File size: 20,930 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
Metadata-Version: 2.2
Name: torchmetrics
Version: 1.6.2
Summary: PyTorch native Metrics
Home-page: https://github.com/Lightning-AI/torchmetrics
Download-URL: https://github.com/Lightning-AI/torchmetrics/archive/master.zip
Author: Lightning-AI et al.
Author-email: name@pytorchlightning.ai
License: Apache-2.0
Project-URL: Bug Tracker, https://github.com/Lightning-AI/torchmetrics/issues
Project-URL: Documentation, https://torchmetrics.rtfd.io/en/latest/
Project-URL: Source Code, https://github.com/Lightning-AI/torchmetrics
Keywords: deep learning,machine learning,pytorch,metrics,AI
Classifier: Environment :: Console
Classifier: Natural Language :: English
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: numpy>1.20.0
Requires-Dist: packaging>17.1
Requires-Dist: torch>=2.0.0
Requires-Dist: lightning-utilities>=0.8.0
Provides-Extra: audio
Requires-Dist: torchaudio>=2.0.1; extra == "audio"
Requires-Dist: onnxruntime>=1.12.0; extra == "audio"
Requires-Dist: librosa>=0.10.0; extra == "audio"
Requires-Dist: requests>=2.19.0; extra == "audio"
Requires-Dist: pystoi>=0.4.0; extra == "audio"
Requires-Dist: pesq>=0.0.4; extra == "audio"
Requires-Dist: gammatone>=1.0.0; extra == "audio"
Provides-Extra: debug
Provides-Extra: detection
Requires-Dist: pycocotools>2.0.0; extra == "detection"
Requires-Dist: torchvision>=0.15.1; extra == "detection"
Provides-Extra: image
Requires-Dist: scipy>1.0.0; extra == "image"
Requires-Dist: torch-fidelity<=0.4.0; extra == "image"
Requires-Dist: torchvision>=0.15.1; extra == "image"
Provides-Extra: integrate
Provides-Extra: multimodal
Requires-Dist: transformers>=4.42.3; extra == "multimodal"
Requires-Dist: piq<=0.8.0; extra == "multimodal"
Provides-Extra: text
Requires-Dist: tqdm<4.68.0; extra == "text"
Requires-Dist: regex>=2021.9.24; extra == "text"
Requires-Dist: transformers>4.4.0; extra == "text"
Requires-Dist: nltk>3.8.1; extra == "text"
Requires-Dist: ipadic>=1.0.0; extra == "text"
Requires-Dist: sentencepiece>=0.2.0; extra == "text"
Requires-Dist: mecab-python3>=1.0.6; extra == "text"
Provides-Extra: typing
Requires-Dist: types-requests; extra == "typing"
Requires-Dist: torch==2.6.0; extra == "typing"
Requires-Dist: types-six; extra == "typing"
Requires-Dist: types-protobuf; extra == "typing"
Requires-Dist: types-tabulate; extra == "typing"
Requires-Dist: types-emoji; extra == "typing"
Requires-Dist: types-setuptools; extra == "typing"
Requires-Dist: mypy==1.15.0; extra == "typing"
Requires-Dist: types-PyYAML; extra == "typing"
Provides-Extra: visual
Requires-Dist: matplotlib>=3.6.0; extra == "visual"
Requires-Dist: SciencePlots>=2.0.0; extra == "visual"
Provides-Extra: all
Requires-Dist: torchaudio>=2.0.1; extra == "all"
Requires-Dist: onnxruntime>=1.12.0; extra == "all"
Requires-Dist: librosa>=0.10.0; extra == "all"
Requires-Dist: requests>=2.19.0; extra == "all"
Requires-Dist: pystoi>=0.4.0; extra == "all"
Requires-Dist: pesq>=0.0.4; extra == "all"
Requires-Dist: gammatone>=1.0.0; extra == "all"
Requires-Dist: pycocotools>2.0.0; extra == "all"
Requires-Dist: torchvision>=0.15.1; extra == "all"
Requires-Dist: scipy>1.0.0; extra == "all"
Requires-Dist: torch-fidelity<=0.4.0; extra == "all"
Requires-Dist: torchvision>=0.15.1; extra == "all"
Requires-Dist: transformers>=4.42.3; extra == "all"
Requires-Dist: piq<=0.8.0; extra == "all"
Requires-Dist: tqdm<4.68.0; extra == "all"
Requires-Dist: regex>=2021.9.24; extra == "all"
Requires-Dist: transformers>4.4.0; extra == "all"
Requires-Dist: nltk>3.8.1; extra == "all"
Requires-Dist: ipadic>=1.0.0; extra == "all"
Requires-Dist: sentencepiece>=0.2.0; extra == "all"
Requires-Dist: mecab-python3>=1.0.6; extra == "all"
Requires-Dist: types-requests; extra == "all"
Requires-Dist: torch==2.6.0; extra == "all"
Requires-Dist: types-six; extra == "all"
Requires-Dist: types-protobuf; extra == "all"
Requires-Dist: types-tabulate; extra == "all"
Requires-Dist: types-emoji; extra == "all"
Requires-Dist: types-setuptools; extra == "all"
Requires-Dist: mypy==1.15.0; extra == "all"
Requires-Dist: types-PyYAML; extra == "all"
Requires-Dist: matplotlib>=3.6.0; extra == "all"
Requires-Dist: SciencePlots>=2.0.0; extra == "all"
Provides-Extra: dev
Requires-Dist: torchaudio>=2.0.1; extra == "dev"
Requires-Dist: onnxruntime>=1.12.0; extra == "dev"
Requires-Dist: librosa>=0.10.0; extra == "dev"
Requires-Dist: requests>=2.19.0; extra == "dev"
Requires-Dist: pystoi>=0.4.0; extra == "dev"
Requires-Dist: pesq>=0.0.4; extra == "dev"
Requires-Dist: gammatone>=1.0.0; extra == "dev"
Requires-Dist: pycocotools>2.0.0; extra == "dev"
Requires-Dist: torchvision>=0.15.1; extra == "dev"
Requires-Dist: scipy>1.0.0; extra == "dev"
Requires-Dist: torch-fidelity<=0.4.0; extra == "dev"
Requires-Dist: torchvision>=0.15.1; extra == "dev"
Requires-Dist: transformers>=4.42.3; extra == "dev"
Requires-Dist: piq<=0.8.0; extra == "dev"
Requires-Dist: tqdm<4.68.0; extra == "dev"
Requires-Dist: regex>=2021.9.24; extra == "dev"
Requires-Dist: transformers>4.4.0; extra == "dev"
Requires-Dist: nltk>3.8.1; extra == "dev"
Requires-Dist: ipadic>=1.0.0; extra == "dev"
Requires-Dist: sentencepiece>=0.2.0; extra == "dev"
Requires-Dist: mecab-python3>=1.0.6; extra == "dev"
Requires-Dist: types-requests; extra == "dev"
Requires-Dist: torch==2.6.0; extra == "dev"
Requires-Dist: types-six; extra == "dev"
Requires-Dist: types-protobuf; extra == "dev"
Requires-Dist: types-tabulate; extra == "dev"
Requires-Dist: types-emoji; extra == "dev"
Requires-Dist: types-setuptools; extra == "dev"
Requires-Dist: mypy==1.15.0; extra == "dev"
Requires-Dist: types-PyYAML; extra == "dev"
Requires-Dist: matplotlib>=3.6.0; extra == "dev"
Requires-Dist: SciencePlots>=2.0.0; extra == "dev"
Requires-Dist: lpips<=0.1.4; extra == "dev"
Requires-Dist: scipy>1.0.0; extra == "dev"
Requires-Dist: mecab-ko-dic>=1.0.0; python_version < "3.12" and extra == "dev"
Requires-Dist: scikit-image>=0.19.0; extra == "dev"
Requires-Dist: pandas>1.4.0; extra == "dev"
Requires-Dist: huggingface-hub<0.30; extra == "dev"
Requires-Dist: bert_score==0.3.13; extra == "dev"
Requires-Dist: fast-bss-eval>=0.1.0; extra == "dev"
Requires-Dist: permetrics==2.0.0; extra == "dev"
Requires-Dist: dython==0.7.9; extra == "dev"
Requires-Dist: statsmodels>0.13.5; extra == "dev"
Requires-Dist: pytorch-msssim==1.0.0; extra == "dev"
Requires-Dist: PyTDC==0.4.1; python_version < "3.12" and extra == "dev"
Requires-Dist: sacrebleu>=2.3.0; extra == "dev"
Requires-Dist: monai==1.4.0; extra == "dev"
Requires-Dist: faster-coco-eval>=1.6.3; extra == "dev"
Requires-Dist: mecab-ko<1.1.0,>=1.0.0; python_version < "3.12" and extra == "dev"
Requires-Dist: jiwer>=2.3.0; extra == "dev"
Requires-Dist: torch_complex<0.5.0; extra == "dev"
Requires-Dist: fairlearn; extra == "dev"
Requires-Dist: netcal>1.0.0; extra == "dev"
Requires-Dist: kornia>=0.6.7; extra == "dev"
Requires-Dist: mir-eval>=0.6; extra == "dev"
Requires-Dist: numpy<2.3.0; extra == "dev"
Requires-Dist: sewar>=0.4.4; extra == "dev"
Requires-Dist: rouge-score>0.1.0; extra == "dev"
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: description-content-type
Dynamic: download-url
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: project-url
Dynamic: provides-extra
Dynamic: requires-dist
Dynamic: requires-python
Dynamic: summary
<div align="center">
<img src="https://github.com/Lightning-AI/torchmetrics/raw/v1.6.2/docs/source/_static/images/logo.png" width="400px">
**Machine learning metrics for distributed, scalable PyTorch applications.**
______________________________________________________________________
<p align="center">
<a href="#what-is-torchmetrics">What is Torchmetrics</a> β’
<a href="#implementing-your-own-module-metric">Implementing a metric</a> β’
<a href="#build-in-metrics">Built-in metrics</a> β’
<a href="https://lightning.ai/docs/torchmetrics/stable/">Docs</a> β’
<a href="#community">Community</a> β’
<a href="#license">License</a>
</p>
______________________________________________________________________
[](https://pypi.org/project/torchmetrics/)
[](https://badge.fury.io/py/torchmetrics)
[
](https://pepy.tech/project/torchmetrics)
[](https://anaconda.org/conda-forge/torchmetrics)
[](https://github.com/Lightning-AI/torchmetrics/blob/master/LICENSE)
[](https://github.com/Lightning-AI/torchmetrics/actions/workflows/ci-tests.yml)
[](https://dev.azure.com/Lightning-AI/Metrics/_build/latest?definitionId=2&branchName=refs%2Ftags%2Fv1.6.2)
[](https://codecov.io/gh/Lightning-AI/torchmetrics)
[](https://results.pre-commit.ci/latest/github/Lightning-AI/torchmetrics/master)
[](https://torchmetrics.readthedocs.io/en/latest/?badge=latest)
[](https://discord.gg/VptPCZkGNa)
[](https://doi.org/10.5281/zenodo.5844769)
[](https://joss.theoj.org/papers/561d9bb59b400158bc8204e2639dca43)
______________________________________________________________________
</div>
## Installation
Simple installation from PyPI
```bash
pip install torchmetrics
```
<details>
<summary>Other installations</summary>
Install using conda
```bash
conda install -c conda-forge torchmetrics
```
Pip from source
```bash
# with git
pip install git+https://github.com/Lightning-AI/torchmetrics.git@release/stable
```
Pip from archive
```bash
pip install https://github.com/Lightning-AI/torchmetrics/archive/refs/heads/release/stable.zip
```
Extra dependencies for specialized metrics:
```bash
pip install torchmetrics[audio]
pip install torchmetrics[image]
pip install torchmetrics[text]
pip install torchmetrics[all] # install all of the above
```
Install latest developer version
```bash
pip install https://github.com/Lightning-AI/torchmetrics/archive/master.zip
```
</details>
______________________________________________________________________
## What is TorchMetrics
TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:
- A standardized interface to increase reproducibility
- Reduces boilerplate
- Automatic accumulation over batches
- Metrics optimized for distributed-training
- Automatic synchronization between multiple devices
You can use TorchMetrics with any PyTorch model or with [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/) to enjoy additional features such as:
- Module metrics are automatically placed on the correct device.
- Native support for logging metrics in Lightning to reduce even more boilerplate.
## Using TorchMetrics
### Module metrics
The [module-based metrics](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices!
- Automatic accumulation over multiple batches
- Automatic synchronization between multiple devices
- Metric arithmetic
**This can be run on CPU, single GPU or multi-GPUs!**
For the single GPU/CPU case:
```python
import torch
# import our library
import torchmetrics
# initialize metric
metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5)
# move the metric to device you want computations to take place
device = "cuda" if torch.cuda.is_available() else "cpu"
metric.to(device)
n_batches = 10
for i in range(n_batches):
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1).to(device)
target = torch.randint(5, (10,)).to(device)
# metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")
# metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")
```
Module metric usage remains the same when using multiple GPUs or multiple nodes.
<details>
<summary>Example using DDP</summary>
<!--phmdoctest-mark.skip-->
```python
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
import torchmetrics
def metric_ddp(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
# create default process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
# initialize model
metric = torchmetrics.classification.Accuracy(task="multiclass", num_classes=5)
# define a model and append your metric to it
# this allows metric states to be placed on correct accelerators when
# .to(device) is called on the model
model = nn.Linear(10, 10)
model.metric = metric
model = model.to(rank)
# initialize DDP
model = DDP(model, device_ids=[rank])
n_epochs = 5
# this shows iteration over multiple training epochs
for n in range(n_epochs):
# this will be replaced by a DataLoader with a DistributedSampler
n_batches = 10
for i in range(n_batches):
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
# metric on current batch
acc = metric(preds, target)
if rank == 0: # print only for rank 0
print(f"Accuracy on batch {i}: {acc}")
# metric on all batches and all accelerators using custom accumulation
# accuracy is same across both accelerators
acc = metric.compute()
print(f"Accuracy on all data: {acc}, accelerator rank: {rank}")
# Resetting internal state such that metric ready for new data
metric.reset()
# cleanup
dist.destroy_process_group()
if __name__ == "__main__":
world_size = 2 # number of gpus to parallelize over
mp.spawn(metric_ddp, args=(world_size,), nprocs=world_size, join=True)
```
</details>
### Implementing your own Module metric
Implementing your own metric is as easy as subclassing an [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). Simply, subclass `torchmetrics.Metric`
and just implement the `update` and `compute` methods:
```python
import torch
from torchmetrics import Metric
class MyAccuracy(Metric):
def __init__(self):
# remember to call super
super().__init__()
# call `self.add_state`for every internal state that is needed for the metrics computations
# dist_reduce_fx indicates the function that should be used to reduce
# state from multiple processes
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:
# extract predicted class index for computing accuracy
preds = preds.argmax(dim=-1)
assert preds.shape == target.shape
# update metric states
self.correct += torch.sum(preds == target)
self.total += target.numel()
def compute(self) -> torch.Tensor:
# compute final result
return self.correct.float() / self.total
my_metric = MyAccuracy()
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
print(my_metric(preds, target))
```
### Functional metrics
Similar to [`torch.nn`](https://pytorch.org/docs/stable/nn.html), most metrics have both a [module-based](https://lightning.ai/docs/torchmetrics/stable/references/metric.html) and functional version.
The functional versions are simple python functions that as input take [torch.tensors](https://pytorch.org/docs/stable/tensors.html) and return the corresponding metric as a [torch.tensor](https://pytorch.org/docs/stable/tensors.html).
```python
import torch
# import our library
import torchmetrics
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
acc = torchmetrics.functional.classification.multiclass_accuracy(
preds, target, num_classes=5
)
```
### Covered domains and example metrics
In total TorchMetrics contains [100+ metrics](https://lightning.ai/docs/torchmetrics/stable/all-metrics.html), which
covers the following domains:
- Audio
- Classification
- Detection
- Information Retrieval
- Image
- Multimodal (Image-Text)
- Nominal
- Regression
- Segmentation
- Text
Each domain may require some additional dependencies which can be installed with `pip install torchmetrics[audio]`,
`pip install torchmetrics['image']` etc.
### Additional features
#### Plotting
Visualization of metrics can be important to help understand what is going on with your machine learning algorithms.
Torchmetrics have built-in plotting support (install dependencies with `pip install torchmetrics[visual]`) for nearly
all modular metrics through the `.plot` method. Simply call the method to get a simple visualization of any metric!
```python
import torch
from torchmetrics.classification import MulticlassAccuracy, MulticlassConfusionMatrix
num_classes = 3
# this will generate two distributions that comes more similar as iterations increase
w = torch.randn(num_classes)
target = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True)
preds = lambda it: torch.multinomial((it * w).softmax(dim=-1), 100, replacement=True)
acc = MulticlassAccuracy(num_classes=num_classes, average="micro")
acc_per_class = MulticlassAccuracy(num_classes=num_classes, average=None)
confmat = MulticlassConfusionMatrix(num_classes=num_classes)
# plot single value
for i in range(5):
acc_per_class.update(preds(i), target(i))
confmat.update(preds(i), target(i))
fig1, ax1 = acc_per_class.plot()
fig2, ax2 = confmat.plot()
# plot multiple values
values = []
for i in range(10):
values.append(acc(preds(i), target(i)))
fig3, ax3 = acc.plot(values)
```
<p align="center">
<img src="https://github.com/Lightning-AI/torchmetrics/raw/v1.6.2/docs/source/_static/images/plot_example.png" width="1000">
</p>
For examples of plotting different metrics try running [this example file](_samples/plotting.py).
## Contribute!
The lightning + TorchMetrics team is hard at work adding even more metrics.
But we're looking for incredible contributors like you to submit new metrics
and improve existing ones!
Join our [Discord](https://discord.com/invite/tfXFetEZxv) to get help with becoming a contributor!
## Community
For help or questions, join our huge community on [Discord](https://discord.com/invite/tfXFetEZxv)!
## Citation
Weβre excited to continue the strong legacy of open source software and have been inspired
over the years by Caffe, Theano, Keras, PyTorch, torchbearer, ignite, sklearn and fast.ai.
If you want to cite this framework feel free to use GitHub's built-in citation option to generate a bibtex or APA-Style citation based on [this file](https://github.com/Lightning-AI/torchmetrics/blob/master/CITATION.cff) (but only if you loved it π).
## License
Please observe the Apache 2.0 license that is listed in this repository.
In addition, the Lightning framework is Patent Pending.
|