File size: 16,466 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Code related main NISQA model definition are under the following copyright
# Copyright (c) 2021 Gabriel Mittag, Quality and Usability Lab
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import copy
import math
import os
import warnings
from functools import lru_cache
from typing import Any
import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.functional import adaptive_max_pool2d, relu, softmax
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torchmetrics.utilities import rank_zero_info
from torchmetrics.utilities.imports import _LIBROSA_AVAILABLE, _REQUESTS_AVAILABLE
if _LIBROSA_AVAILABLE and _REQUESTS_AVAILABLE:
import librosa
import requests
else:
librosa, requests = None, None # type:ignore
__doctest_requires__ = {("non_intrusive_speech_quality_assessment",): ["librosa", "requests"]}
NISQA_DIR = "~/.torchmetrics/NISQA"
def non_intrusive_speech_quality_assessment(preds: Tensor, fs: int) -> Tensor:
"""`Non-Intrusive Speech Quality Assessment`_ (NISQA v2.0) [1], [2].
.. hint::
Usingsing this metric requires you to have ``librosa`` and ``requests`` installed. Install as
``pip install librosa requests``.
Args:
preds: float tensor with shape ``(...,time)``
fs: sampling frequency of input
Returns:
Float tensor with shape ``(...,5)`` corresponding to overall MOS, noisiness, discontinuity, coloration and
loudness in that order
Raises:
ModuleNotFoundError:
If ``librosa`` or ``requests`` are not installed
RuntimeError:
If the input is too short, causing the number of mel spectrogram windows to be zero
RuntimeError:
If the input is too long, causing the number of mel spectrogram windows to exceed the maximum allowed
Example:
>>> import torch
>>> from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(16000)
>>> non_intrusive_speech_quality_assessment(preds, 16000)
tensor([1.0433, 1.9545, 2.6087, 1.3460, 1.7117])
References:
- [1] G. Mittag and S. MΓΆller, "Non-intrusive speech quality assessment for super-wideband speech communication
networks", in Proc. ICASSP, 2019.
- [2] G. Mittag, B. Naderi, A. Chehadi and S. MΓΆller, "NISQA: A deep CNN-self-attention model for
multidimensional speech quality prediction with crowdsourced datasets", in Proc. INTERSPEECH, 2021.
"""
if not _LIBROSA_AVAILABLE or not _REQUESTS_AVAILABLE:
raise ModuleNotFoundError(
"NISQA metric requires that librosa and requests are installed. Install as `pip install librosa requests`."
)
model, args = _load_nisqa_model()
if not isinstance(fs, int) or fs <= 0:
raise ValueError(f"Argument `fs` expected to be a positive integer, but got {fs}")
model.eval()
x = preds.reshape(-1, preds.shape[-1])
x = _get_librosa_melspec(x.cpu().numpy(), fs, args)
x, n_wins = _segment_specs(torch.from_numpy(x), args)
with torch.no_grad():
x = model(x, n_wins.expand(x.shape[0]))
# ["mos_pred", "noi_pred", "dis_pred", "col_pred", "loud_pred"]
# the dimensions are always listed in the papers as MOS, noisiness, coloration, discontinuity and loudness
# but based on original code the actual model output order is MOS, noisiness, discontinuity, coloration, loudness
return x.reshape(preds.shape[:-1] + (5,))
@lru_cache
def _load_nisqa_model() -> tuple[nn.Module, dict[str, Any]]:
"""Load NISQA model and its parameters.
Returns:
Tuple ``(model,args)`` where ``model`` is the NISQA model and ``args`` is a dictionary with all its parameters
"""
model_path = os.path.expanduser(os.path.join(NISQA_DIR, "nisqa.tar"))
if not os.path.exists(model_path):
_download_weights()
checkpoint = torch.load(model_path, map_location="cpu", weights_only=True)
args = checkpoint["args"]
model = _NISQADIM(args)
model.load_state_dict(checkpoint["model_state_dict"], strict=True)
return model, args
def _download_weights() -> None:
"""Download NISQA model weights."""
url = "https://github.com/gabrielmittag/NISQA/raw/refs/heads/master/weights/nisqa.tar"
nisqa_dir = os.path.expanduser(NISQA_DIR)
os.makedirs(nisqa_dir, exist_ok=True)
saveto = os.path.join(nisqa_dir, "nisqa.tar")
if os.path.exists(saveto):
return
rank_zero_info(f"downloading {url} to {saveto}")
myfile = requests.get(url)
with open(saveto, "wb") as f:
f.write(myfile.content)
class _NISQADIM(nn.Module):
# main NISQA model definition
# ported from https://github.com/gabrielmittag/NISQA
# Copyright (c) 2021 Gabriel Mittag, Quality and Usability Lab
# MIT License
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.cnn = _Framewise(args)
self.time_dependency = _TimeDependency(args)
pool = _Pooling(args)
self.pool_layers = _get_clones(pool, 5)
def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
x = self.cnn(x, n_wins)
x, n_wins = self.time_dependency(x, n_wins)
out = [mod(x, n_wins) for mod in self.pool_layers]
return torch.cat(out, dim=1)
class _Framewise(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.model = _AdaptCNN(args)
def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
x_packed = pack_padded_sequence(x, n_wins, batch_first=True, enforce_sorted=False)
x = self.model(x_packed.data.unsqueeze(1))
x = x_packed._replace(data=x)
x, _ = pad_packed_sequence(x, batch_first=True, padding_value=0.0, total_length=int(n_wins.max()))
return x
class _AdaptCNN(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.pool_1 = args["cnn_pool_1"]
self.pool_2 = args["cnn_pool_2"]
self.pool_3 = args["cnn_pool_3"]
self.dropout = nn.Dropout2d(p=args["cnn_dropout"])
cnn_pad = (1, 0) if args["cnn_kernel_size"][0] == 1 else (1, 1)
self.conv1 = nn.Conv2d(1, args["cnn_c_out_1"], args["cnn_kernel_size"], padding=cnn_pad)
self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
self.conv2 = nn.Conv2d(self.conv1.out_channels, args["cnn_c_out_2"], args["cnn_kernel_size"], padding=cnn_pad)
self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
self.conv3 = nn.Conv2d(self.conv2.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
self.bn3 = nn.BatchNorm2d(self.conv3.out_channels)
self.conv4 = nn.Conv2d(self.conv3.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
self.bn4 = nn.BatchNorm2d(self.conv4.out_channels)
self.conv5 = nn.Conv2d(self.conv4.out_channels, args["cnn_c_out_3"], args["cnn_kernel_size"], padding=cnn_pad)
self.bn5 = nn.BatchNorm2d(self.conv5.out_channels)
self.conv6 = nn.Conv2d(
self.conv5.out_channels,
args["cnn_c_out_3"],
(args["cnn_kernel_size"][0], args["cnn_pool_3"][1]),
padding=(1, 0),
)
self.bn6 = nn.BatchNorm2d(self.conv6.out_channels)
def forward(self, x: Tensor) -> Tensor:
x = relu(self.bn1(self.conv1(x)))
x = adaptive_max_pool2d(x, output_size=(self.pool_1))
x = relu(self.bn2(self.conv2(x)))
x = adaptive_max_pool2d(x, output_size=(self.pool_2))
x = self.dropout(x)
x = relu(self.bn3(self.conv3(x)))
x = self.dropout(x)
x = relu(self.bn4(self.conv4(x)))
x = adaptive_max_pool2d(x, output_size=(self.pool_3))
x = self.dropout(x)
x = relu(self.bn5(self.conv5(x)))
x = self.dropout(x)
x = relu(self.bn6(self.conv6(x)))
return x.view(-1, self.conv6.out_channels * self.pool_3[0])
class _TimeDependency(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.model = _SelfAttention(args)
def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
return self.model(x, n_wins)
class _SelfAttention(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
encoder_layer = _SelfAttentionLayer(args)
self.norm1 = nn.LayerNorm(args["td_sa_d_model"])
self.linear = nn.Linear(args["cnn_c_out_3"] * args["cnn_pool_3"][0], args["td_sa_d_model"])
self.layers = _get_clones(encoder_layer, args["td_sa_num_layers"])
self._reset_parameters()
def _reset_parameters(self) -> None:
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src: Tensor, n_wins: Tensor) -> tuple[Tensor, Tensor]:
src = self.linear(src)
output = src.transpose(1, 0)
output = self.norm1(output)
for mod in self.layers:
output, n_wins = mod(output, n_wins)
return output.transpose(1, 0), n_wins
class _SelfAttentionLayer(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.self_attn = nn.MultiheadAttention(args["td_sa_d_model"], args["td_sa_nhead"], args["td_sa_dropout"])
self.linear1 = nn.Linear(args["td_sa_d_model"], args["td_sa_h"])
self.dropout = nn.Dropout(args["td_sa_dropout"])
self.linear2 = nn.Linear(args["td_sa_h"], args["td_sa_d_model"])
self.norm1 = nn.LayerNorm(args["td_sa_d_model"])
self.norm2 = nn.LayerNorm(args["td_sa_d_model"])
self.dropout1 = nn.Dropout(args["td_sa_dropout"])
self.dropout2 = nn.Dropout(args["td_sa_dropout"])
self.activation = relu
def forward(self, src: Tensor, n_wins: Tensor) -> tuple[Tensor, Tensor]:
mask = torch.arange(src.shape[0])[None, :] < n_wins[:, None]
src2 = self.self_attn(src, src, src, key_padding_mask=~mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src, n_wins
class _Pooling(nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.model = _PoolAttFF(args)
def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
return self.model(x, n_wins)
class _PoolAttFF(torch.nn.Module):
# part of NISQA model definition
def __init__(self, args: dict[str, Any]) -> None:
super().__init__()
self.linear1 = nn.Linear(args["td_sa_d_model"], args["pool_att_h"])
self.linear2 = nn.Linear(args["pool_att_h"], 1)
self.linear3 = nn.Linear(args["td_sa_d_model"], 1)
self.activation = relu
self.dropout = nn.Dropout(args["pool_att_dropout"])
def forward(self, x: Tensor, n_wins: Tensor) -> Tensor:
att = self.linear2(self.dropout(self.activation(self.linear1(x))))
att = att.transpose(2, 1)
mask = torch.arange(att.shape[2])[None, :] < n_wins[:, None]
att[~mask.unsqueeze(1)] = float("-inf")
att = softmax(att, dim=2)
x = torch.bmm(att, x)
x = x.squeeze(1)
return self.linear3(x)
def _get_librosa_melspec(y: np.ndarray, sr: int, args: dict[str, Any]) -> np.ndarray:
"""Compute mel spectrogram from waveform using librosa.
Args:
y: waveform with shape ``(batch_size,time)``
sr: sampling rate
args: dictionary with all NISQA parameters
Returns:
Mel spectrogram with shape ``(batch_size,n_mels,n_frames)``
"""
hop_length = int(sr * args["ms_hop_length"])
win_length = int(sr * args["ms_win_length"])
with warnings.catch_warnings():
# ignore empty mel filter warning since this is expected when input signal is not fullband
# see https://github.com/gabrielmittag/NISQA/issues/6#issuecomment-838157571
warnings.filterwarnings("ignore", message="Empty filters detected in mel frequency basis")
melspec = librosa.feature.melspectrogram(
y=y,
sr=sr,
S=None,
n_fft=args["ms_n_fft"],
hop_length=hop_length,
win_length=win_length,
window="hann",
center=True,
pad_mode="reflect",
power=1.0,
n_mels=args["ms_n_mels"],
fmin=0.0,
fmax=args["ms_fmax"],
htk=False,
norm="slaney",
)
# batch processing of librosa.core.amplitude_to_db is not equivalent to individual processing due to top_db being
# relative to max value
# so process individually and then stack
return np.stack([librosa.amplitude_to_db(m, ref=1.0, amin=1e-4, top_db=80.0) for m in melspec])
def _segment_specs(x: Tensor, args: dict[str, Any]) -> tuple[Tensor, Tensor]:
"""Segment mel spectrogram into overlapping windows.
Args:
x: mel spectrogram with shape ``(batch_size,n_mels,n_frames)``
args: dictionary with all NISQA parameters
Returns:
Tuple ``(x_padded,n_wins)```, where ``x_padded`` is the segmented mel spectrogram with shape
``(batch_size,max_length,n_mels,seg_length)`` where the second dimension is the number of windows and was
padded to ``max_length``, and ``n_wins`` is the number of windows and is 0-dimensional
"""
seg_length = args["ms_seg_length"]
seg_hop = args["ms_seg_hop_length"]
max_length = args["ms_max_segments"]
n_wins = x.shape[2] - (seg_length - 1)
if n_wins < 1:
raise RuntimeError("Input signal is too short.")
idx1 = torch.arange(seg_length)
idx2 = torch.arange(n_wins)
idx3 = idx1.unsqueeze(0) + idx2.unsqueeze(1)
x = x.transpose(2, 1)[:, idx3, :].transpose(3, 2)
x = x[:, ::seg_hop]
n_wins = math.ceil(n_wins / seg_hop)
if max_length < n_wins:
raise RuntimeError("Maximum number of mel spectrogram windows exceeded. Use shorter audio.")
x_padded = torch.zeros((x.shape[0], max_length, x.shape[2], x.shape[3]))
x_padded[:, :n_wins] = x
return x_padded, torch.tensor(n_wins)
def _get_clones(module: nn.Module, n: int) -> nn.ModuleList:
"""Create ``n`` copies of a module."""
return nn.ModuleList([copy.deepcopy(module) for i in range(n)])
|