File size: 23,839 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.classification.base import _ClassificationTaskWrapper
from torchmetrics.functional.classification.confusion_matrix import (
_binary_confusion_matrix_arg_validation,
_binary_confusion_matrix_compute,
_binary_confusion_matrix_format,
_binary_confusion_matrix_tensor_validation,
_binary_confusion_matrix_update,
_multiclass_confusion_matrix_arg_validation,
_multiclass_confusion_matrix_compute,
_multiclass_confusion_matrix_format,
_multiclass_confusion_matrix_tensor_validation,
_multiclass_confusion_matrix_update,
_multilabel_confusion_matrix_arg_validation,
_multilabel_confusion_matrix_compute,
_multilabel_confusion_matrix_format,
_multilabel_confusion_matrix_tensor_validation,
_multilabel_confusion_matrix_update,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _CMAP_TYPE, _PLOT_OUT_TYPE, plot_confusion_matrix
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = [
"BinaryConfusionMatrix.plot",
"MulticlassConfusionMatrix.plot",
"MultilabelConfusionMatrix.plot",
]
class BinaryConfusionMatrix(Metric):
r"""Compute the `confusion matrix`_ for binary tasks.
The confusion matrix :math:`C` is constructed such that :math:`C_{i, j}` is equal to the number of observations
known to be in class :math:`i` but predicted to be in class :math:`j`. Thus row indices of the confusion matrix
correspond to the true class labels and column indices correspond to the predicted class labels.
For binary tasks, the confusion matrix is a 2x2 matrix with the following structure:
- :math:`C_{0, 0}`: True negatives
- :math:`C_{0, 1}`: False positives
- :math:`C_{1, 0}`: False negatives
- :math:`C_{1, 1}`: True positives
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating point
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``confusion_matrix`` (:class:`~torch.Tensor`): A tensor containing a ``(2, 2)`` matrix
Additional dimension ``...`` will be flattened into the batch dimension.
Args:
threshold: Threshold for transforming probability to binary (0,1) predictions
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
normalize: Normalization mode for confusion matrix. Choose from:
- ``None`` or ``'none'``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (preds is int tensor):
>>> from torchmetrics.classification import BinaryConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> bcm = BinaryConfusionMatrix()
>>> bcm(preds, target)
tensor([[2, 0],
[1, 1]])
Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0.35, 0.85, 0.48, 0.01])
>>> bcm = BinaryConfusionMatrix()
>>> bcm(preds, target)
tensor([[2, 0],
[1, 1]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
confmat: Tensor
def __init__(
self,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
normalize: Optional[Literal["true", "pred", "all", "none"]] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_binary_confusion_matrix_arg_validation(threshold, ignore_index, normalize)
self.threshold = threshold
self.ignore_index = ignore_index
self.normalize = normalize
self.validate_args = validate_args
self.add_state("confmat", torch.zeros(2, 2, dtype=torch.long), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
if self.validate_args:
_binary_confusion_matrix_tensor_validation(preds, target, self.ignore_index)
preds, target = _binary_confusion_matrix_format(preds, target, self.threshold, self.ignore_index)
confmat = _binary_confusion_matrix_update(preds, target)
self.confmat += confmat
def compute(self) -> Tensor:
"""Compute confusion matrix."""
return _binary_confusion_matrix_compute(self.confmat, self.normalize)
def plot(
self,
val: Optional[Tensor] = None,
ax: Optional[_AX_TYPE] = None,
add_text: bool = True,
labels: Optional[list[str]] = None,
cmap: Optional[_CMAP_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
add_text: if the value of each cell should be added to the plot
labels: a list of strings, if provided will be added to the plot to indicate the different classes
cmap: matplotlib colormap to use for the confusion matrix
https://matplotlib.org/stable/users/explain/colors/colormaps.html
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> from torchmetrics.classification import MulticlassConfusionMatrix
>>> metric = MulticlassConfusionMatrix(num_classes=5)
>>> metric.update(randint(5, (20,)), randint(5, (20,)))
>>> fig_, ax_ = metric.plot()
"""
val = val if val is not None else self.compute()
if not isinstance(val, Tensor):
raise TypeError(f"Expected val to be a single tensor but got {val}")
fig, ax = plot_confusion_matrix(val, ax=ax, add_text=add_text, labels=labels, cmap=cmap)
return fig, ax
class MulticlassConfusionMatrix(Metric):
r"""Compute the `confusion matrix`_ for multiclass tasks.
The confusion matrix :math:`C` is constructed such that :math:`C_{i, j}` is equal to the number of observations
known to be in class :math:`i` but predicted to be in class :math:`j`. Thus row indices of the confusion matrix
correspond to the true class labels and column indices correspond to the predicted class labels.
For multiclass tasks, the confusion matrix is a NxN matrix, where:
- :math:`C_{i, i}` represents the number of true positives for class :math:`i`
- :math:`\sum_{j=1, j\neq i}^N C_{i, j}` represents the number of false negatives for class :math:`i`
- :math:`\sum_{j=1, j\neq i}^N C_{j, i}` represents the number of false positives for class :math:`i`
- the sum of the remaining cells in the matrix represents the number of true negatives for class :math:`i`
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): An int or float tensor of shape ``(N, ...)``. If preds is a floating point
tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per
element. Additionally, we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (:class:`~torch.Tensor`): An int tensor of shape ``(N, ...)``.
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``confusion_matrix``: [num_classes, num_classes] matrix
Args:
num_classes: Integer specifying the number of classes
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
normalize: Normalization mode for confusion matrix. Choose from:
- ``None`` or ``'none'``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (pred is integer tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MulticlassConfusionMatrix
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> metric = MulticlassConfusionMatrix(num_classes=3)
>>> metric(preds, target)
tensor([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
Example (pred is float tensor):
>>> from torchmetrics.classification import MulticlassConfusionMatrix
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([[0.16, 0.26, 0.58],
... [0.22, 0.61, 0.17],
... [0.71, 0.09, 0.20],
... [0.05, 0.82, 0.13]])
>>> metric = MulticlassConfusionMatrix(num_classes=3)
>>> metric(preds, target)
tensor([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
confmat: Tensor
def __init__(
self,
num_classes: int,
ignore_index: Optional[int] = None,
normalize: Optional[Literal["none", "true", "pred", "all"]] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_multiclass_confusion_matrix_arg_validation(num_classes, ignore_index, normalize)
self.num_classes = num_classes
self.ignore_index = ignore_index
self.normalize = normalize
self.validate_args = validate_args
self.add_state("confmat", torch.zeros(num_classes, num_classes, dtype=torch.long), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
if self.validate_args:
_multiclass_confusion_matrix_tensor_validation(preds, target, self.num_classes, self.ignore_index)
preds, target = _multiclass_confusion_matrix_format(preds, target, self.ignore_index)
confmat = _multiclass_confusion_matrix_update(preds, target, self.num_classes)
self.confmat += confmat
def compute(self) -> Tensor:
"""Compute confusion matrix."""
return _multiclass_confusion_matrix_compute(self.confmat, self.normalize)
def plot(
self,
val: Optional[Tensor] = None,
ax: Optional[_AX_TYPE] = None,
add_text: bool = True,
labels: Optional[list[str]] = None,
cmap: Optional[_CMAP_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
add_text: if the value of each cell should be added to the plot
labels: a list of strings, if provided will be added to the plot to indicate the different classes
cmap: matplotlib colormap to use for the confusion matrix
https://matplotlib.org/stable/users/explain/colors/colormaps.html
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> from torchmetrics.classification import MulticlassConfusionMatrix
>>> metric = MulticlassConfusionMatrix(num_classes=5)
>>> metric.update(randint(5, (20,)), randint(5, (20,)))
>>> fig_, ax_ = metric.plot()
"""
val = val if val is not None else self.compute()
if not isinstance(val, Tensor):
raise TypeError(f"Expected val to be a single tensor but got {val}")
fig, ax = plot_confusion_matrix(val, ax=ax, add_text=add_text, labels=labels, cmap=cmap)
return fig, ax
class MultilabelConfusionMatrix(Metric):
r"""Compute the `confusion matrix`_ for multilabel tasks.
The confusion matrix :math:`C` is constructed such that :math:`C_{i, j}` is equal to the number of observations
known to be in class :math:`i` but predicted to be in class :math:`j`. Thus row indices of the confusion matrix
correspond to the true class labels and column indices correspond to the predicted class labels.
For multilabel tasks, the confusion matrix is a Nx2x2 tensor, where each 2x2 matrix corresponds to the confusion
for that label. The structure of each 2x2 matrix is as follows:
- :math:`C_{0, 0}`: True negatives
- :math:`C_{0, 1}`: False positives
- :math:`C_{1, 0}`: False negatives
- :math:`C_{1, 1}`: True positives
As input to 'update' the metric accepts the following input:
- ``preds`` (int or float tensor): ``(N, C, ...)``. If preds is a floating point tensor with values outside
[0,1] range we consider the input to be logits and will auto apply sigmoid per element. Additionally,
we convert to int tensor with thresholding using the value in ``threshold``.
- ``target`` (int tensor): ``(N, C, ...)``
As output of 'compute' the metric returns the following output:
- ``confusion matrix``: [num_labels,2,2] matrix
Args:
num_classes: Integer specifying the number of labels
threshold: Threshold for transforming probability to binary (0,1) predictions
ignore_index:
Specifies a target value that is ignored and does not contribute to the metric calculation
normalize: Normalization mode for confusion matrix. Choose from:
- ``None`` or ``'none'``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (preds is int tensor):
>>> from torch import tensor
>>> from torchmetrics.classification import MultilabelConfusionMatrix
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> metric = MultilabelConfusionMatrix(num_labels=3)
>>> metric(preds, target)
tensor([[[1, 0], [0, 1]],
[[1, 0], [1, 0]],
[[0, 1], [0, 1]]])
Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelConfusionMatrix
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
>>> metric = MultilabelConfusionMatrix(num_labels=3)
>>> metric(preds, target)
tensor([[[1, 0], [0, 1]],
[[1, 0], [1, 0]],
[[0, 1], [0, 1]]])
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
confmat: Tensor
def __init__(
self,
num_labels: int,
threshold: float = 0.5,
ignore_index: Optional[int] = None,
normalize: Optional[Literal["none", "true", "pred", "all"]] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_multilabel_confusion_matrix_arg_validation(num_labels, threshold, ignore_index, normalize)
self.num_labels = num_labels
self.threshold = threshold
self.ignore_index = ignore_index
self.normalize = normalize
self.validate_args = validate_args
self.add_state("confmat", torch.zeros(num_labels, 2, 2, dtype=torch.long), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
if self.validate_args:
_multilabel_confusion_matrix_tensor_validation(preds, target, self.num_labels, self.ignore_index)
preds, target = _multilabel_confusion_matrix_format(
preds, target, self.num_labels, self.threshold, self.ignore_index
)
confmat = _multilabel_confusion_matrix_update(preds, target, self.num_labels)
self.confmat += confmat
def compute(self) -> Tensor:
"""Compute confusion matrix."""
return _multilabel_confusion_matrix_compute(self.confmat, self.normalize)
def plot(
self,
val: Optional[Tensor] = None,
ax: Optional[_AX_TYPE] = None,
add_text: bool = True,
labels: Optional[list[str]] = None,
cmap: Optional[_CMAP_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
add_text: if the value of each cell should be added to the plot
labels: a list of strings, if provided will be added to the plot to indicate the different classes
cmap: matplotlib colormap to use for the confusion matrix
https://matplotlib.org/stable/users/explain/colors/colormaps.html
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randint
>>> from torchmetrics.classification import MulticlassConfusionMatrix
>>> metric = MulticlassConfusionMatrix(num_classes=5)
>>> metric.update(randint(5, (20,)), randint(5, (20,)))
>>> fig_, ax_ = metric.plot()
"""
val = val if val is not None else self.compute()
if not isinstance(val, Tensor):
raise TypeError(f"Expected val to be a single tensor but got {val}")
fig, ax = plot_confusion_matrix(val, ax=ax, add_text=add_text, labels=labels, cmap=cmap)
return fig, ax
class ConfusionMatrix(_ClassificationTaskWrapper):
r"""Compute the `confusion matrix`_.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
:class:`~torchmetrics.classification.BinaryConfusionMatrix`,
:class:`~torchmetrics.classification.MulticlassConfusionMatrix` and
:class:`~torchmetrics.classification.MultilabelConfusionMatrix` for the specific details of each argument influence
and examples.
Legacy Example:
>>> from torch import tensor
>>> target = tensor([1, 1, 0, 0])
>>> preds = tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(task="binary", num_classes=2)
>>> confmat(preds, target)
tensor([[2, 0],
[1, 1]])
>>> target = tensor([2, 1, 0, 0])
>>> preds = tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(task="multiclass", num_classes=3)
>>> confmat(preds, target)
tensor([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(task="multilabel", num_labels=3)
>>> confmat(preds, target)
tensor([[[1, 0], [0, 1]],
[[1, 0], [1, 0]],
[[0, 1], [0, 1]]])
"""
def __new__( # type: ignore[misc]
cls: type["ConfusionMatrix"],
task: Literal["binary", "multiclass", "multilabel"],
threshold: float = 0.5,
num_classes: Optional[int] = None,
num_labels: Optional[int] = None,
normalize: Optional[Literal["true", "pred", "all", "none"]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> Metric:
"""Initialize task metric."""
task = ClassificationTask.from_str(task)
kwargs.update({"normalize": normalize, "ignore_index": ignore_index, "validate_args": validate_args})
if task == ClassificationTask.BINARY:
return BinaryConfusionMatrix(threshold, **kwargs)
if task == ClassificationTask.MULTICLASS:
if not isinstance(num_classes, int):
raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
return MulticlassConfusionMatrix(num_classes, **kwargs)
if task == ClassificationTask.MULTILABEL:
if not isinstance(num_labels, int):
raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
return MultilabelConfusionMatrix(num_labels, threshold, **kwargs)
raise ValueError(f"Task {task} not supported!")
|