File size: 6,027 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Sequence
from typing import Any, Optional, Union

from torch import Tensor, tensor

from torchmetrics.functional.audio.nisqa import non_intrusive_speech_quality_assessment
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import (
    _LIBROSA_AVAILABLE,
    _MATPLOTLIB_AVAILABLE,
    _REQUESTS_AVAILABLE,
)
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

__doctest_requires__ = {"NonIntrusiveSpeechQualityAssessment": ["librosa", "requests"]}

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["NonIntrusiveSpeechQualityAssessment.plot"]


class NonIntrusiveSpeechQualityAssessment(Metric):
    """`Non-Intrusive Speech Quality Assessment`_ (NISQA v2.0) [1], [2].

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): float tensor with shape ``(...,time)``

    As output of ``forward`` and ``compute`` the metric returns the following output

    - ``nisqa`` (:class:`~torch.Tensor`): float tensor reduced across the batch with shape ``(5,)`` corresponding to
      overall MOS, noisiness, discontinuity, coloration and loudness in that order

    .. hint::
        Using this metric requires you to have ``librosa`` and ``requests`` installed. Install as
        ``pip install librosa requests``.

    .. caution::
        The ``forward`` and ``compute`` methods in this class return values reduced across the batch. To obtain
        values for each sample, you may use the functional counterpart
        :func:`~torchmetrics.functional.audio.nisqa.non_intrusive_speech_quality_assessment`.

    Args:
        fs: sampling frequency of input

    Raises:
        ModuleNotFoundError:
            If ``librosa`` or ``requests`` are not installed

    Example:
        >>> import torch
        >>> from torchmetrics.audio import NonIntrusiveSpeechQualityAssessment
        >>> _ = torch.manual_seed(42)
        >>> preds = torch.randn(16000)
        >>> nisqa = NonIntrusiveSpeechQualityAssessment(16000)
        >>> nisqa(preds)
        tensor([1.0433, 1.9545, 2.6087, 1.3460, 1.7117])

    References:
        - [1] G. Mittag and S. MΓΆller, "Non-intrusive speech quality assessment for super-wideband speech communication
          networks", in Proc. ICASSP, 2019.
        - [2] G. Mittag, B. Naderi, A. Chehadi and S. MΓΆller, "NISQA: A deep CNN-self-attention model for
          multidimensional speech quality prediction with crowdsourced datasets", in Proc. INTERSPEECH, 2021.

    """

    sum_nisqa: Tensor
    total: Tensor
    full_state_update: bool = False
    is_differentiable: bool = False
    higher_is_better: bool = True
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 5.0

    def __init__(self, fs: int, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        if not _LIBROSA_AVAILABLE or not _REQUESTS_AVAILABLE:
            raise ModuleNotFoundError(
                "NISQA metric requires that librosa and requests are installed. "
                "Install as `pip install librosa requests`."
            )
        if not isinstance(fs, int) or fs <= 0:
            raise ValueError(f"Argument `fs` expected to be a positive integer, but got {fs}")
        self.fs = fs

        self.add_state("sum_nisqa", default=tensor([0.0, 0.0, 0.0, 0.0, 0.0]), dist_reduce_fx="sum")
        self.add_state("total", default=tensor(0), dist_reduce_fx="sum")

    def update(self, preds: Tensor) -> None:
        """Update state with predictions."""
        nisqa_batch = non_intrusive_speech_quality_assessment(
            preds,
            self.fs,
        ).to(self.sum_nisqa.device)

        nisqa_batch = nisqa_batch.reshape(-1, 5)
        self.sum_nisqa += nisqa_batch.sum(dim=0)
        self.total += nisqa_batch.shape[0]

    def compute(self) -> Tensor:
        """Compute metric."""
        return self.sum_nisqa / self.total

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling ``metric.forward`` or ``metric.compute`` or a list of these
                results. If no value is provided, will automatically call ``metric.compute`` and plot that result.
            ax: A matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If ``matplotlib`` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.audio import NonIntrusiveSpeechQualityAssessment
            >>> metric = NonIntrusiveSpeechQualityAssessment(16000)
            >>> metric.update(torch.randn(16000))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.audio import NonIntrusiveSpeechQualityAssessment
            >>> metric = NonIntrusiveSpeechQualityAssessment(16000)
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(torch.randn(16000)))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)