File size: 16,466 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Code related main NISQA model definition are under the following copyright

# Copyright (c) 2021 Gabriel Mittag, Quality and Usability Lab

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import copy
import math
import os
import warnings
from functools import lru_cache
from typing import Any

import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.functional import adaptive_max_pool2d, relu, softmax
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

from torchmetrics.utilities import rank_zero_info
from torchmetrics.utilities.imports import _LIBROSA_AVAILABLE, _REQUESTS_AVAILABLE

if _LIBROSA_AVAILABLE and _REQUESTS_AVAILABLE:
    import librosa
    import requests
else:
    librosa, requests = None, None  # type:ignore

__doctest_requires__ = {("non_intrusive_speech_quality_assessment",): ["librosa", "requests"]}

NISQA_DIR = "~/.torchmetrics/NISQA"


def non_intrusive_speech_quality_assessment(preds: Tensor, fs: int) -> Tensor:
    """`Non-Intrusive Speech Quality Assessment`_ (NISQA v2.0) [1], [2].

    .. hint::
        Usingsing this metric requires you to have ``librosa`` and ``requests`` installed. Install as
        ``pip install librosa requests``.

    Args:
        preds: float tensor with shape ``(...,time)``
        fs: sampling frequency of input

    Returns:
        Float tensor with shape ``(...,5)`` corresponding to overall MOS, noisiness, discontinuity, coloration and
        loudness in that order

    Raises:
        ModuleNotFoundError:
            If ``librosa`` or ``requests`` are not installed
        RuntimeError:
            If the input is too short, causing the number of mel spectrogram windows to be zero
        RuntimeError:
            If the input is too long, causing the number of mel spectrogram windows to exceed the maximum allowed

    Example:
        >>> import torch
        >>> from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment
        >>> _ = torch.manual_seed(42)
        >>> preds = torch.randn(16000)
        >>> non_intrusive_speech_quality_assessment(preds, 16000)
        tensor([1.0433, 1.9545, 2.6087, 1.3460, 1.7117])

    References:
        - [1] G. Mittag and S. MΓΆller, "Non-intrusive speech quality assessment for super-wideband speech communication
          networks", in Proc. ICASSP, 2019.
        - [2] G. Mittag, B. Naderi, A. Chehadi and S. MΓΆller, "NISQA: A deep CNN-self-attention model for
          multidimensional speech quality prediction with crowdsourced datasets", in Proc. INTERSPEECH, 2021.

    """
    if not _LIBROSA_AVAILABLE or not _REQUESTS_AVAILABLE:
        raise ModuleNotFoundError(
            "NISQA metric requires that librosa and requests are installed. Install as `pip install librosa requests`."
        )
    model, args = _load_nisqa_model()
    if not isinstance(fs, int) or fs <= 0:
        raise ValueError(f"Argument `fs` expected to be a positive integer, but got {fs}")
    model.eval()
    x = preds.reshape(-1, preds.shape[-1])
    x = _get_librosa_melspec(x.cpu().numpy(), fs, args)
    x, n_wins = _segment_specs(torch.from_numpy(x), args)
    with torch.no_grad():
        x = model(x, n_wins.expand(x.shape[0]))
    # ["mos_pred", "noi_pred", "dis_pred", "col_pred", "loud_pred"]
    # the dimensions are always listed in the papers as MOS, noisiness, coloration, discontinuity and loudness
    # but based on original code the actual model output order is MOS, noisiness, discontinuity, coloration, loudness
    return x.reshape(preds.shape[:-1] + (5,))


@lru_cache
def _load_nisqa_model() -> tuple[nn.Module, dict[str, Any]]:
    """Load NISQA model and its parameters.

    Returns:
        Tuple ``(model,args)`` where ``model`` is the NISQA model and ``args`` is a dictionary with all its parameters

    """
    model_path = os.path.expanduser(os.path.join(NISQA_DIR, "nisqa.tar"))
    if not os.path.exists(model_path):
        _download_weights()
    checkpoint = torch.load(model_path, map_location="cpu", weights_only=True)
    args = checkpoint["args"]
    model = _NISQADIM(args)
    model.load_state_dict(checkpoint["model_state_dict"], strict=True)
    return model, args


def _download_weights() -> None:
    """Download NISQA model weights."""
    url = "https://github.com/gabrielmittag/NISQA/raw/refs/heads/master/weights/nisqa.tar"
    nisqa_dir = os.path.expanduser(NISQA_DIR)
    os.makedirs(nisqa_dir, exist_ok=True)
    saveto = os.path.join(nisqa_dir, "nisqa.tar")
    if os.path.exists(saveto):
        return
    rank_zero_info(f"downloading {url} to {saveto}")
    myfile = requests.get(url)
    with open(saveto, "wb") as f:
        f.write(myfile.content)


class _NISQADIM(nn.Module):
    # main NISQA model definition
    # ported from https://github.com/gabrielmittag/NISQA
    # Copyright (c) 2021 Gabriel Mittag, Quality and Usability Lab
    # MIT License
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.cnn = _Framewise(args)
        self.time_dependency = _TimeDependency(args)
        pool = _Pooling(args)
        self.pool_layers = _get_clones(pool, 5)

    def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
        x = self.cnn(x, n_wins)
        x, n_wins = self.time_dependency(x, n_wins)
        out = [mod(x, n_wins) for mod in self.pool_layers]
        return torch.cat(out, dim=1)


class _Framewise(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.model = _AdaptCNN(args)

    def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
        x_packed = pack_padded_sequence(x, n_wins, batch_first=True, enforce_sorted=False)
        x = self.model(x_packed.data.unsqueeze(1))
        x = x_packed._replace(data=x)
        x, _ = pad_packed_sequence(x, batch_first=True, padding_value=0.0, total_length=int(n_wins.max()))
        return x


class _AdaptCNN(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.pool_1 = args["cnn_pool_1"]
        self.pool_2 = args["cnn_pool_2"]
        self.pool_3 = args["cnn_pool_3"]
        self.dropout = nn.Dropout2d(p=args["cnn_dropout"])
        cnn_pad = (1, 0) if args["cnn_kernel_size"][0] == 1 else (1, 1)
        self.conv1 = nn.Conv2d(1, args["cnn_c_out_1"], args["cnn_kernel_size"], padding=cnn_pad)
        self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
        self.conv2 = nn.Conv2d(self.conv1.out_channels, args["cnn_c_out_2"], args["cnn_kernel_size"], padding=cnn_pad)
        self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
        self.conv3 = nn.Conv2d(self.conv2.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
        self.bn3 = nn.BatchNorm2d(self.conv3.out_channels)
        self.conv4 = nn.Conv2d(self.conv3.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
        self.bn4 = nn.BatchNorm2d(self.conv4.out_channels)
        self.conv5 = nn.Conv2d(self.conv4.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
        self.bn5 = nn.BatchNorm2d(self.conv5.out_channels)
        self.conv6 = nn.Conv2d(
            self.conv5.out_channels,
            args["cnn_c_out_3"],
            (args["cnn_kernel_size"][0], args["cnn_pool_3"][1]),
            padding=(1, 0),
        )
        self.bn6 = nn.BatchNorm2d(self.conv6.out_channels)

    def forward(self, x: Tensor) -> Tensor:
        x = relu(self.bn1(self.conv1(x)))
        x = adaptive_max_pool2d(x, output_size=(self.pool_1))
        x = relu(self.bn2(self.conv2(x)))
        x = adaptive_max_pool2d(x, output_size=(self.pool_2))
        x = self.dropout(x)
        x = relu(self.bn3(self.conv3(x)))
        x = self.dropout(x)
        x = relu(self.bn4(self.conv4(x)))
        x = adaptive_max_pool2d(x, output_size=(self.pool_3))
        x = self.dropout(x)
        x = relu(self.bn5(self.conv5(x)))
        x = self.dropout(x)
        x = relu(self.bn6(self.conv6(x)))
        return x.view(-1, self.conv6.out_channels * self.pool_3[0])


class _TimeDependency(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.model = _SelfAttention(args)

    def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
        return self.model(x, n_wins)


class _SelfAttention(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        encoder_layer = _SelfAttentionLayer(args)
        self.norm1 = nn.LayerNorm(args["td_sa_d_model"])
        self.linear = nn.Linear(args["cnn_c_out_3"] * args["cnn_pool_3"][0], args["td_sa_d_model"])
        self.layers = _get_clones(encoder_layer, args["td_sa_num_layers"])
        self._reset_parameters()

    def _reset_parameters(self) -> None:
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src: Tensor, n_wins: Tensor) -> tuple[Tensor, Tensor]:
        src = self.linear(src)
        output = src.transpose(1, 0)
        output = self.norm1(output)
        for mod in self.layers:
            output, n_wins = mod(output, n_wins)
        return output.transpose(1, 0), n_wins


class _SelfAttentionLayer(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.self_attn = nn.MultiheadAttention(args["td_sa_d_model"], args["td_sa_nhead"], args["td_sa_dropout"])
        self.linear1 = nn.Linear(args["td_sa_d_model"], args["td_sa_h"])
        self.dropout = nn.Dropout(args["td_sa_dropout"])
        self.linear2 = nn.Linear(args["td_sa_h"], args["td_sa_d_model"])
        self.norm1 = nn.LayerNorm(args["td_sa_d_model"])
        self.norm2 = nn.LayerNorm(args["td_sa_d_model"])
        self.dropout1 = nn.Dropout(args["td_sa_dropout"])
        self.dropout2 = nn.Dropout(args["td_sa_dropout"])
        self.activation = relu

    def forward(self, src: Tensor, n_wins: Tensor) -> tuple[Tensor, Tensor]:
        mask = torch.arange(src.shape[0])[None, :] < n_wins[:, None]
        src2 = self.self_attn(src, src, src, key_padding_mask=~mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src, n_wins


class _Pooling(nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.model = _PoolAttFF(args)

    def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
        return self.model(x, n_wins)


class _PoolAttFF(torch.nn.Module):
    # part of NISQA model definition
    def __init__(self, args: dict[str, Any]) -> None:
        super().__init__()
        self.linear1 = nn.Linear(args["td_sa_d_model"], args["pool_att_h"])
        self.linear2 = nn.Linear(args["pool_att_h"], 1)
        self.linear3 = nn.Linear(args["td_sa_d_model"], 1)
        self.activation = relu
        self.dropout = nn.Dropout(args["pool_att_dropout"])

    def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
        att = self.linear2(self.dropout(self.activation(self.linear1(x))))
        att = att.transpose(2, 1)
        mask = torch.arange(att.shape[2])[None, :] < n_wins[:, None]
        att[~mask.unsqueeze(1)] = float("-inf")
        att = softmax(att, dim=2)
        x = torch.bmm(att, x)
        x = x.squeeze(1)
        return self.linear3(x)


def _get_librosa_melspec(y: np.ndarray, sr: int, args: dict[str, Any]) -> np.ndarray:
    """Compute mel spectrogram from waveform using librosa.

    Args:
        y: waveform with shape ``(batch_size,time)``
        sr: sampling rate
        args: dictionary with all NISQA parameters

    Returns:
        Mel spectrogram with shape ``(batch_size,n_mels,n_frames)``

    """
    hop_length = int(sr * args["ms_hop_length"])
    win_length = int(sr * args["ms_win_length"])
    with warnings.catch_warnings():
        # ignore empty mel filter warning since this is expected when input signal is not fullband
        # see https://github.com/gabrielmittag/NISQA/issues/6#issuecomment-838157571
        warnings.filterwarnings("ignore", message="Empty filters detected in mel frequency basis")
        melspec = librosa.feature.melspectrogram(
            y=y,
            sr=sr,
            S=None,
            n_fft=args["ms_n_fft"],
            hop_length=hop_length,
            win_length=win_length,
            window="hann",
            center=True,
            pad_mode="reflect",
            power=1.0,
            n_mels=args["ms_n_mels"],
            fmin=0.0,
            fmax=args["ms_fmax"],
            htk=False,
            norm="slaney",
        )
    # batch processing of librosa.core.amplitude_to_db is not equivalent to individual processing due to top_db being
    # relative to max value
    # so process individually and then stack
    return np.stack([librosa.amplitude_to_db(m, ref=1.0, amin=1e-4, top_db=80.0) for m in melspec])


def _segment_specs(x: Tensor, args: dict[str, Any]) -> tuple[Tensor, Tensor]:
    """Segment mel spectrogram into overlapping windows.

    Args:
        x: mel spectrogram with shape ``(batch_size,n_mels,n_frames)``
        args: dictionary with all NISQA parameters

    Returns:
        Tuple ``(x_padded,n_wins)```, where ``x_padded`` is the segmented mel spectrogram with shape
        ``(batch_size,max_length,n_mels,seg_length)`` where the second dimension is the number of windows and was
        padded to ``max_length``, and ``n_wins`` is the number of windows and is 0-dimensional

    """
    seg_length = args["ms_seg_length"]
    seg_hop = args["ms_seg_hop_length"]
    max_length = args["ms_max_segments"]
    n_wins = x.shape[2] - (seg_length - 1)
    if n_wins < 1:
        raise RuntimeError("Input signal is too short.")
    idx1 = torch.arange(seg_length)
    idx2 = torch.arange(n_wins)
    idx3 = idx1.unsqueeze(0) + idx2.unsqueeze(1)
    x = x.transpose(2, 1)[:, idx3, :].transpose(3, 2)
    x = x[:, ::seg_hop]
    n_wins = math.ceil(n_wins / seg_hop)
    if max_length < n_wins:
        raise RuntimeError("Maximum number of mel spectrogram windows exceeded. Use shorter audio.")
    x_padded = torch.zeros((x.shape[0], max_length, x.shape[2], x.shape[3]))
    x_padded[:, :n_wins] = x
    return x_padded, torch.tensor(n_wins)


def _get_clones(module: nn.Module, n: int) -> nn.ModuleList:
    """Create ``n`` copies of a module."""
    return nn.ModuleList([copy.deepcopy(module) for i in range(n)])