File size: 28,990 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
from __future__ import annotations
import itertools
from abc import ABC
from dataclasses import dataclass
from typing import Any
import torchgen.api.dispatcher as dispatcher
from torchgen.api.lazy import (
getValueT,
isValueType,
LazyArgument,
LazyIrProperties,
LazyIrSchema,
tensorListValueT,
)
from torchgen.api.translate import translate
from torchgen.api.types import (
BaseCType,
Binding,
deviceT,
DispatcherSignature,
kernel_signature,
NativeSignature,
OptionalCType,
VectorCType,
)
from torchgen.context import method_with_native_function
from torchgen.dest.lazy_ts_lowering import ts_lowering_body
from torchgen.model import (
Argument,
BackendIndex,
BackendMetadata,
BaseTy,
BaseType,
FunctionSchema,
ListType,
NativeFunction,
NativeFunctionsGroup,
)
def node_ctor_arg_rvalue_string(arg: LazyArgument) -> str:
"""
Given a LazyArgument,
generate a c++ string for materializing an rvalue of that arg for passing into
a lazy Node constructor.
"""
# TODO: Matching on CType seems wrong; should be matching on Type
if isValueType(arg.lazy_type):
if isinstance(arg.lazy_type, BaseCType):
if arg.is_wrapped_scalar:
return f"node_{arg.name}"
elif arg.lazy_type.type is tensorListValueT:
return f"lazy_{arg.name}_tensorlist"
elif arg.is_symint_or_list:
return f"GetSymIntValue({arg.name})"
return f"lazy_{arg.name}->GetIrValue()"
elif isinstance(arg.lazy_type, OptionalCType):
if arg.is_symint_or_list:
# TODO: I don't understand when you should put lazy_ in the name
# or not
return f"{arg.name} ? std::make_optional(GetSymIntValue(*{arg.name})) : ::std::nullopt"
elif arg.is_wrapped_scalar:
return f"node_{arg.name}"
return (
f"lazy_{arg.name} ? "
f"std::make_optional(lazy_{arg.name}->GetIrValue()) : "
"::std::nullopt"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
else:
# NB: this is here because right now we aren't treating SymInt[] as a
# value type; when we do this needs to move above
# NB: we cannot test arg.lazy_type as we've already specified it is an
# int64_t and so we cannot distinguish between SymInt and int64_t
if isinstance(arg.orig_type, ListType) and arg.orig_type.elem == BaseType(
BaseTy.SymInt
):
if arg.symint:
return f"GetSymIntArrayRefValue({arg.name})"
else:
return f"std::vector<int64_t>({arg.name}.begin(), {arg.name}.end())"
elif isinstance(arg.lazy_type, VectorCType) and isinstance(
arg.lazy_type.elem, BaseCType
):
return f"std::vector<{arg.lazy_type.elem.type}>({arg.name}.begin(), {arg.name}.end())"
elif (
isinstance(arg.lazy_type, OptionalCType)
and isinstance(arg.lazy_type.elem, VectorCType)
and isinstance(arg.lazy_type.elem.elem, BaseCType)
):
return f"torch::lazy::ToOptionalVector<{arg.lazy_type.elem.elem.type}>({arg.name})"
else:
return f"{arg.name}"
def node_ctor_inputs(schema: LazyIrSchema) -> str:
"""
Produce a formatted string with the arguments as passed into the constructor of a node class.
"""
node_ctor_values = [
node_ctor_arg_rvalue_string(arg) for arg in schema.filtered_args()
]
return ", ".join(node_ctor_values)
def gen_fallback_code(
schema: LazyIrSchema,
sig: DispatcherSignature | NativeSignature,
overload_name: str,
) -> str:
"""
Generate code that falls back to eager conditioned on a predicate
"""
dispatcher_sig = DispatcherSignature.from_schema(schema.func)
exprs = translate(sig.arguments(), dispatcher_sig.arguments())
fallback_args = ",\n ".join([a.expr for a in exprs])
if len(overload_name):
aten_op_str = f"ATEN_OP2({schema.aten_name}, {overload_name})"
else:
aten_op_str = f"ATEN_OP({schema.aten_name})"
return f"""
if (force_eager_fallback({aten_symbol(schema)})) {{
return at::native::call_fallback_fn_symint<<c_eager_fallback, {aten_op_str}>::call(
{fallback_args}
);
}}
"""
def aten_symbol(schema: LazyIrSchema) -> str:
missing_interned_strings = {
"sigmoid_backward",
}
if schema.aten_name in missing_interned_strings:
return f'c10::Symbol::fromQualString("aten::{schema.aten_name}")'
if not schema.aten_name.startswith("at::"):
return f"at::aten::{schema.aten_name}"
else:
return schema.aten_name
# converts all tensor-like arguments to meta tensors. Returns:
# (1) a string containing all of the logic that does the conversions.
# (2) a context, to be used by translate(), with all of the relevant bindings.
def convert_to_meta_tensors(sig: DispatcherSignature) -> tuple[str, list[Binding]]:
context: list[Binding] = []
unwrapped_tensor_args: list[str] = []
for arg in sig.arguments():
if isinstance(arg.argument, Argument) and arg.argument.type.is_tensor_like():
unwrapped_name = f"{arg.name}_meta"
unwrapped_tensor_args.append(
f"auto {unwrapped_name} = to_meta({arg.name});"
)
context.append(arg.with_name(unwrapped_name))
else:
context.append(arg)
unwrap_tensor_args_str = "\n ".join(unwrapped_tensor_args)
return unwrap_tensor_args_str, context
@dataclass(frozen=True)
class GenLazyIR(ABC):
backend_index: BackendIndex
backend_name: str
node_base: str
use_lazy_shape: bool
@method_with_native_function
def __call__(self, f: NativeFunctionsGroup | NativeFunction) -> list[str]:
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
metadata = self.backend_index.get_kernel(
f.functional if isinstance(f, NativeFunctionsGroup) else f
)
schema = LazyIrSchema(
func, symint=metadata is not None and metadata.supports_symint()
)
return self.gen(schema)
# there is no lowering functionality generated unless this IR base class is subclassed and
# implemented as a backend-specific node
def lowering_function(self, schema: LazyIrSchema) -> str:
return ""
def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
return ""
def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
return f"""bool CanBeReused({node_ctor_args}) const {{
return false;
}}"""
def node_base_ctor_call(self, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
# backends can customize the way the node base class constructor is called,
# as long as all of its arguments can be generated from information available from the schema
base_ctor_value_args_list = []
for arg in value_args:
if isinstance(arg.lazy_type, (BaseCType, VectorCType)):
base_ctor_value_args_list.append(f"{arg.name}")
elif isinstance(arg.lazy_type, OptionalCType):
base_ctor_value_args_list.append(f"{arg.name}.value_or(kNullValue)")
else:
raise AssertionError(
f"Unsupported type ({arg.lazy_type}) - add support if necessary"
)
base_ctor_value_args = ", ".join(base_ctor_value_args_list)
scalar_args = schema.filtered_args(values=False, scalars=True)
# Shape construction.
# Conditionally build shape depending on specified shape property
if schema.properties.ShapePrecompute:
shape_ctor_arg = "std::move(shapes),"
elif schema.properties.ShapeCompute:
shape_args = [a.name for a in value_args]
shape_args.extend(a.name for a in scalar_args)
shape_ctor_arg = f"compute_shape_{schema.name}({', '.join(shape_args)}),"
elif schema.properties.ShapeCache:
shape_args = [f"operand({i})" for i in range(len(value_args))]
shape_args.extend(a.name for a in scalar_args)
shape_ctor_arg = f"[&](){{ return compute_shape_{schema.name}({', '.join(shape_args)})[0]; }},"
else:
shape_ctor_arg = ""
scalar_hashes = ", ".join(f"{a.name}" for a in scalar_args)
return f"""{self.node_base}(
{schema.node_name}::ClassOpKind(),
OpList{{{base_ctor_value_args}}},
{shape_ctor_arg}
/* num_outputs */ {len(schema.returns)},
torch::lazy::MHash({scalar_hashes}))"""
def gen(self, schema: LazyIrSchema) -> list[str]:
opkind = schema.opkind or aten_symbol(schema)
# for now, we just want one IR class decl and soon after also the method defs
# and we use the functional version not out/inplace.
all_args = schema.filtered_args()
scalar_args = schema.filtered_args(values=False, scalars=True)
ctor_args = [f"const {i.lazy_type.cpp_type()}& {i.name}" for i in all_args]
reuse_ctor_args = ", ".join(ctor_args)
if self.use_lazy_shape and schema.properties.ShapePrecompute:
ctor_args.append("std::vector<torch::lazy::Shape>&& shapes")
node_ctor_args = ", ".join(ctor_args)
scalar_initializers = ",\n ".join(
[
# This code is just special casing the mapping from string_view -> strings
f"{a.name}({a.name}.has_value() ? ::std::make_optional(std::string(*{a.name})) : ::std::nullopt)"
if a.lazy_type.cpp_type() == "::std::optional<c10::string_view>"
else f"{a.name}({a.name})"
for a in scalar_args
]
)
if len(scalar_initializers):
scalar_initializers = f",\n {scalar_initializers}"
scalar_decls = "\n ".join(
[
f"std::string {a.name};"
if a.lazy_type.cpp_type() == "c10::string_view"
else f"::std::optional<std::string> {a.name};"
if a.lazy_type.cpp_type() == "::std::optional<c10::string_view>"
else f"{a.lazy_type.cpp_type()} {a.name};"
for a in scalar_args
]
)
optional_values = [
arg.name
for arg in schema.filtered_args(values=True, scalars=False)
if isinstance(arg.lazy_type, OptionalCType)
]
has_optional_decls = "\n ".join(
[f"bool has_{value}: 1;" for value in optional_values]
)
has_optional_defs = "\n ".join(
[f"has_{value} = !!{value};" for value in optional_values]
)
members_to_string = []
for arg in scalar_args:
if isinstance(arg.lazy_type, OptionalCType):
value = f"{arg.name}.value()"
if arg.is_generator:
value = '"torch.Generator()"'
members_to_string.append(
f"""if ({arg.name}.has_value()) {{
ss << ", {arg.name}=" << {value};
}} else {{
ss << ", {arg.name}=null";
}}"""
)
else:
members_to_string.append(f'ss << ", {arg.name}=" << {arg.name};')
members_to_string_str = "\n ".join(members_to_string)
return [
f"""\
class {schema.node_name} : public {self.node_base} {{
public:
static torch::lazy::OpKind ClassOpKind() {{
return torch::lazy::OpKind({opkind});
}}
{schema.node_name}({node_ctor_args})
: {self.node_base_ctor_call(schema)}{scalar_initializers}
{{
{has_optional_defs}
}}
std::string ToString() const override {{
std::stringstream ss;
ss << {self.node_base}::ToString();
{members_to_string_str}
return ss.str();
}}
{self.create_function(schema, reuse_ctor_args)}
{self.can_be_reused_function(schema, reuse_ctor_args)}
{self.lowering_function(schema)}
{scalar_decls}
{has_optional_decls}
}};
""",
]
@dataclass(frozen=True)
class GenTSLazyIR(GenLazyIR):
def lowering_function(self, schema: LazyIrSchema) -> str:
signature = """
torch::lazy::TSOpVector Lower(
std::shared_ptr<torch::jit::GraphFunction> function,
torch::lazy::TSLoweringContext* loctx) const override"""
if schema.properties.LowerDeclOnly:
return f"{signature};"
elif schema.properties.Lower:
return f"""{signature} {{
{ts_lowering_body(schema)}
}}
"""
else:
return ""
def create_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
signature = f"static NodePtr Create({node_ctor_args})"
if schema.properties.CreateFnDeclOnly:
return f"{signature};"
elif not schema.properties.CreateFn:
return ""
return f"""{signature} {{
return ReuseOrMakeNode<{schema.node_name}>(data);
}}"""
def can_be_reused_function(self, schema: LazyIrSchema, node_ctor_args: str) -> str:
signature = f"bool CanBeReused({node_ctor_args}) const"
if schema.properties.CanBeReusedDeclOnly:
return f"{signature};"
elif not schema.properties.CanBeReused:
return ""
value_comparison = []
for arg in itertools.chain(schema.positional_values, schema.keyword_values):
if isinstance(arg.lazy_type, OptionalCType):
value_comparison.append(
f"nullable_operand(i++) == {arg.name}.value_or(kNullValue)"
)
else:
value_comparison.append(f"operand(i++) == {arg.name}")
for arg in itertools.chain(schema.positional_scalars, schema.keyword_scalars):
if isinstance(arg.lazy_type, OptionalCType):
value_comparison.append(
f"((!this->{arg.name}&&!{arg.name}) || (this->{arg.name}&&{arg.name} && *(this->{arg.name}) == *{arg.name}))"
)
else:
value_comparison.append(f"this->{arg.name} == {arg.name}")
value_comparison_str = " &&\n ".join(value_comparison)
return f"""{signature} {{
size_t i = 0;
return ({value_comparison_str});
}}"""
@dataclass(frozen=True)
class GenLazyNativeFuncDefinition:
class_method_name: str
backend_index: BackendIndex
tensor_class: str
gen_forced_fallback_code: bool
backend_namespace: str
get_tensorlist: str
get_tensor_or_wrap_number: str
try_get_tensor: str
metrics_counter: str
create_tensor: str
create_from_first_tensor: bool
create_aten_from_ltc_tensor: str
tuple_aten_from_ltc_tensors: str
lazy_tensor_ptr: str
get_device_fn: str
def lazy_tensor_decls(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
# Generates lazy_{name} variables for LazyTensors wrapping input tensors
lazy_tensor_decls: list[str] = []
for arg in value_args:
if arg.is_wrapped_scalar:
if isinstance(arg.lazy_type, OptionalCType):
lazy_tensor_decls.append(
f"""auto node_{arg.name} = {arg.name} ?
std::make_optional(torch::lazy::LazyGraphExecutor::Get()->
GetIrValueForScalarFromCodegen(*{arg.name}, *common_device)):
::std::nullopt;"""
)
else:
lazy_tensor_decls.append(
f"""auto node_{arg.name} = torch::lazy::LazyGraphExecutor::Get()->
GetIrValueForScalarFromCodegen({arg.name}, *common_device);"""
)
elif arg.is_symint_or_list:
continue # values are extracted in isValueType
elif isinstance(arg.lazy_type, BaseCType):
if arg.lazy_type.type is tensorListValueT:
lazy_tensor_decls.append(
f"auto lazy_{arg.name}_tensorlist = "
f"{self.backend_namespace}::{self.get_tensorlist}({arg.name});"
)
else:
lazy_tensor_decls.append(
f"{self.lazy_tensor_ptr} lazy_{arg.name} = "
f"{self.backend_namespace}::{self.get_tensor_or_wrap_number}({arg.name}, *common_device);"
)
elif isinstance(arg.lazy_type, OptionalCType):
assert arg.lazy_type.elem == BaseCType(getValueT()), arg.lazy_type.elem
# TODO(alanwaketan): Maybe we want to apply GetLtcTensorOrCreateForWrappedNumber here, but hold it
# until we encounter a real world example.
lazy_tensor_decls.append(
f"{self.lazy_tensor_ptr} lazy_{arg.name} = "
f"{self.backend_namespace}::{self.try_get_tensor}({arg.name}.value_or(at::Tensor()));"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
return ("\n ").join(lazy_tensor_decls)
def force_eager_fallback(
self,
func: NativeFunction,
schema: LazyIrSchema,
metadata: BackendMetadata,
sig: DispatcherSignature | NativeSignature,
) -> str:
if self.gen_forced_fallback_code:
return gen_fallback_code(
schema, sig, overload_name=func.func.name.overload_name
)
return ""
def metrics(self, func: NativeFunction, schema: LazyIrSchema) -> str:
return f"{self.metrics_counter};"
def get_device(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
scalar_args = schema.filtered_args(values=False, scalars=True)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
optional_device = OptionalCType(BaseCType(deviceT))
optional_devices = [
a.name for a in scalar_args if a.lazy_type == optional_device
]
assert len(value_types_names) > 0 or len(optional_devices) > 0, (
"Expected at least one Value or Device type"
)
get_device_str = (
f"{self.get_device_fn}({', '.join(value_types_names + optional_devices)})"
)
return f"""auto common_device = {get_device_str};
TORCH_INTERNAL_ASSERT(common_device);
"""
def shape_inference(self, func: NativeFunction, schema: LazyIrSchema) -> str:
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
all_args = schema.filtered_args()
returns_length = len(schema.returns)
# call the meta kernel if it exists, to compute output shape/dtype for our IR
# Note [Generated LTC Shape Functions]
# LTC uses meta tensors from core to do shape inference when possible, and otherwise
# we generate a shape function declaration that needs to be manually implemented.
# How do we detect which ops are eligible to use meta tensors?
# In general we should be able to use meta tensors not just on structured operators,
# but also on composite operators that are implemented in terms of structured kernels.
# We don't currently have a way of knowing at codegen time which ops are implemented that way.
# This is the case for all view and view_copy operators however, so we're going to
# use them specifically for all of the view_copy ops (instead of manually writing shape rules for all of them).
is_view_copy_op = "view_copy" in func.tags
is_structured = func.structured or func.structured_delegate is not None
if is_structured or is_view_copy_op:
meta_out = """
std::vector<torch::lazy::Shape> shapes{torch::lazy::Shape(out_meta.scalar_type(), out_meta.sizes().vec())};"""
if returns_length > 1:
def this_shape(i: int) -> str:
return f"torch::lazy::Shape(std::get<{i}>(out_meta).scalar_type(), std::get<{i}>(out_meta).sizes().vec())"
shapes_str = ",".join([this_shape(i) for i in range(returns_length)])
meta_out = "std::vector<torch::lazy::Shape> shapes{" + shapes_str + "};"
# Convert tensor args to the meta device and call it.
# (We can't pass in the input tensors directly, because they are "functional wrappers".
# If any of the meta kernels call a tensor op and redispatch, we don't want to hit the functionalize kernels.)
# Even at::meta:: functions might redispatch, e.g. if they call into view ops.
dispatcher_sig = DispatcherSignature.from_schema(func.func)
meta_conversion_str, meta_call_ctx = convert_to_meta_tensors(dispatcher_sig)
meta_call_args = [
e.expr
for e in translate(
meta_call_ctx, dispatcher_sig.arguments(), method=False
)
]
if is_view_copy_op:
# view_copy ops always have a CompositeExplicitAutogradNonFunctional kernel
assert func.has_composite_explicit_autograd_non_functional_kernel
dispatch_ns = "compositeexplicitautogradnonfunctional"
else:
dispatch_ns = "meta"
aten_name = schema.aten_name
# TODO: this is trolling
if func.func.has_symint() and metadata.supports_symint():
aten_name += "_symint"
shape_str = f"""\
{meta_conversion_str}
auto out_meta = at::{dispatch_ns}::{aten_name}({", ".join(meta_call_args)});
{meta_out}"""
else:
shape_sig = ComputeShapeSignature(
metadata.kernel, func, symint=metadata.supports_symint()
)
shape_str = f"""
auto shapes = {shape_sig.shape_call};"""
shape_str += f"""
TORCH_INTERNAL_ASSERT(shapes.size() == {returns_length});"""
# Calculating which dimensions are symbolic
func_schema_str = "aten::" + str(func.func)
shape_str += f"""
if(torch::lazy::symbolicShapeEnabled()){{
std::vector<torch::jit::IValue> inputs = {{ {", ".join(str(a.name) for a in all_args)} }};
const char* schema_str = "{func_schema_str}";
applySymbolicShapesOnLT(schema_str, inputs, shapes);
}}
"""
return shape_str
def build_ir_node(self, func: NativeFunction, schema: LazyIrSchema) -> str:
node_ctor_input_str = node_ctor_inputs(schema)
return f"""torch::lazy::NodePtr node = torch::lazy::ReuseNode<{schema.node_name}>({node_ctor_input_str});
if (!node) {{
{self.shape_inference(func, schema)}
node = torch::lazy::MakeNode<{schema.node_name}>({node_ctor_input_str}, std::move(shapes));
CacheNode(node);
}}
"""
def create_lazy_tensor(self, first_tensor_name: str | None = None) -> str:
# xla uses an instance method for tensor creation, for the time being
if self.create_from_first_tensor:
# TODO(whc) remove this if XLA switches to using static method for creation
assert first_tensor_name is not None, (
"Requires first tensor to create lazy tensor"
)
return f"{first_tensor_name}.{self.create_tensor}"
return f"{self.backend_namespace}::{self.create_tensor}"
def return_aten_tensor(self, func: NativeFunction, schema: LazyIrSchema) -> str:
returns_length = len(schema.returns)
value_args = schema.filtered_args(values=True, scalars=False)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
first_tensor_name = value_types_names[0] if len(value_types_names) > 0 else None
bridge_str = f"""auto result = {self.create_aten_from_ltc_tensor}(
{self.create_lazy_tensor(first_tensor_name)}(std::move(node), *common_device));"""
if returns_length > 1:
assert len(value_types_names) > 0, (
"Code below assumes there is at least one tensor arg"
)
bridge_str = f"""std::vector<{self.lazy_tensor_ptr}> lazy_tensors;
for (int i = 0; i < {returns_length}; i++) {{
lazy_tensors.push_back({self.create_lazy_tensor(first_tensor_name)}({getValueT()}(node, i), *common_device));
}}
auto result = {self.tuple_aten_from_ltc_tensors}<{returns_length}>(lazy_tensors);"""
if schema.name.name.inplace or func.func.is_out_fn():
assert returns_length == 1, (
"We assumed there was no such case where an op is an in-place variant "
f"and has tuple outputs, but got tuple of len {returns_length}."
)
bridge_str = f"""lazy_{first_tensor_name}->SetInPlaceIrValue(node);
auto& result = {first_tensor_name};"""
bridge_str += """
return result;"""
return bridge_str
@method_with_native_function
def __call__(self, func: NativeFunction) -> list[str]:
sig = kernel_signature(func, self.backend_index)
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
schema = LazyIrSchema(func.func, symint=metadata.supports_symint())
return [
f"""\
{sig.decl(name=f"{self.class_method_name}::{metadata.kernel}")} {{
{self.force_eager_fallback(func, schema, metadata, sig)}
{self.metrics(func, schema)}
{self.get_device(func, schema)}
{self.lazy_tensor_decls(func, schema)}
{self.build_ir_node(func, schema)}
{self.return_aten_tensor(func, schema)}
}}\n
"""
]
class ComputeShapeSignature:
"""
Here we use the base name as the suffix of the signature to avoid generating for in-place variants.
"""
def __init__(self, kernel_name: str, f: NativeFunction, *, symint: bool) -> None:
self.__schema = LazyIrSchema(f.func, symint=symint)
self.__dispatch_args = ", ".join(
[a.decl() for a in dispatcher.arguments(f.func, symint=symint)]
)
self.__call_args = ", ".join(
[f"{arg.name}" for arg in self.__schema.filtered_args(generator=True)]
)
self.__kernel_name = kernel_name
def __decl_suffix(self) -> str:
return f"{self.__kernel_name}({self.__dispatch_args})"
def __call_suffix(self) -> str:
return f"{self.__kernel_name}({self.__call_args})"
@property
def shape_decl(self) -> str:
return f"TORCH_API std::vector<torch::lazy::Shape> compute_shape_{self.__decl_suffix()}"
@property
def shape_call(self) -> str:
return f"torch::lazy::compute_shape_{self.__call_suffix()}"
@dataclass(frozen=True)
class GenLazyShapeInferenceDefinition:
backend_index: BackendIndex
tensor_class: str
@method_with_native_function
def __call__(self, f: NativeFunction) -> list[str]:
metadata = self.backend_index.get_kernel(f)
assert metadata is not None
# See Note [Generated LTC Shape Functions]
is_view_copy_op = "view_copy" in f.tags
is_structured = f.structured or f.structured_delegate is not None
if is_structured or is_view_copy_op:
return []
else:
shape_sig = ComputeShapeSignature(
metadata.kernel, f, symint=metadata.supports_symint()
)
return ["\n".join([f"{shape_sig.shape_decl};"])]
def generate_non_native_lazy_ir_nodes(
non_native: list[dict[str, Any]], gen_lazy_ir: GenLazyIR
) -> list[str]:
"""Generate the non-native lazy IR node classes"""
nodes = []
for op in non_native:
# Set default properties for Non-Native IRs
properties = LazyIrProperties("ShapeCache", "CanBeReused", "LowerDeclOnly")
for p in op.get("properties", []):
setattr(properties, p, True)
# non-native is assumed to want symint bindings if you wrote symint
schema = LazyIrSchema(FunctionSchema.parse(op["func"]), properties, symint=True)
schema.opkind = op.get("opkind")
nodes.append(gen_lazy_ir.gen(schema)[0])
return nodes
|