
        data_range = tensor(float(data_range))  # type: ignore[assignment]

    sum_squared_error, num_obs = _psnr_update(preds, target, dim=dim)
    return _psnr_compute(sum_squared_error, num_obs, data_range, base=base, reduction=reduction)  # type: ignore[arg-type]