File size: 17,233 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.classification.confusion_matrix import (
_binary_confusion_matrix_arg_validation,
_binary_confusion_matrix_format,
_binary_confusion_matrix_tensor_validation,
_binary_confusion_matrix_update,
_multiclass_confusion_matrix_arg_validation,
_multiclass_confusion_matrix_format,
_multiclass_confusion_matrix_tensor_validation,
_multiclass_confusion_matrix_update,
_multilabel_confusion_matrix_arg_validation,
_multilabel_confusion_matrix_format,
_multilabel_confusion_matrix_tensor_validation,
_multilabel_confusion_matrix_update,
)
from torchmetrics.utilities.compute import _safe_divide
from torchmetrics.utilities.enums import ClassificationTask
def _jaccard_index_reduce(
confmat: Tensor,
average: Optional[Literal["micro", "macro", "weighted", "none", "binary"]],
ignore_index: Optional[int] = None,
zero_division: float = 0.0,
) -> Tensor:
"""Perform reduction of an un-normalized confusion matrix into jaccard score.
Args:
confmat: tensor with un-normalized confusionmatrix
average: reduction method
- ``'binary'``: binary reduction, expects a 2x2 matrix
- ``'macro'``: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).
- ``'micro'``: Calculate the metric globally, across all samples and classes.
- ``'weighted'``: Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (``tp + fn``).
- ``'none'`` or ``None``: Calculate the metric for each class separately, and return
the metric for every class.
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
"""
allowed_average = ["binary", "micro", "macro", "weighted", "none", None]
if average not in allowed_average:
raise ValueError(f"The `average` has to be one of {allowed_average}, got {average}.")
confmat = confmat.float()
if average == "binary":
return _safe_divide(confmat[1, 1], (confmat[0, 1] + confmat[1, 0] + confmat[1, 1]), zero_division=zero_division)
ignore_index_cond = ignore_index is not None and 0 <= ignore_index < confmat.shape[0]
multilabel = confmat.ndim == 3
if multilabel:
num = confmat[:, 1, 1]
denom = confmat[:, 1, 1] + confmat[:, 0, 1] + confmat[:, 1, 0]
else: # multiclass
num = torch.diag(confmat)
denom = confmat.sum(0) + confmat.sum(1) - num
if average == "micro":
num = num.sum()
denom = denom.sum() - (denom[ignore_index] if ignore_index_cond else 0.0)
jaccard = _safe_divide(num, denom, zero_division=zero_division)
if average is None or average == "none" or average == "micro":
return jaccard
if average == "weighted":
weights = confmat[:, 1, 1] + confmat[:, 1, 0] if confmat.ndim == 3 else confmat.sum(1)
else:
weights = torch.ones_like(jaccard)
if ignore_index_cond:
weights[ignore_index] = 0.0
if not multilabel:
weights[confmat.sum(1) + confmat.sum(0) == 0] = 0.0
return ((weights * jaccard) / weights.sum()).sum()
def binary_jaccard_index(
preds: Tensor,
target: Tensor,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0.0,
) -> Tensor:
r"""Calculate the Jaccard index for binary tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
Accepts the following input tensors:
- ``preds`` (int or float tensor): ``(N, ...)``. If preds is a floating point tensor with values outside
[0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally,
we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (int tensor): ``(N, ...)``
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
preds: Tensor with predictions
target: Tensor with true labels
threshold: Threshold for transforming probability to binary (0,1) predictions
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import binary_jaccard_index
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> binary_jaccard_index(preds, target)
tensor(0.5000)
Example (preds is float tensor):
>>> from torchmetrics.functional.classification import binary_jaccard_index
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0.35, 0.85, 0.48, 0.01])
>>> binary_jaccard_index(preds, target)
tensor(0.5000)
"""
if validate_args:
_binary_confusion_matrix_arg_validation(threshold, ignore_index)
_binary_confusion_matrix_tensor_validation(preds, target, ignore_index)
preds, target = _binary_confusion_matrix_format(preds, target, threshold, ignore_index)
confmat = _binary_confusion_matrix_update(preds, target)
return _jaccard_index_reduce(confmat, average="binary", zero_division=zero_division)
def _multiclass_jaccard_index_arg_validation(
num_classes: int,
ignore_index: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = None,
) -> None:
_multiclass_confusion_matrix_arg_validation(num_classes, ignore_index)
allowed_average = ("micro", "macro", "weighted", "none", None)
if average not in allowed_average:
raise ValueError(f"Expected argument `average` to be one of {allowed_average}, but got {average}.")
def multiclass_jaccard_index(
preds: Tensor,
target: Tensor,
num_classes: int,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0.0,
) -> Tensor:
r"""Calculate the Jaccard index for multiclass tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
Accepts the following input tensors:
- ``preds``: ``(N, ...)`` (int tensor) or ``(N, C, ..)`` (float tensor). If preds is a floating point
we apply ``torch.argmax`` along the ``C`` dimension to automatically convert probabilities/logits into
an int tensor.
- ``target`` (int tensor): ``(N, ...)``
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
preds: Tensor with predictions
target: Tensor with true labels
num_classes: Integer specifying the number of classes
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
Example (pred is integer tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import multiclass_jaccard_index
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> multiclass_jaccard_index(preds, target, num_classes=3)
tensor(0.6667)
Example (pred is float tensor):
>>> from torchmetrics.functional.classification import multiclass_jaccard_index
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> multiclass_jaccard_index(preds, target, num_classes=3)
tensor(0.6667)
"""
if validate_args:
_multiclass_jaccard_index_arg_validation(num_classes, ignore_index, average)
_multiclass_confusion_matrix_tensor_validation(preds, target, num_classes, ignore_index)
preds, target = _multiclass_confusion_matrix_format(preds, target, ignore_index)
confmat = _multiclass_confusion_matrix_update(preds, target, num_classes)
return _jaccard_index_reduce(confmat, average=average, ignore_index=ignore_index, zero_division=zero_division)
def _multilabel_jaccard_index_arg_validation(
num_labels: int,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
) -> None:
_multilabel_confusion_matrix_arg_validation(num_labels, threshold, ignore_index)
allowed_average = ("micro", "macro", "weighted", "none", None)
if average not in allowed_average:
raise ValueError(f"Expected argument `average` to be one of {allowed_average}, but got {average}.")
def multilabel_jaccard_index(
preds: Tensor,
target: Tensor,
num_labels: int,
threshold: float = 0.5,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0.0,
) -> Tensor:
r"""Calculate the Jaccard index for multilabel tasks.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
Accepts the following input tensors:
- ``preds`` (int or float tensor): ``(N, C, ...)``. If preds is a floating point tensor with values outside
[0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally,
we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (int tensor): ``(N, C, ...)``
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
preds: Tensor with predictions
target: Tensor with true labels
num_labels: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
average:
Defines the reduction that is applied over labels. Should be one of the following:
- ``micro``: Sum statistics over all labels
- ``macro``: Calculate statistics for each label and average them
- ``weighted``: calculates statistics for each label and computes weighted average using their support
- ``"none"`` or ``None``: calculates statistic for each label and applies no reduction
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
zero_division:
Value to replace when there is a division by zero. Should be `0` or `1`.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.functional.classification import multilabel_jaccard_index
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> multilabel_jaccard_index(preds, target, num_labels=3)
tensor(0.5000)
Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_jaccard_index
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> multilabel_jaccard_index(preds, target, num_labels=3)
tensor(0.5000)
"""
if validate_args:
_multilabel_jaccard_index_arg_validation(num_labels, threshold, ignore_index)
_multilabel_confusion_matrix_tensor_validation(preds, target, num_labels, ignore_index)
preds, target = _multilabel_confusion_matrix_format(preds, target, num_labels, threshold, ignore_index)
confmat = _multilabel_confusion_matrix_update(preds, target, num_labels)
return _jaccard_index_reduce(confmat, average=average, ignore_index=ignore_index, zero_division=zero_division)
def jaccard_index(
preds: Tensor,
target: Tensor,
task: Literal["binary", "multiclass", "multilabel"],
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
ignore_index: Optional[int] = None,
validate_args: bool = True,
zero_division: float = 0.0,
) -> Tensor:
r"""Calculate the Jaccard index.
The `Jaccard index`_ (also known as the intersection over union or jaccard similarity coefficient) is an statistic
that can be used to determine the similarity and diversity of a sample set. It is defined as the size of the
intersection divided by the union of the sample sets:
.. math:: J(A,B) = \frac{|A\cap B|}{|A\cup B|}
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:func:`~torchmetrics.functional.classification.binary_jaccard_index`,
:func:`~torchmetrics.functional.classification.multiclass_jaccard_index` and
:func:`~torchmetrics.functional.classification.multilabel_jaccard_index` for
the specific details of each argument influence and examples.
Legacy Example:
>>> from torch import randint, tensor
>>> target = randint(0, 2, (10, 25, 25))
>>> pred = tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> jaccard_index(pred, target, task="multiclass", num_classes=2)
tensor(0.9660)
"""
task = ClassificationTask.from_str(task)
if task == ClassificationTask.BINARY:
return binary_jaccard_index(preds, target, threshold, ignore_index, validate_args, zero_division)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
return multiclass_jaccard_index(preds, target, num_classes, average, ignore_index, validate_args, zero_division)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return multilabel_jaccard_index(
preds, target, num_labels, threshold, average, ignore_index, validate_args, zero_division
)
raise ValueError(f"Not handled value: {task}")
|