File size: 6,914 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
from torch import Tensor, tensor
from typing_extensions import Literal
from torchmetrics.functional.audio.pit import permutation_invariant_training
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
__doctest_requires__ = {"PermutationInvariantTraining": ["pit"]}
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["PermutationInvariantTraining.plot"]
class PermutationInvariantTraining(Metric):
"""Calculate `Permutation invariant training`_ (PIT).
This metric can evaluate models for speaker independent multi-talker speech separation in a permutation
invariant way.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): float tensor with shape ``(batch_size,num_speakers,...)``
- ``target`` (:class:`~torch.Tensor`): float tensor with shape ``(batch_size,num_speakers,...)``
As output of `forward` and `compute` the metric returns the following output
- ``pesq`` (:class:`~torch.Tensor`): float scalar tensor with average PESQ value over samples
Args:
metric_func:
a metric function accept a batch of target and estimate.
if `mode`==`'speaker-wise'`, then ``metric_func(preds[:, i, ...], target[:, j, ...])`` is called
and expected to return a batch of metric tensors ``(batch,)``;
if `mode`==`'permutation-wise'`, then ``metric_func(preds[:, p, ...], target[:, :, ...])`` is called,
where `p` is one possible permutation, e.g. [0,1] or [1,0] for 2-speaker case, and expected to return
a batch of metric tensors ``(batch,)``;
mode:
can be `'speaker-wise'` or `'permutation-wise'`.
eval_func:
the function to find the best permutation, can be 'min' or 'max', i.e. the smaller the better
or the larger the better.
kwargs: Additional keyword arguments for either the ``metric_func`` or distributed communication,
see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import randn
>>> from torchmetrics.audio import PermutationInvariantTraining
>>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
>>> preds = randn(3, 2, 5) # [batch, spk, time]
>>> target = randn(3, 2, 5) # [batch, spk, time]
>>> pit = PermutationInvariantTraining(scale_invariant_signal_noise_ratio,
... mode="speaker-wise", eval_func="max")
>>> pit(preds, target)
tensor(-2.1065)
"""
full_state_update: bool = False
is_differentiable: bool = True
sum_pit_metric: Tensor
total: Tensor
plot_lower_bound: Optional[float] = None
plot_upper_bound: Optional[float] = None
def __init__(
self,
metric_func: Callable,
mode: Literal["speaker-wise", "permutation-wise"] = "speaker-wise",
eval_func: Literal["max", "min"] = "max",
**kwargs: Any,
) -> None:
base_kwargs: dict[str, Any] = {
"dist_sync_on_step": kwargs.pop("dist_sync_on_step", False),
"process_group": kwargs.pop("process_group", None),
"dist_sync_fn": kwargs.pop("dist_sync_fn", None),
}
super().__init__(**base_kwargs)
self.metric_func = metric_func
self.mode = mode
self.eval_func = eval_func
self.kwargs = kwargs
self.add_state("sum_pit_metric", default=tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=tensor(0), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
pit_metric = permutation_invariant_training(
preds, target, self.metric_func, self.mode, self.eval_func, **self.kwargs
)[0]
self.sum_pit_metric += pit_metric.sum()
self.total += pit_metric.numel()
def compute(self) -> Tensor:
"""Compute metric."""
return self.sum_pit_metric / self.total
def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.audio import PermutationInvariantTraining
>>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
>>> preds = torch.randn(3, 2, 5) # [batch, spk, time]
>>> target = torch.randn(3, 2, 5) # [batch, spk, time]
>>> metric = PermutationInvariantTraining(scale_invariant_signal_noise_ratio,
... mode="speaker-wise", eval_func="max")
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.audio import PermutationInvariantTraining
>>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
>>> preds = torch.randn(3, 2, 5) # [batch, spk, time]
>>> target = torch.randn(3, 2, 5) # [batch, spk, time]
>>> metric = PermutationInvariantTraining(scale_invariant_signal_noise_ratio,
... mode="speaker-wise", eval_func="max")
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|