File size: 10,090 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from torch import Tensor, tensor
from typing_extensions import Literal
from torchmetrics.utilities.checks import _check_same_shape
def is_nonnegative(x: Tensor, atol: float = 1e-5) -> Tensor:
"""Return True if all elements of tensor are nonnegative within certain tolerance.
Args:
x: tensor
atol: absolute tolerance
Returns:
Boolean tensor indicating if all values are nonnegative
"""
return torch.logical_or(x > 0.0, torch.abs(x) < atol).all()
def _validate_average_method_arg(
average_method: Literal["min", "geometric", "arithmetic", "max"] = "arithmetic",
) -> None:
if average_method not in ("min", "geometric", "arithmetic", "max"):
raise ValueError(
"Expected argument `average_method` to be one of `min`, `geometric`, `arithmetic`, `max`,"
f"but got {average_method}"
)
def calculate_entropy(x: Tensor) -> Tensor:
"""Calculate entropy for a tensor of labels.
Final calculation of entropy is performed in log form to account for roundoff error.
Args:
x: labels
Returns:
entropy: entropy of tensor
Example:
>>> from torchmetrics.functional.clustering.utils import calculate_entropy
>>> labels = torch.tensor([1, 3, 2, 2, 1])
>>> calculate_entropy(labels)
tensor(1.0549)
"""
if len(x) == 0:
return tensor(1.0, device=x.device)
p = torch.bincount(torch.unique(x, return_inverse=True)[1])
p = p[p > 0]
if p.size() == 1:
return tensor(0.0, device=x.device)
n = p.sum()
return -torch.sum((p / n) * (torch.log(p) - torch.log(n)))
def calculate_generalized_mean(x: Tensor, p: Union[int, Literal["min", "geometric", "arithmetic", "max"]]) -> Tensor:
"""Return generalized (power) mean of a tensor.
Args:
x: tensor
p: power
Returns:
generalized_mean: generalized mean
Example (p="min"):
>>> from torchmetrics.functional.clustering.utils import calculate_generalized_mean
>>> x = torch.tensor([1, 3, 2, 2, 1])
>>> calculate_generalized_mean(x, "min")
tensor(1)
Example (p="geometric"):
>>> from torchmetrics.functional.clustering.utils import calculate_generalized_mean
>>> x = torch.tensor([1, 3, 2, 2, 1])
>>> calculate_generalized_mean(x, "geometric")
tensor(1.6438)
"""
if torch.is_complex(x) or not is_nonnegative(x):
raise ValueError("`x` must contain positive real numbers")
if isinstance(p, str):
if p == "min":
return x.min()
if p == "geometric":
return torch.exp(torch.mean(x.log()))
if p == "arithmetic":
return x.mean()
if p == "max":
return x.max()
raise ValueError("'method' must be 'min', 'geometric', 'arirthmetic', or 'max'")
return torch.mean(torch.pow(x, p)) ** (1.0 / p)
def calculate_contingency_matrix(
preds: Tensor, target: Tensor, eps: Optional[float] = None, sparse: bool = False
) -> Tensor:
"""Calculate contingency matrix.
Args:
preds: predicted labels
target: ground truth labels
eps: value added to contingency matrix
sparse: If True, returns contingency matrix as a sparse matrix. Else, return as dense matrix.
`eps` must be `None` if `sparse` is `True`.
Returns:
contingency: contingency matrix of shape (n_classes_target, n_classes_preds)
Example:
>>> import torch
>>> from torchmetrics.functional.clustering.utils import calculate_contingency_matrix
>>> preds = torch.tensor([2, 1, 0, 1, 0])
>>> target = torch.tensor([0, 2, 1, 1, 0])
>>> calculate_contingency_matrix(preds, target, eps=1e-16)
tensor([[1.0000e+00, 1.0000e-16, 1.0000e+00],
[1.0000e+00, 1.0000e+00, 1.0000e-16],
[1.0000e-16, 1.0000e+00, 1.0000e-16]])
"""
if eps is not None and sparse is True:
raise ValueError("Cannot specify `eps` and return sparse tensor.")
if preds.ndim != 1 or target.ndim != 1:
raise ValueError(f"Expected 1d `preds` and `target` but got {preds.ndim} and {target.dim}.")
preds_classes, preds_idx = torch.unique(preds, return_inverse=True)
target_classes, target_idx = torch.unique(target, return_inverse=True)
num_classes_preds = preds_classes.size(0)
num_classes_target = target_classes.size(0)
contingency = torch.sparse_coo_tensor(
torch.stack((
target_idx,
preds_idx,
)),
torch.ones(target_idx.shape[0], dtype=preds_idx.dtype, device=preds_idx.device),
(
num_classes_target,
num_classes_preds,
),
)
if not sparse:
contingency = contingency.to_dense()
if eps:
contingency = contingency + eps
return contingency
def _is_real_discrete_label(x: Tensor) -> bool:
"""Check if tensor of labels is real and discrete."""
if x.ndim != 1:
raise ValueError(f"Expected arguments to be 1-d tensors but got {x.ndim}-d tensors.")
return not (torch.is_floating_point(x) or torch.is_complex(x))
def check_cluster_labels(preds: Tensor, target: Tensor) -> None:
"""Check shape of input tensors and if they are real, discrete tensors.
Args:
preds: predicted labels
target: ground truth labels
"""
_check_same_shape(preds, target)
if not (_is_real_discrete_label(preds) and _is_real_discrete_label(target)):
raise ValueError(f"Expected real, discrete values for x but received {preds.dtype} and {target.dtype}.")
def _validate_intrinsic_cluster_data(data: Tensor, labels: Tensor) -> None:
"""Validate that the input data and labels have correct shape and type."""
if data.ndim != 2:
raise ValueError(f"Expected 2D data, got {data.ndim}D data instead")
if not data.is_floating_point():
raise ValueError(f"Expected floating point data, got {data.dtype} data instead")
if labels.ndim != 1:
raise ValueError(f"Expected 1D labels, got {labels.ndim}D labels instead")
def _validate_intrinsic_labels_to_samples(num_labels: int, num_samples: int) -> None:
"""Validate that the number of labels are in the correct range."""
if not 1 < num_labels < num_samples:
raise ValueError(
"Number of detected clusters must be greater than one and less than the number of samples."
f"Got {num_labels} clusters and {num_samples} samples."
)
def calculate_pair_cluster_confusion_matrix(
preds: Optional[Tensor] = None,
target: Optional[Tensor] = None,
contingency: Optional[Tensor] = None,
) -> Tensor:
"""Calculates the pair cluster confusion matrix.
Can either be calculated from predicted cluster labels and target cluster labels or from a pre-computed
contingency matrix. The pair cluster confusion matrix is a 2x2 matrix where that defines the similarity between
two clustering by considering all pairs of samples and counting pairs that are assigned into same or different
clusters in the predicted and target clusterings.
Note that the matrix is not symmetric.
Inspired by:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.pair_confusion_matrix.html
Args:
preds: predicted cluster labels
target: ground truth cluster labels
contingency: contingency matrix
Returns:
A 2x2 tensor containing the pair cluster confusion matrix.
Raises:
ValueError:
If neither `preds` and `target` nor `contingency` are provided.
ValueError:
If both `preds` and `target` and `contingency` are provided.
Example:
>>> import torch
>>> from torchmetrics.functional.clustering.utils import calculate_pair_cluster_confusion_matrix
>>> preds = torch.tensor([0, 0, 1, 1])
>>> target = torch.tensor([1, 1, 0, 0])
>>> calculate_pair_cluster_confusion_matrix(preds, target)
tensor([[8, 0],
[0, 4]])
>>> preds = torch.tensor([0, 0, 1, 2])
>>> target = torch.tensor([0, 0, 1, 1])
>>> calculate_pair_cluster_confusion_matrix(preds, target)
tensor([[8, 2],
[0, 2]])
"""
if preds is None and target is None and contingency is None:
raise ValueError("Must provide either `preds` and `target` or `contingency`.")
if preds is not None and target is not None and contingency is not None:
raise ValueError("Must provide either `preds` and `target` or `contingency`, not both.")
if preds is not None and target is not None:
contingency = calculate_contingency_matrix(preds, target)
if contingency is None:
raise ValueError("Must provide `contingency` if `preds` and `target` are not provided.")
num_samples = contingency.sum()
sum_c = contingency.sum(dim=1)
sum_k = contingency.sum(dim=0)
sum_squared = (contingency**2).sum()
pair_matrix = torch.zeros(2, 2, dtype=contingency.dtype, device=contingency.device)
pair_matrix[1, 1] = sum_squared - num_samples
pair_matrix[1, 0] = (contingency * sum_k).sum() - sum_squared
pair_matrix[0, 1] = (contingency.T * sum_c).sum() - sum_squared
pair_matrix[0, 0] = num_samples**2 - pair_matrix[0, 1] - pair_matrix[1, 0] - sum_squared
return pair_matrix
|