File size: 13,784 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.classification.group_fairness import (
_binary_groups_stat_scores,
_compute_binary_demographic_parity,
_compute_binary_equal_opportunity,
)
from torchmetrics.functional.classification.stat_scores import _binary_stat_scores_arg_validation
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BinaryFairness.plot"]
class _AbstractGroupStatScores(Metric):
"""Create and update states for computing group stats tp, fp, tn and fn."""
tp: Tensor
fp: Tensor
tn: Tensor
fn: Tensor
def _create_states(self, num_groups: int) -> None:
default = lambda: torch.zeros(num_groups, dtype=torch.long)
self.add_state("tp", default(), dist_reduce_fx="sum")
self.add_state("fp", default(), dist_reduce_fx="sum")
self.add_state("tn", default(), dist_reduce_fx="sum")
self.add_state("fn", default(), dist_reduce_fx="sum")
def _update_states(self, group_stats: list[tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]]) -> None:
for group, stats in enumerate(group_stats):
tp, fp, tn, fn = stats
self.tp[group] += tp
self.fp[group] += fp
self.tn[group] += tn
self.fn[group] += fn
class BinaryGroupStatRates(_AbstractGroupStatScores):
r"""Computes the true/false positives and true/false negatives rates for binary classification by group.
Related to `Type I and Type II errors`_.
Accepts the following input tensors:
- ``preds`` (int or float tensor): ``(N, ...)``. If preds is a floating point tensor with values outside
[0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally,
we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (int tensor): ``(N, ...)``.
- ``groups`` (int tensor): ``(N, ...)``. The group identifiers should be ``0, 1, ..., (num_groups - 1)``.
The additional dimensions are flatted along the batch dimension.
Args:
num_groups: The number of groups.
threshold: Threshold for transforming probability to binary {0,1} predictions.
ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Returns:
The metric returns a dict with a group identifier as key and a tensor with the tp, fp, tn and fn rates as value.
Example (preds is int tensor):
>>> from torchmetrics.classification import BinaryGroupStatRates
>>> target = torch.tensor([0, 1, 0, 1, 0, 1])
>>> preds = torch.tensor([0, 1, 0, 1, 0, 1])
>>> groups = torch.tensor([0, 1, 0, 1, 0, 1])
>>> metric = BinaryGroupStatRates(num_groups=2)
>>> metric(preds, target, groups)
{'group_0': tensor([0., 0., 1., 0.]), 'group_1': tensor([1., 0., 0., 0.])}
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryGroupStatRates
>>> target = torch.tensor([0, 1, 0, 1, 0, 1])
>>> preds = torch.tensor([0.11, 0.84, 0.22, 0.73, 0.33, 0.92])
>>> groups = torch.tensor([0, 1, 0, 1, 0, 1])
>>> metric = BinaryGroupStatRates(num_groups=2)
>>> metric(preds, target, groups)
{'group_0': tensor([0., 0., 1., 0.]), 'group_1': tensor([1., 0., 0., 0.])}
"""
is_differentiable: bool = False
higher_is_better: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
num_groups: int,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__()
if validate_args:
_binary_stat_scores_arg_validation(threshold, "global", ignore_index)
if not isinstance(num_groups, int) and num_groups < 2:
raise ValueError(f"Expected argument `num_groups` to be an int larger than 1, but got {num_groups}")
self.num_groups = num_groups
self.threshold = threshold
self.ignore_index = ignore_index
self.validate_args = validate_args
self._create_states(self.num_groups)
def update(self, preds: Tensor, target: Tensor, groups: Tensor) -> None:
"""Update state with predictions, target and group identifiers.
Args:
preds: Tensor with predictions.
target: Tensor with true labels.
groups: Tensor with group identifiers. The group identifiers should be ``0, 1, ..., (num_groups - 1)``.
"""
group_stats = _binary_groups_stat_scores(
preds, target, groups, self.num_groups, self.threshold, self.ignore_index, self.validate_args
)
self._update_states(group_stats)
def compute(
self,
) -> dict[str, Tensor]:
"""Compute tp, fp, tn and fn rates based on inputs passed in to ``update`` previously."""
results = torch.stack((self.tp, self.fp, self.tn, self.fn), dim=1)
return {f"group_{i}": group / group.sum() for i, group in enumerate(results)}
class BinaryFairness(_AbstractGroupStatScores):
r"""Computes `Demographic parity`_ and `Equal opportunity`_ ratio for binary classification problems.
Accepts the following input tensors:
- ``preds`` (int or float tensor): ``(N, ...)``. If preds is a floating point tensor with values outside
[0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally,
we convert to int tensor with thresholding using the value in ``threshold``.
- ``groups`` (int tensor): ``(N, ...)``. The group identifiers should be ``0, 1, ..., (num_groups - 1)``.
- ``target`` (int tensor): ``(N, ...)``.
The additional dimensions are flatted along the batch dimension.
This class computes the ratio between positivity rates and true positives rates for different groups.
If more than two groups are present, the disparity between the lowest and highest group is reported.
A disparity between positivity rates indicates a potential violation of demographic parity, and between
true positive rates indicates a potential violation of equal opportunity.
The lowest rate is divided by the highest, so a lower value means more discrimination against the numerator.
In the results this is also indicated as the key of dict is {metric}_{identifier_low_group}_{identifier_high_group}.
Args:
num_groups: The number of groups.
task: The task to compute. Can be either ``demographic_parity`` or ``equal_opportunity`` or ``all``.
threshold: Threshold for transforming probability to binary {0,1} predictions.
ignore_index: Specifies a target value that is ignored and does not contribute to the metric calculation
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Returns:
The metric returns a dict where the key identifies the metric and groups with the lowest and highest true
positives rates as follows: {metric}__{identifier_low_group}_{identifier_high_group}.
The value is a tensor with the disparity rate.
Example (preds is int tensor):
>>> from torchmetrics.classification import BinaryFairness
>>> target = torch.tensor([0, 1, 0, 1, 0, 1])
>>> preds = torch.tensor([0, 1, 0, 1, 0, 1])
>>> groups = torch.tensor([0, 1, 0, 1, 0, 1])
>>> metric = BinaryFairness(2)
>>> metric(preds, target, groups)
{'DP_0_1': tensor(0.), 'EO_0_1': tensor(0.)}
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryFairness
>>> target = torch.tensor([0, 1, 0, 1, 0, 1])
>>> preds = torch.tensor([0.11, 0.84, 0.22, 0.73, 0.33, 0.92])
>>> groups = torch.tensor([0, 1, 0, 1, 0, 1])
>>> metric = BinaryFairness(2)
>>> metric(preds, target, groups)
{'DP_0_1': tensor(0.), 'EO_0_1': tensor(0.)}
"""
is_differentiable: bool = False
higher_is_better: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
num_groups: int,
task: Literal["demographic_parity", "equal_opportunity", "all"] = "all",
threshold: float = 0.5,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__()
if task not in ["demographic_parity", "equal_opportunity", "all"]:
raise ValueError(
f"Expected argument `task` to either be ``demographic_parity``,"
f"``equal_opportunity`` or ``all`` but got {task}."
)
if validate_args:
_binary_stat_scores_arg_validation(threshold, "global", ignore_index)
if not isinstance(num_groups, int) and num_groups < 2:
raise ValueError(f"Expected argument `num_groups` to be an int larger than 1, but got {num_groups}")
self.num_groups = num_groups
self.task = task
self.threshold = threshold
self.ignore_index = ignore_index
self.validate_args = validate_args
self._create_states(self.num_groups)
def update(self, preds: Tensor, target: Tensor, groups: Tensor) -> None:
"""Update state with predictions, groups, and target.
Args:
preds: Tensor with predictions.
target: Tensor with true labels.
groups: Tensor with group identifiers. The group identifiers should be ``0, 1, ..., (num_groups - 1)``.
"""
if self.task == "demographic_parity":
if target is not None:
rank_zero_warn("The task demographic_parity does not require a target.", UserWarning)
target = torch.zeros(preds.shape)
group_stats = _binary_groups_stat_scores(
preds, target, groups, self.num_groups, self.threshold, self.ignore_index, self.validate_args
)
self._update_states(group_stats)
def compute(
self,
) -> dict[str, torch.Tensor]:
"""Compute fairness criteria based on inputs passed in to ``update`` previously."""
if self.task == "demographic_parity":
return _compute_binary_demographic_parity(self.tp, self.fp, self.tn, self.fn)
if self.task == "equal_opportunity":
return _compute_binary_equal_opportunity(self.tp, self.fp, self.tn, self.fn)
if self.task == "all":
return {
**_compute_binary_demographic_parity(self.tp, self.fp, self.tn, self.fn),
**_compute_binary_equal_opportunity(self.tp, self.fp, self.tn, self.fn),
}
return None
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import ones, rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryFairness
>>> metric = BinaryFairness(2)
>>> metric.update(rand(20), randint(2, (20,)), ones(20).long())
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import ones, rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryFairness
>>> metric = BinaryFairness(2)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(20), randint(2, (20,) ), ones(20).long()))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|