File size: 20,930 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
Metadata-Version: 2.2
Name: torchmetrics
Version: 1.6.2
Summary: PyTorch native Metrics
Home-page: https://github.com/Lightning-AI/torchmetrics
Download-URL: https://github.com/Lightning-AI/torchmetrics/archive/master.zip
Author: Lightning-AI et al.
Author-email: name@pytorchlightning.ai
License: Apache-2.0
Project-URL: Bug Tracker, https://github.com/Lightning-AI/torchmetrics/issues
Project-URL: Documentation, https://torchmetrics.rtfd.io/en/latest/
Project-URL: Source Code, https://github.com/Lightning-AI/torchmetrics
Keywords: deep learning,machine learning,pytorch,metrics,AI
Classifier: Environment :: Console
Classifier: Natural Language :: English
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: numpy>1.20.0
Requires-Dist: packaging>17.1
Requires-Dist: torch>=2.0.0
Requires-Dist: lightning-utilities>=0.8.0
Provides-Extra: audio
Requires-Dist: torchaudio>=2.0.1; extra == "audio"
Requires-Dist: onnxruntime>=1.12.0; extra == "audio"
Requires-Dist: librosa>=0.10.0; extra == "audio"
Requires-Dist: requests>=2.19.0; extra == "audio"
Requires-Dist: pystoi>=0.4.0; extra == "audio"
Requires-Dist: pesq>=0.0.4; extra == "audio"
Requires-Dist: gammatone>=1.0.0; extra == "audio"
Provides-Extra: debug
Provides-Extra: detection
Requires-Dist: pycocotools>2.0.0; extra == "detection"
Requires-Dist: torchvision>=0.15.1; extra == "detection"
Provides-Extra: image
Requires-Dist: scipy>1.0.0; extra == "image"
Requires-Dist: torch-fidelity<=0.4.0; extra == "image"
Requires-Dist: torchvision>=0.15.1; extra == "image"
Provides-Extra: integrate
Provides-Extra: multimodal
Requires-Dist: transformers>=4.42.3; extra == "multimodal"
Requires-Dist: piq<=0.8.0; extra == "multimodal"
Provides-Extra: text
Requires-Dist: tqdm<4.68.0; extra == "text"
Requires-Dist: regex>=2021.9.24; extra == "text"
Requires-Dist: transformers>4.4.0; extra == "text"
Requires-Dist: nltk>3.8.1; extra == "text"
Requires-Dist: ipadic>=1.0.0; extra == "text"
Requires-Dist: sentencepiece>=0.2.0; extra == "text"
Requires-Dist: mecab-python3>=1.0.6; extra == "text"
Provides-Extra: typing
Requires-Dist: types-requests; extra == "typing"
Requires-Dist: torch==2.6.0; extra == "typing"
Requires-Dist: types-six; extra == "typing"
Requires-Dist: types-protobuf; extra == "typing"
Requires-Dist: types-tabulate; extra == "typing"
Requires-Dist: types-emoji; extra == "typing"
Requires-Dist: types-setuptools; extra == "typing"
Requires-Dist: mypy==1.15.0; extra == "typing"
Requires-Dist: types-PyYAML; extra == "typing"
Provides-Extra: visual
Requires-Dist: matplotlib>=3.6.0; extra == "visual"
Requires-Dist: SciencePlots>=2.0.0; extra == "visual"
Provides-Extra: all
Requires-Dist: torchaudio>=2.0.1; extra == "all"
Requires-Dist: onnxruntime>=1.12.0; extra == "all"
Requires-Dist: librosa>=0.10.0; extra == "all"
Requires-Dist: requests>=2.19.0; extra == "all"
Requires-Dist: pystoi>=0.4.0; extra == "all"
Requires-Dist: pesq>=0.0.4; extra == "all"
Requires-Dist: gammatone>=1.0.0; extra == "all"
Requires-Dist: pycocotools>2.0.0; extra == "all"
Requires-Dist: torchvision>=0.15.1; extra == "all"
Requires-Dist: scipy>1.0.0; extra == "all"
Requires-Dist: torch-fidelity<=0.4.0; extra == "all"
Requires-Dist: torchvision>=0.15.1; extra == "all"
Requires-Dist: transformers>=4.42.3; extra == "all"
Requires-Dist: piq<=0.8.0; extra == "all"
Requires-Dist: tqdm<4.68.0; extra == "all"
Requires-Dist: regex>=2021.9.24; extra == "all"
Requires-Dist: transformers>4.4.0; extra == "all"
Requires-Dist: nltk>3.8.1; extra == "all"
Requires-Dist: ipadic>=1.0.0; extra == "all"
Requires-Dist: sentencepiece>=0.2.0; extra == "all"
Requires-Dist: mecab-python3>=1.0.6; extra == "all"
Requires-Dist: types-requests; extra == "all"
Requires-Dist: torch==2.6.0; extra == "all"
Requires-Dist: types-six; extra == "all"
Requires-Dist: types-protobuf; extra == "all"
Requires-Dist: types-tabulate; extra == "all"
Requires-Dist: types-emoji; extra == "all"
Requires-Dist: types-setuptools; extra == "all"
Requires-Dist: mypy==1.15.0; extra == "all"
Requires-Dist: types-PyYAML; extra == "all"
Requires-Dist: matplotlib>=3.6.0; extra == "all"
Requires-Dist: SciencePlots>=2.0.0; extra == "all"
Provides-Extra: dev
Requires-Dist: torchaudio>=2.0.1; extra == "dev"
Requires-Dist: onnxruntime>=1.12.0; extra == "dev"
Requires-Dist: librosa>=0.10.0; extra == "dev"
Requires-Dist: requests>=2.19.0; extra == "dev"
Requires-Dist: pystoi>=0.4.0; extra == "dev"
Requires-Dist: pesq>=0.0.4; extra == "dev"
Requires-Dist: gammatone>=1.0.0; extra == "dev"
Requires-Dist: pycocotools>2.0.0; extra == "dev"
Requires-Dist: torchvision>=0.15.1; extra == "dev"
Requires-Dist: scipy>1.0.0; extra == "dev"
Requires-Dist: torch-fidelity<=0.4.0; extra == "dev"
Requires-Dist: torchvision>=0.15.1; extra == "dev"
Requires-Dist: transformers>=4.42.3; extra == "dev"
Requires-Dist: piq<=0.8.0; extra == "dev"
Requires-Dist: tqdm<4.68.0; extra == "dev"
Requires-Dist: regex>=2021.9.24; extra == "dev"
Requires-Dist: transformers>4.4.0; extra == "dev"
Requires-Dist: nltk>3.8.1; extra == "dev"
Requires-Dist: ipadic>=1.0.0; extra == "dev"
Requires-Dist: sentencepiece>=0.2.0; extra == "dev"
Requires-Dist: mecab-python3>=1.0.6; extra == "dev"
Requires-Dist: types-requests; extra == "dev"
Requires-Dist: torch==2.6.0; extra == "dev"
Requires-Dist: types-six; extra == "dev"
Requires-Dist: types-protobuf; extra == "dev"
Requires-Dist: types-tabulate; extra == "dev"
Requires-Dist: types-emoji; extra == "dev"
Requires-Dist: types-setuptools; extra == "dev"
Requires-Dist: mypy==1.15.0; extra == "dev"
Requires-Dist: types-PyYAML; extra == "dev"
Requires-Dist: matplotlib>=3.6.0; extra == "dev"
Requires-Dist: SciencePlots>=2.0.0; extra == "dev"
Requires-Dist: lpips<=0.1.4; extra == "dev"
Requires-Dist: scipy>1.0.0; extra == "dev"
Requires-Dist: mecab-ko-dic>=1.0.0; python_version < "3.12" and extra == "dev"
Requires-Dist: scikit-image>=0.19.0; extra == "dev"
Requires-Dist: pandas>1.4.0; extra == "dev"
Requires-Dist: huggingface-hub<0.30; extra == "dev"
Requires-Dist: bert_score==0.3.13; extra == "dev"
Requires-Dist: fast-bss-eval>=0.1.0; extra == "dev"
Requires-Dist: permetrics==2.0.0; extra == "dev"
Requires-Dist: dython==0.7.9; extra == "dev"
Requires-Dist: statsmodels>0.13.5; extra == "dev"
Requires-Dist: pytorch-msssim==1.0.0; extra == "dev"
Requires-Dist: PyTDC==0.4.1; python_version < "3.12" and extra == "dev"
Requires-Dist: sacrebleu>=2.3.0; extra == "dev"
Requires-Dist: monai==1.4.0; extra == "dev"
Requires-Dist: faster-coco-eval>=1.6.3; extra == "dev"
Requires-Dist: mecab-ko<1.1.0,>=1.0.0; python_version < "3.12" and extra == "dev"
Requires-Dist: jiwer>=2.3.0; extra == "dev"
Requires-Dist: torch_complex<0.5.0; extra == "dev"
Requires-Dist: fairlearn; extra == "dev"
Requires-Dist: netcal>1.0.0; extra == "dev"
Requires-Dist: kornia>=0.6.7; extra == "dev"
Requires-Dist: mir-eval>=0.6; extra == "dev"
Requires-Dist: numpy<2.3.0; extra == "dev"
Requires-Dist: sewar>=0.4.4; extra == "dev"
Requires-Dist: rouge-score>0.1.0; extra == "dev"
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: description-content-type
Dynamic: download-url
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: project-url
Dynamic: provides-extra
Dynamic: requires-dist
Dynamic: requires-python
Dynamic: summary

<div align="center">

<img src="https://github.com/Lightning-AI/torchmetrics/raw/v1.6.2/docs/source/_static/images/logo.png" width="400px">

**Machine learning metrics for distributed, scalable PyTorch applications.**

______________________________________________________________________

<p align="center">
  <a href="#what-is-torchmetrics">What is Torchmetrics</a> β€’
  <a href="#implementing-your-own-module-metric">Implementing a metric</a> β€’
  <a href="#build-in-metrics">Built-in metrics</a> β€’
  <a href="https://lightning.ai/docs/torchmetrics/stable/">Docs</a> β€’
  <a href="#community">Community</a> β€’
  <a href="#license">License</a>
</p>

______________________________________________________________________

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/torchmetrics)](https://pypi.org/project/torchmetrics/)
[![PyPI Status](https://badge.fury.io/py/torchmetrics.svg)](https://badge.fury.io/py/torchmetrics)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/torchmetrics)
](https://pepy.tech/project/torchmetrics)
[![Conda](https://img.shields.io/conda/v/conda-forge/torchmetrics?label=conda&color=success)](https://anaconda.org/conda-forge/torchmetrics)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/torchmetrics/blob/master/LICENSE)

[![CI testing | CPU](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml/badge.svg?event=push)](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml)
[![Build Status](https://dev.azure.com/Lightning-AI/Metrics/_apis/build/status%2FTM.unittests?branchName=refs%2Ftags%2Fv1.6.2)](https://dev.azure.com/Lightning-AI/Metrics/_build/latest?definitionId=2&branchName=refs%2Ftags%2Fv1.6.2)
[![codecov](https://codecov.io/gh/Lightning-AI/torchmetrics/release/v1.6.2/graph/badge.svg?token=NER6LPI3HS)](https://codecov.io/gh/Lightning-AI/torchmetrics)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-AI/torchmetrics/master.svg)](https://results.pre-commit.ci/latest/github/Lightning-AI/torchmetrics/master)

[![Documentation Status](https://readthedocs.org/projects/torchmetrics/badge/?version=latest)](https://torchmetrics.readthedocs.io/en/latest/?badge=latest)
[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5844769.svg)](https://doi.org/10.5281/zenodo.5844769)
[![JOSS status](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43/status.svg)](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43)

______________________________________________________________________

</div>

## Installation

Simple installation from PyPI

```bash
pip install torchmetrics
```

<details>
  <summary>Other installations</summary>

Install using conda

```bash
conda install -c conda-forge torchmetrics
```

Pip from source

```bash
# with git
pip install git+https://github.com/Lightning-AI/torchmetrics.git@release/stable
```

Pip from archive

```bash
pip install https://github.com/Lightning-AI/torchmetrics/archive/refs/heads/release/stable.zip
```

Extra dependencies for specialized metrics:

```bash
pip install torchmetrics[audio]
pip install torchmetrics[image]
pip install torchmetrics[text]
pip install torchmetrics[all]  # install all of the above
```

Install latest developer version

```bash
pip install https://github.com/Lightning-AI/torchmetrics/archive/master.zip
```

</details>

______________________________________________________________________

## What is TorchMetrics

TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:

- A standardized interface to increase reproducibility
- Reduces boilerplate
- Automatic accumulation over batches
- Metrics optimized for distributed-training
- Automatic synchronization between multiple devices

You can use TorchMetrics with any PyTorch model or with [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/) to enjoy additional features such as:

- Module metrics are automatically placed on the correct device.
- Native support for logging metrics in Lightning to reduce even more boilerplate.

## Using TorchMetrics

### Module metrics

The [module-based metrics](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices!

- Automatic accumulation over multiple batches
- Automatic synchronization between multiple devices
- Metric arithmetic

**This can be run on CPU, single GPU or multi-GPUs!**

For the single GPU/CPU case:

```python
import torch

# import our library
import torchmetrics

# initialize metric
metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5)

# move the metric to device you want computations to take place
device = "cuda" if torch.cuda.is_available() else "cpu"
metric.to(device)

n_batches = 10
for i in range(n_batches):
    # simulate a classification problem
    preds = torch.randn(10, 5).softmax(dim=-1).to(device)
    target = torch.randint(5, (10,)).to(device)

    # metric on current batch
    acc = metric(preds, target)
    print(f"Accuracy on batch {i}: {acc}")

# metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")
```

Module metric usage remains the same when using multiple GPUs or multiple nodes.

<details>
  <summary>Example using DDP</summary>

<!--phmdoctest-mark.skip-->

```python
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
import torchmetrics


def metric_ddp(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"

    # create default process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)

    # initialize model
    metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5)

    # define a model and append your metric to it
    # this allows metric states to be placed on correct accelerators when
    # .to(device) is called on the model
    model = nn.Linear(10, 10)
    model.metric = metric
    model = model.to(rank)

    # initialize DDP
    model = DDP(model, device_ids=[rank])

    n_epochs = 5
    # this shows iteration over multiple training epochs
    for n in range(n_epochs):
        # this will be replaced by a DataLoader with a DistributedSampler
        n_batches = 10
        for i in range(n_batches):
            # simulate a classification problem
            preds = torch.randn(10, 5).softmax(dim=-1)
            target = torch.randint(5, (10,))

            # metric on current batch
            acc = metric(preds, target)
            if rank == 0:  # print only for rank 0
                print(f"Accuracy on batch {i}: {acc}")

        # metric on all batches and all accelerators using custom accumulation
        # accuracy is same across both accelerators
        acc = metric.compute()
        print(f"Accuracy on all data: {acc}, accelerator rank: {rank}")

        # Resetting internal state such that metric ready for new data
        metric.reset()

    # cleanup
    dist.destroy_process_group()


if __name__ == "__main__":
    world_size = 2  # number of gpus to parallelize over
    mp.spawn(metric_ddp, args=(world_size,), nprocs=world_size, join=True)
```

</details>

### Implementing your own Module metric

Implementing your own metric is as easy as subclassing an [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). Simply, subclass `torchmetrics.Metric`
and just implement the `update` and `compute` methods:

```python
import torch
from torchmetrics import Metric


class MyAccuracy(Metric):
    def __init__(self):
        # remember to call super
        super().__init__()
        # call `self.add_state`for every internal state that is needed for the metrics computations
        # dist_reduce_fx indicates the function that should be used to reduce
        # state from multiple processes
        self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
        self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

    def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:
        # extract predicted class index for computing accuracy
        preds = preds.argmax(dim=-1)
        assert preds.shape == target.shape
        # update metric states
        self.correct += torch.sum(preds == target)
        self.total += target.numel()

    def compute(self) -> torch.Tensor:
        # compute final result
        return self.correct.float() / self.total


my_metric = MyAccuracy()
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))

print(my_metric(preds, target))
```

### Functional metrics

Similar to [`torch.nn`](https://pytorch.org/docs/stable/nn.html), most metrics have both a [module-based](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) and functional version.
The functional versions are simple python functions that as input take [torch.tensors](https://pytorch.org/docs/stable/tensors.html) and return the corresponding metric as a [torch.tensor](https://pytorch.org/docs/stable/tensors.html).

```python
import torch

# import our library
import torchmetrics

# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))

acc = torchmetrics.functional.classification.multiclass_accuracy(
    preds, target, num_classes=5
)
```

### Covered domains and example metrics

In total TorchMetrics contains [100+ metrics](https://lightning.ai/docs/torchmetrics/stable/all-metrics.html), which
covers the following domains:

- Audio
- Classification
- Detection
- Information Retrieval
- Image
- Multimodal (Image-Text)
- Nominal
- Regression
- Segmentation
- Text

Each domain may require some additional dependencies which can be installed with `pip install torchmetrics[audio]`,
`pip install torchmetrics['image']` etc.

### Additional features

#### Plotting

Visualization of metrics can be important to help understand what is going on with your machine learning algorithms.
Torchmetrics have built-in plotting support (install dependencies with `pip install torchmetrics[visual]`) for nearly
all modular metrics through the `.plot` method. Simply call the method to get a simple visualization of any metric!

```python
import torch
from torchmetrics.classification import MulticlassAccuracy, MulticlassConfusionMatrix

num_classes = 3

# this will generate two distributions that comes more similar as iterations increase
w = torch.randn(num_classes)
target = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True)
preds = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True)

acc = MulticlassAccuracy(num_classes=num_classes, average="micro")
acc_per_class = MulticlassAccuracy(num_classes=num_classes, average=None)
confmat = MulticlassConfusionMatrix(num_classes=num_classes)

# plot single value
for i in range(5):
    acc_per_class.update(preds(i), target(i))
    confmat.update(preds(i), target(i))
fig1, ax1 = acc_per_class.plot()
fig2, ax2 = confmat.plot()

# plot multiple values
values = []
for i in range(10):
    values.append(acc(preds(i), target(i)))
fig3, ax3 = acc.plot(values)
```

<p align="center">
  <img src="https://github.com/Lightning-AI/torchmetrics/raw/v1.6.2/docs/source/_static/images/plot_example.png" width="1000">
</p>

For examples of plotting different metrics try running [this example file](_samples/plotting.py).

## Contribute!

The lightning + TorchMetrics team is hard at work adding even more metrics.
But we're looking for incredible contributors like you to submit new metrics
and improve existing ones!

Join our [Discord](https://discord.com/invite/tfXFetEZxv) to get help with becoming a contributor!

## Community

For help or questions, join our huge community on [Discord](https://discord.com/invite/tfXFetEZxv)!

## Citation

We’re excited to continue the strong legacy of open source software and have been inspired
over the years by Caffe, Theano, Keras, PyTorch, torchbearer, ignite, sklearn and fast.ai.

If you want to cite this framework feel free to use GitHub's built-in citation option to generate a bibtex or APA-Style citation based on [this file](https://github.com/Lightning-AI/torchmetrics/blob/master/CITATION.cff) (but only if you loved it 😊).

## License

Please observe the Apache 2.0 license that is listed in this repository.
In addition, the Lightning framework is Patent Pending.