File size: 22,057 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Collection, Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from torchmetrics.functional.detection._panoptic_quality_common import (
_get_category_id_to_continuous_id,
_get_void_color,
_panoptic_quality_compute,
_panoptic_quality_update,
_parse_categories,
_prepocess_inputs,
_validate_inputs,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["PanopticQuality.plot", "ModifiedPanopticQuality.plot"]
class PanopticQuality(Metric):
r"""Compute the `Panoptic Quality`_ for panoptic segmentations.
.. math::
PQ = \frac{IOU}{TP + 0.5 FP + 0.5 FN}
where IOU, TP, FP and FN are respectively the sum of the intersection over union for true positives,
the number of true positives, false positives and false negatives. This metric is inspired by the PQ
implementation of panopticapi, a standard implementation for the PQ metric for panoptic segmentation.
.. note:
Points in the target tensor that do not map to a known category ID are automatically ignored in the metric
computation.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int tensor of shape ``(B, *spatial_dims, 2)`` containing
the pair ``(category_id, instance_id)`` for each point, where there needs to
be at least one spatial dimension.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(B, *spatial_dims, 2)`` containing
the pair ``(category_id, instance_id)`` for each point, where there needs to
be at least one spatial dimension.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``quality`` (:class:`~torch.Tensor`): If ``return_sq_and_rq=False`` and ``return_per_class=False`` then a
single scalar tensor is returned with average panoptic quality over all classes. If ``return_sq_and_rq=True``
and ``return_per_class=False`` a tensor of length 3 is returned with panoptic, segmentation and recognition
quality (in that order). If If ``return_sq_and_rq=False`` and ``return_per_class=True`` a tensor of length
equal to the number of classes are returned, with panoptic quality for each class. The order of classes is
``things`` first and then ``stuffs``, and numerically sorted within each.
(ex. with ``things=[4, 1], stuffs=[3, 2]``, the output classes are ordered by ``[1, 4, 2, 3]``)
Finally, if both arguments are ``True`` a tensor of shape ``(3, C)`` is returned with individual panoptic,
segmentation and recognition quality for each class.
Args:
things:
Set of ``category_id`` for countable things.
stuffs:
Set of ``category_id`` for uncountable stuffs.
allow_unknown_preds_category:
Boolean flag to specify if unknown categories in the predictions are to be ignored in the metric
computation or raise an exception when found.
return_sq_and_rq:
Boolean flag to specify if Segmentation Quality and Recognition Quality should be also returned.
return_per_class:
Boolean flag to specify if the per-class values should be returned or the class average.
Raises:
ValueError:
If ``things``, ``stuffs`` have at least one common ``category_id``.
TypeError:
If ``things``, ``stuffs`` contain non-integer ``category_id``.
Example:
>>> from torch import tensor
>>> from torchmetrics.detection import PanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> panoptic_quality = PanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> panoptic_quality(preds, target)
tensor(0.5463, dtype=torch.float64)
You can also return the segmentation and recognition quality alognside the PQ
>>> from torch import tensor
>>> from torchmetrics.detection import PanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> panoptic_quality = PanopticQuality(things = {0, 1}, stuffs = {6, 7}, return_sq_and_rq=True)
>>> panoptic_quality(preds, target)
tensor([0.5463, 0.6111, 0.6667], dtype=torch.float64)
You can also specify to return the per-class metrics
>>> from torch import tensor
>>> from torchmetrics.detection import PanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> panoptic_quality = PanopticQuality(things = {0, 1}, stuffs = {6, 7}, return_per_class=True)
>>> panoptic_quality(preds, target)
tensor([[0.5185, 0.0000, 0.6667, 1.0000]], dtype=torch.float64)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
iou_sum: Tensor
true_positives: Tensor
false_positives: Tensor
false_negatives: Tensor
def __init__(
self,
things: Collection[int],
stuffs: Collection[int],
allow_unknown_preds_category: bool = False,
return_sq_and_rq: bool = False,
return_per_class: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
things, stuffs = _parse_categories(things, stuffs)
self.things = things
self.stuffs = stuffs
self.void_color = _get_void_color(things, stuffs)
self.cat_id_to_continuous_id = _get_category_id_to_continuous_id(things, stuffs)
self.allow_unknown_preds_category = allow_unknown_preds_category
self.return_sq_and_rq = return_sq_and_rq
self.return_per_class = return_per_class
# per category intermediate metrics
num_categories = len(things) + len(stuffs)
self.add_state("iou_sum", default=torch.zeros(num_categories, dtype=torch.double), dist_reduce_fx="sum")
self.add_state("true_positives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
self.add_state("false_positives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
self.add_state("false_negatives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
r"""Update state with predictions and targets.
Args:
preds: panoptic detection of shape ``[batch, *spatial_dims, 2]`` containing
the pair ``(category_id, instance_id)`` for each point.
If the ``category_id`` refer to a stuff, the instance_id is ignored.
target: ground truth of shape ``[batch, *spatial_dims, 2]`` containing
the pair ``(category_id, instance_id)`` for each pixel of the image.
If the ``category_id`` refer to a stuff, the instance_id is ignored.
Raises:
TypeError:
If ``preds`` or ``target`` is not an ``torch.Tensor``.
ValueError:
If ``preds`` and ``target`` have different shape.
ValueError:
If ``preds`` has less than 3 dimensions.
ValueError:
If the final dimension of ``preds`` has size != 2.
"""
_validate_inputs(preds, target)
flatten_preds = _prepocess_inputs(
self.things, self.stuffs, preds, self.void_color, self.allow_unknown_preds_category
)
flatten_target = _prepocess_inputs(self.things, self.stuffs, target, self.void_color, True)
iou_sum, true_positives, false_positives, false_negatives = _panoptic_quality_update(
flatten_preds, flatten_target, self.cat_id_to_continuous_id, self.void_color
)
self.iou_sum += iou_sum
self.true_positives += true_positives
self.false_positives += false_positives
self.false_negatives += false_negatives
def compute(self) -> Tensor:
"""Compute panoptic quality based on inputs passed in to ``update`` previously."""
pq, sq, rq, pq_avg, sq_avg, rq_avg = _panoptic_quality_compute(
self.iou_sum, self.true_positives, self.false_positives, self.false_negatives
)
if self.return_per_class:
if self.return_sq_and_rq:
return torch.stack((pq, sq, rq), dim=-1)
return pq.view(1, -1)
if self.return_sq_and_rq:
return torch.stack((pq_avg, sq_avg, rq_avg), dim=0)
return pq_avg
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import tensor
>>> from torchmetrics.detection import PanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> metric = PanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import tensor
>>> from torchmetrics.detection import PanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> metric = PanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> vals = []
>>> for _ in range(20):
... vals.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(vals)
"""
return self._plot(val, ax)
class ModifiedPanopticQuality(Metric):
r"""Compute `Modified Panoptic Quality`_ for panoptic segmentations.
The metric was introduced in `Seamless Scene Segmentation paper`_, and is an adaptation of the original
`Panoptic Quality`_ where the metric for a stuff class is computed as
.. math::
PQ^{\dagger}_c = \frac{IOU_c}{|S_c|}
where :math:`IOU_c` is the sum of the intersection over union of all matching segments for a given class, and
:math:`|S_c|` is the overall number of segments in the ground truth for that class.
.. note:
Points in the target tensor that do not map to a known category ID are automatically ignored in the metric
computation.
Args:
things:
Set of ``category_id`` for countable things.
stuffs:
Set of ``category_id`` for uncountable stuffs.
allow_unknown_preds_category:
Boolean flag to specify if unknown categories in the predictions are to be ignored in the metric
computation or raise an exception when found.
Raises:
ValueError:
If ``things``, ``stuffs`` have at least one common ``category_id``.
TypeError:
If ``things``, ``stuffs`` contain non-integer ``category_id``.
Example:
>>> from torch import tensor
>>> from torchmetrics.detection import ModifiedPanopticQuality
>>> preds = tensor([[[0, 0], [0, 1], [6, 0], [7, 0], [0, 2], [1, 0]]])
>>> target = tensor([[[0, 1], [0, 0], [6, 0], [7, 0], [6, 0], [255, 0]]])
>>> pq_modified = ModifiedPanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> pq_modified(preds, target)
tensor(0.7667, dtype=torch.float64)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
iou_sum: Tensor
true_positives: Tensor
false_positives: Tensor
false_negatives: Tensor
def __init__(
self,
things: Collection[int],
stuffs: Collection[int],
allow_unknown_preds_category: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
things, stuffs = _parse_categories(things, stuffs)
self.things = things
self.stuffs = stuffs
self.void_color = _get_void_color(things, stuffs)
self.cat_id_to_continuous_id = _get_category_id_to_continuous_id(things, stuffs)
self.allow_unknown_preds_category = allow_unknown_preds_category
# per category intermediate metrics
num_categories = len(things) + len(stuffs)
self.add_state("iou_sum", default=torch.zeros(num_categories, dtype=torch.double), dist_reduce_fx="sum")
self.add_state("true_positives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
self.add_state("false_positives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
self.add_state("false_negatives", default=torch.zeros(num_categories, dtype=torch.int), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
r"""Update state with predictions and targets.
Args:
preds: panoptic detection of shape ``[batch, *spatial_dims, 2]`` containing
the pair ``(category_id, instance_id)`` for each point.
If the ``category_id`` refer to a stuff, the instance_id is ignored.
target: ground truth of shape ``[batch, *spatial_dims, 2]`` containing
the pair ``(category_id, instance_id)`` for each pixel of the image.
If the ``category_id`` refer to a stuff, the instance_id is ignored.
Raises:
TypeError:
If ``preds`` or ``target`` is not an ``torch.Tensor``.
ValueError:
If ``preds`` and ``target`` have different shape.
ValueError:
If ``preds`` has less than 3 dimensions.
ValueError:
If the final dimension of ``preds`` has size != 2.
"""
_validate_inputs(preds, target)
flatten_preds = _prepocess_inputs(
self.things, self.stuffs, preds, self.void_color, self.allow_unknown_preds_category
)
flatten_target = _prepocess_inputs(self.things, self.stuffs, target, self.void_color, True)
iou_sum, true_positives, false_positives, false_negatives = _panoptic_quality_update(
flatten_preds,
flatten_target,
self.cat_id_to_continuous_id,
self.void_color,
modified_metric_stuffs=self.stuffs,
)
self.iou_sum += iou_sum
self.true_positives += true_positives
self.false_positives += false_positives
self.false_negatives += false_negatives
def compute(self) -> Tensor:
"""Compute panoptic quality based on inputs passed in to ``update`` previously."""
_, _, _, pq_avg, _, _ = _panoptic_quality_compute(
self.iou_sum, self.true_positives, self.false_positives, self.false_negatives
)
return pq_avg
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import tensor
>>> from torchmetrics.detection import ModifiedPanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> metric = ModifiedPanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import tensor
>>> from torchmetrics.detection import ModifiedPanopticQuality
>>> preds = tensor([[[[6, 0], [0, 0], [6, 0], [6, 0]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [0, 0], [6, 0], [0, 1]],
... [[0, 0], [7, 0], [6, 0], [1, 0]],
... [[0, 0], [7, 0], [7, 0], [7, 0]]]])
>>> target = tensor([[[[6, 0], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [0, 1]],
... [[0, 1], [0, 1], [6, 0], [1, 0]],
... [[0, 1], [7, 0], [1, 0], [1, 0]],
... [[0, 1], [7, 0], [7, 0], [7, 0]]]])
>>> metric = ModifiedPanopticQuality(things = {0, 1}, stuffs = {6, 7})
>>> vals = []
>>> for _ in range(20):
... vals.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(vals)
"""
return self._plot(val, ax)
|