File size: 28,775 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# mypy: allow-untyped-defs
import torch
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from .module_tracker import ModuleTracker
from typing import Any, Optional, Union, TypeVar, Callable
from collections.abc import Iterator
from typing_extensions import ParamSpec
from collections import defaultdict
from torch.utils._python_dispatch import TorchDispatchMode
from math import prod
from functools import wraps
import warnings

__all__ = ["FlopCounterMode", "register_flop_formula"]

_T = TypeVar("_T")
_P = ParamSpec("_P")

aten = torch.ops.aten

def get_shape(i):
    if isinstance(i, torch.Tensor):
        return i.shape
    return i

flop_registry: dict[Any, Any] = {}

def shape_wrapper(f):
    @wraps(f)
    def nf(*args, out_val=None, **kwargs):
        args, kwargs, out_shape = tree_map(get_shape, (args, kwargs, out_val))
        return f(*args, out_shape=out_shape, **kwargs)
    return nf

def register_flop_formula(targets, get_raw=False) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
    def register_fun(flop_formula: Callable[_P, _T]) -> Callable[_P, _T]:
        if not get_raw:
            flop_formula = shape_wrapper(flop_formula)

        def register(target):
            if not isinstance(target, torch._ops.OpOverloadPacket):
                raise ValueError(
                    f"register_flop_formula(targets): expected each target to be "
                    f"OpOverloadPacket (i.e. torch.ops.mylib.foo), got "
                    f"{target} which is of type {type(target)}")
            if target in flop_registry:
                raise RuntimeError(f"duplicate registrations for {target}")
            flop_registry[target] = flop_formula

        # To handle allowing multiple aten_ops at once
        torch.utils._pytree.tree_map_(register, targets)

        return flop_formula

    return register_fun

@register_flop_formula(aten.mm)
def mm_flop(a_shape, b_shape, *args, out_shape=None, **kwargs) -> int:
    """Count flops for matmul."""
    # Inputs should be a list of length 2.
    # Inputs contains the shapes of two matrices.
    m, k = a_shape
    k2, n = b_shape
    assert k == k2
    # NB(chilli): Should be 2 * k - 1 technically for FLOPs.
    return m * n * 2 * k

@register_flop_formula(aten.addmm)
def addmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
    """Count flops for addmm."""
    return mm_flop(a_shape, b_shape)

@register_flop_formula(aten.bmm)
def bmm_flop(a_shape, b_shape, out_shape=None, **kwargs) -> int:
    """Count flops for the bmm operation."""
    # Inputs should be a list of length 2.
    # Inputs contains the shapes of two tensor.
    b, m, k = a_shape
    b2, k2, n = b_shape
    assert b == b2
    assert k == k2
    # NB(chilli): Should be 2 * k - 1 technically for FLOPs.
    flop = b * m * n * 2 * k
    return flop

@register_flop_formula(aten.baddbmm)
def baddbmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
    """Count flops for the baddbmm operation."""
    # Inputs should be a list of length 3.
    # Inputs contains the shapes of three tensors.
    return bmm_flop(a_shape, b_shape)

@register_flop_formula(aten._scaled_mm)
def _scaled_mm_flop(
    a_shape,
    b_shape,
    scale_a_shape,
    scale_b_shape,
    bias_shape=None,
    scale_result_shape=None,
    out_dtype=None,
    use_fast_accum=False,
    out_shape=None,
    **kwargs,
) -> int:
    """Count flops for _scaled_mm."""
    return mm_flop(a_shape, b_shape)


def conv_flop_count(
    x_shape: list[int],
    w_shape: list[int],
    out_shape: list[int],
    transposed: bool = False,
) -> int:
    """Count flops for convolution.

    Note only multiplication is
    counted. Computation for bias are ignored.
    Flops for a transposed convolution are calculated as
    flops = (x_shape[2:] * prod(w_shape) * batch_size).
    Args:
        x_shape (list(int)): The input shape before convolution.
        w_shape (list(int)): The filter shape.
        out_shape (list(int)): The output shape after convolution.
        transposed (bool): is the convolution transposed
    Returns:
        int: the number of flops
    """

    batch_size = x_shape[0]
    conv_shape = (x_shape if transposed else out_shape)[2:]
    c_out, c_in, *filter_size = w_shape

    """
    General idea here is that for a regular conv, for each point in the output
    spatial dimension we convolve the filter with something (hence
    `prod(conv_shape) * prod(filter_size)` ops). Then, this gets multiplied by
    1. batch_size, 2. the cross product of input and weight channels.

    For the transpose, it's not each point in the *output* spatial dimension but
    each point in the *input* spatial dimension.
    """
    # NB(chilli): I don't think this properly accounts for padding :think:
    # NB(chilli): Should be 2 * c_in - 1 technically for FLOPs.
    flop = prod(conv_shape) * prod(filter_size) * batch_size * c_out * c_in * 2
    return flop

@register_flop_formula([aten.convolution, aten._convolution])
def conv_flop(x_shape, w_shape, _bias, _stride, _padding, _dilation, transposed, *args, out_shape=None, **kwargs) -> int:
    """Count flops for convolution."""
    return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)


@register_flop_formula(aten.convolution_backward)
def conv_backward_flop(
        grad_out_shape,
        x_shape,
        w_shape,
        _bias,
        _stride,
        _padding,
        _dilation,
        transposed,
        _output_padding,
        _groups,
        output_mask,
        out_shape) -> int:

    def t(shape):
        return [shape[1], shape[0]] + list(shape[2:])
    flop_count = 0

    """
    Let's say we have a regular 1D conv
    {A, B, C} [inp]
    {i, j} [weight]
    => (conv)
    {Ai + Bj, Bi + Cj} [out]

    And as a reminder, the transposed conv of the above is
    => {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]

    For the backwards of conv, we now have
    {D, E} [grad_out]
    {A, B, C} [inp]
    {i, j} [weight]

    # grad_inp as conv_transpose(grad_out, weight)
    Let's first compute grad_inp. To do so, we can simply look at all the
    multiplications that each element of inp is involved in. For example, A is
    only involved in the first element of the output (and thus only depends upon
    D in grad_out), and C is only involved in the last element of the output
    (and thus only depends upon E in grad_out)

    {Di, Dj + Ei, Ej} [grad_inp]

    Note that this corresponds to the below conv_transpose. This gives us the
    output_mask[0] branch, which is grad_inp.

    {D, E} [inp (grad_out)]
    {i, j} [weight]
    => (conv_transpose)
    {Di, Dj + Ei, Ej} [out (grad_inp)]

    I leave the fact that grad_inp for a transposed conv is just conv(grad_out,
    weight) as an exercise for the reader.

    # grad_weight as conv(inp, grad_out)
    To compute grad_weight, we again look at the terms in the output, which as
    a reminder is:
    => {Ai + Bj, Bi + Cj} [out]
    => {D, E} [grad_out]
    If we manually compute the gradient for the weights, we see it's
    {AD + BE, BD + CE} [grad_weight]

    This corresponds to the below conv
    {A, B, C} [inp]
    {D, E} [weight (grad_out)]
    => (conv)
    {AD + BE, BD + CE} [out (grad_weight)]

    # grad_weight of transposed conv as conv(grad_out, inp)
    As a reminder, the terms of the output of a transposed conv are:
    => {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]
    => {D, E, F, G} [grad_out]

    Manually computing the gradient for the weights, we see it's
    {AD + BE + CF, AE + BF + CG} [grad_weight]

    This corresponds to the below conv
    {D, E, F, G} [inp (grad_out)]
    {A, B, C} [weight (inp)]
    => (conv)
    {AD + BE + CF, AE + BF + CG} [out (grad_weight)]

    For the full backwards formula, there are also some details involving
    transpose of the batch/channel dimensions and groups, but I skip those for
    the sake of brevity (and they're pretty similar to matmul backwards)

    Check [conv backwards decomposition as conv forwards]
    """
    # grad_inp as conv_transpose(grad_out, weight)
    if output_mask[0]:
        grad_input_shape = get_shape(out_shape[0])
        flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not transposed)

    if output_mask[1]:
        grad_weight_shape = get_shape(out_shape[1])
        if transposed:
            # grad_weight of transposed conv as conv(grad_out, inp)
            flop_count += conv_flop_count(t(grad_out_shape), t(x_shape), t(grad_weight_shape), transposed=False)
        else:
            # grad_weight as conv(inp, grad_out)
            flop_count += conv_flop_count(t(x_shape), t(grad_out_shape), t(grad_weight_shape), transposed=False)

    return flop_count

def sdpa_flop_count(query_shape, key_shape, value_shape):
    """
    Count flops for self-attention.

    NB: We can assume that value_shape == key_shape
    """
    b, h, s_q, d_q = query_shape
    _b2, _h2, s_k, _d2 = key_shape
    _b3, _h3, _s3, d_v = value_shape
    assert b == _b2 == _b3 and h == _h2 == _h3 and d_q == _d2 and s_k == _s3 and d_q == _d2
    total_flops = 0
    # q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
    total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))
    # scores: [b, h, s_q, s_k] @ v: [b, h, s_k, d_v] -> out: [b, h, s_q, d_v]
    total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_v))
    return total_flops


@register_flop_formula([aten._scaled_dot_product_efficient_attention,
                        aten._scaled_dot_product_flash_attention,
                        aten._scaled_dot_product_cudnn_attention])
def sdpa_flop(query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int:
    """Count flops for self-attention."""
    # NB: We aren't accounting for causal attention here
    return sdpa_flop_count(query_shape, key_shape, value_shape)


def _offsets_to_lengths(offsets, max_len):
    """
    If the offsets tensor is fake, then we don't know the actual lengths.
    In that case, we can just assume the worst case; each batch has max length.
    """
    from torch._subclasses.fake_tensor import FakeTensor
    from torch._subclasses.functional_tensor import FunctionalTensor
    if not isinstance(offsets, (FakeTensor, FunctionalTensor)) and offsets.device.type != "meta":
        return offsets.diff().tolist()
    return [max_len] * (offsets.size(0) - 1)


def _unpack_flash_attention_nested_shapes(
    *,
    query,
    key,
    value,
    grad_out=None,
    cum_seq_q,
    cum_seq_k,
    max_q,
    max_k,
) -> Iterator[tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], Optional[tuple[int, ...]]]]:
    """
    Given inputs to a flash_attention_(forward|backward) kernel, this will handle behavior for
    NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
    each batch element.

    In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
    """
    if cum_seq_q is not None:
        # This means we should be dealing with a Nested Jagged Tensor query.
        # The inputs will have shape                  (sum(sequence len), heads, dimension)
        # In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension)
        # To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension)
        # So the flops calculation in this case is an overestimate of the actual flops.
        assert len(key.shape) == 3
        assert len(value.shape) == 3
        assert grad_out is None or grad_out.shape == query.shape
        _, h_q, d_q = query.shape
        _, h_k, d_k = key.shape
        _, h_v, d_v = value.shape
        assert cum_seq_q is not None
        assert cum_seq_k is not None
        assert cum_seq_q.shape == cum_seq_k.shape
        seq_q_lengths = _offsets_to_lengths(cum_seq_q, max_q)
        seq_k_lengths = _offsets_to_lengths(cum_seq_k, max_k)
        for (seq_q_len, seq_k_len) in zip(seq_q_lengths, seq_k_lengths):
            new_query_shape = (1, h_q, seq_q_len, d_q)
            new_key_shape = (1, h_k, seq_k_len, d_k)
            new_value_shape = (1, h_v, seq_k_len, d_v)
            new_grad_out_shape = new_query_shape if grad_out is not None else None
            yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape
        return

    yield query.shape, key.shape, value.shape, grad_out.shape if grad_out is not None else None


def _unpack_efficient_attention_nested_shapes(
    *,
    query,
    key,
    value,
    grad_out=None,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
) -> Iterator[tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], Optional[tuple[int, ...]]]]:
    """
    Given inputs to a efficient_attention_(forward|backward) kernel, this will handle behavior for
    NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
    each batch element.

    In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
    """
    if cu_seqlens_q is not None:
        # Unlike flash_attention_forward, we get a 4D tensor instead of a 3D tensor for efficient attention.
        #
        # This means we should be dealing with a Nested Jagged Tensor query.
        # The inputs will have shape                  (sum(sequence len), heads, dimension)
        # In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension)
        # To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension)
        # So the flops calculation in this case is an overestimate of the actual flops.
        assert len(key.shape) == 4
        assert len(value.shape) == 4
        assert grad_out is None or grad_out.shape == query.shape
        _, _, h_q, d_q = query.shape
        _, _, h_k, d_k = key.shape
        _, _, h_v, d_v = value.shape
        assert cu_seqlens_q is not None
        assert cu_seqlens_k is not None
        assert cu_seqlens_q.shape == cu_seqlens_k.shape
        seqlens_q = _offsets_to_lengths(cu_seqlens_q, max_seqlen_q)
        seqlens_k = _offsets_to_lengths(cu_seqlens_k, max_seqlen_k)
        for len_q, len_k in zip(seqlens_q, seqlens_k):
            new_query_shape = (1, h_q, len_q, d_q)
            new_key_shape = (1, h_k, len_k, d_k)
            new_value_shape = (1, h_v, len_k, d_v)
            new_grad_out_shape = new_query_shape if grad_out is not None else None
            yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape
        return

    yield query.shape, key.shape, value.shape, grad_out.shape if grad_out is not None else None


@register_flop_formula(aten._flash_attention_forward, get_raw=True)
def _flash_attention_forward_flop(
    query,
    key,
    value,
    cum_seq_q,
    cum_seq_k,
    max_q,
    max_k,
    *args,
    out_shape=None,
    **kwargs
) -> int:
    """Count flops for self-attention."""
    # NB: We aren't accounting for causal attention here
    # in case this is a nested tensor, we unpack the individual batch elements
    # and then sum the flops per batch element
    sizes = _unpack_flash_attention_nested_shapes(
        query=query,
        key=key,
        value=value,
        cum_seq_q=cum_seq_q,
        cum_seq_k=cum_seq_k,
        max_q=max_q,
        max_k=max_k,
    )
    return sum(
        sdpa_flop_count(query_shape, key_shape, value_shape)
        for query_shape, key_shape, value_shape, _ in sizes
    )


@register_flop_formula(aten._efficient_attention_forward, get_raw=True)
def _efficient_attention_forward_flop(
    query,
    key,
    value,
    bias,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    *args,
    **kwargs
) -> int:
    """Count flops for self-attention."""
    # NB: We aren't accounting for causal attention here
    # in case this is a nested tensor, we unpack the individual batch elements
    # and then sum the flops per batch element
    sizes = _unpack_efficient_attention_nested_shapes(
        query=query,
        key=key,
        value=value,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
    )
    return sum(
        sdpa_flop_count(query_shape, key_shape, value_shape)
        for query_shape, key_shape, value_shape, _ in sizes
    )


def sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape):
    total_flops = 0
    b, h, s_q, d_q = query_shape
    _b2, _h2, s_k, _d2 = key_shape
    _b3, _h3, _s3, d_v = value_shape
    _b4, _h4, _s4, _d4 = grad_out_shape
    assert b == _b2 == _b3 == _b4 and h == _h2 == _h3 == _h4 and d_q == _d2
    assert d_v == _d4 and s_k == _s3 and s_q == _s4
    total_flops = 0
    # Step 1: We recompute the scores matrix.
    # q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
    total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))

    # Step 2: We propagate the gradients through the score @ v operation.
    # gradOut: [b, h, s_q, d_v] @ v: [b, h, d_v, s_k] -> gradScores: [b, h, s_q, s_k]
    total_flops += bmm_flop((b * h, s_q, d_v), (b * h, d_v, s_k))
    # scores: [b, h, s_k, s_q] @ gradOut: [b, h, s_q, d_v] -> gradV: [b, h, s_k, d_v]
    total_flops += bmm_flop((b * h, s_k, s_q), (b * h, s_q, d_v))

    # Step 3: We propagate th gradients through the k @ v operation
    # gradScores: [b, h, s_q, s_k] @ k: [b, h, s_k, d_q] -> gradQ: [b, h, s_q, d_q]
    total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_q))
    # q: [b, h, d_q, s_q] @ gradScores: [b, h, s_q, s_k] -> gradK: [b, h, d_q, s_k]
    total_flops += bmm_flop((b * h, d_q, s_q), (b * h, s_q, s_k))
    return total_flops


@register_flop_formula([aten._scaled_dot_product_efficient_attention_backward,
                        aten._scaled_dot_product_flash_attention_backward,
                        aten._scaled_dot_product_cudnn_attention_backward])
def sdpa_backward_flop(grad_out_shape, query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int:
    """Count flops for self-attention backward."""
    return sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)

@register_flop_formula(aten._flash_attention_backward, get_raw=True)
def _flash_attention_backward_flop(
    grad_out,
    query,
    key,
    value,
    out,  # named _out_shape to avoid kwarg collision with out_shape created in wrapper
    logsumexp,
    cum_seq_q,
    cum_seq_k,
    max_q,
    max_k,
    *args,
    **kwargs,
) -> int:
    # in case this is a nested tensor, we unpack the individual batch elements
    # and then sum the flops per batch element
    shapes = _unpack_flash_attention_nested_shapes(
        query=query,
        key=key,
        value=value,
        grad_out=grad_out,
        cum_seq_q=cum_seq_q,
        cum_seq_k=cum_seq_k,
        max_q=max_q,
        max_k=max_k,
    )
    return sum(
        sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
        for query_shape, key_shape, value_shape, grad_out_shape in shapes
    )


@register_flop_formula(aten._efficient_attention_backward, get_raw=True)
def _efficient_attention_backward_flop(
    grad_out,
    query,
    key,
    value,
    bias,
    out,  # named _out to avoid kwarg collision with out created in wrapper
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    *args,
    **kwargs,
) -> int:
    # in case this is a nested tensor, we unpack the individual batch elements
    # and then sum the flops per batch element
    shapes = _unpack_efficient_attention_nested_shapes(
        query=query,
        key=key,
        value=value,
        grad_out=grad_out,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
    )
    return sum(
        sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
        for query_shape, key_shape, value_shape, grad_out_shape in shapes
    )


flop_registry = {
    aten.mm: mm_flop,
    aten.addmm: addmm_flop,
    aten.bmm: bmm_flop,
    aten.baddbmm: baddbmm_flop,
    aten._scaled_mm: _scaled_mm_flop,
    aten.convolution: conv_flop,
    aten._convolution: conv_flop,
    aten.convolution_backward: conv_backward_flop,
    aten._scaled_dot_product_efficient_attention: sdpa_flop,
    aten._scaled_dot_product_flash_attention: sdpa_flop,
    aten._scaled_dot_product_cudnn_attention: sdpa_flop,
    aten._scaled_dot_product_efficient_attention_backward: sdpa_backward_flop,
    aten._scaled_dot_product_flash_attention_backward: sdpa_backward_flop,
    aten._scaled_dot_product_cudnn_attention_backward: sdpa_backward_flop,
    aten._flash_attention_forward: _flash_attention_forward_flop,
    aten._efficient_attention_forward: _efficient_attention_forward_flop,
    aten._flash_attention_backward: _flash_attention_backward_flop,
    aten._efficient_attention_backward: _efficient_attention_backward_flop,
}

def normalize_tuple(x):
    if not isinstance(x, tuple):
        return (x,)
    return x


# Define the suffixes for different orders of magnitude
suffixes = ["", "K", "M", "B", "T"]
# Thanks BingChat!
def get_suffix_str(number):
    # Find the index of the appropriate suffix based on the number of digits
    # with some additional overflow.
    # i.e. 1.01B should be displayed as 1001M, not 1.001B
    index = max(0, min(len(suffixes) - 1, (len(str(number)) - 2) // 3))
    return suffixes[index]

def convert_num_with_suffix(number, suffix):
    index = suffixes.index(suffix)
    # Divide the number by 1000^index and format it to two decimal places
    value = f"{number / 1000 ** index:.3f}"
    # Return the value and the suffix as a string
    return value + suffixes[index]

def convert_to_percent_str(num, denom):
    if denom == 0:
        return "0%"
    return f"{num / denom:.2%}"

def _pytreeify_preserve_structure(f):
    @wraps(f)
    def nf(args):
        flat_args, spec = tree_flatten(args)
        out = f(*flat_args)
        return tree_unflatten(out, spec)

    return nf


class FlopCounterMode:
    """
    ``FlopCounterMode`` is a context manager that counts the number of flops within its context.

    It does this using a ``TorchDispatchMode``.

    It also supports hierarchical output by passing a module (or list of
    modules) to FlopCounterMode on construction. If you do not need hierarchical
    output, you do not need to use it with a module.

    Example usage

    .. code-block:: python

        mod = ...
        with FlopCounterMode(mod) as flop_counter:
            mod.sum().backward()

    """

    def __init__(
            self,
            mods: Optional[Union[torch.nn.Module, list[torch.nn.Module]]] = None,
            depth: int = 2,
            display: bool = True,
            custom_mapping: Optional[dict[Any, Any]] = None):
        super().__init__()
        self.flop_counts: dict[str, dict[Any, int]] = defaultdict(lambda: defaultdict(int))
        self.depth = depth
        self.display = display
        self.mode: Optional[_FlopCounterMode] = None
        if custom_mapping is None:
            custom_mapping = {}
        if mods is not None:
            warnings.warn("mods argument is not needed anymore, you can stop passing it", stacklevel=2)
        self.flop_registry = {
            **flop_registry,
            **{k: v if getattr(v, "_get_raw", False) else shape_wrapper(v) for k, v in custom_mapping.items()}
        }
        self.mod_tracker = ModuleTracker()

    def get_total_flops(self) -> int:
        return sum(self.flop_counts['Global'].values())

    def get_flop_counts(self) -> dict[str, dict[Any, int]]:
        """Return the flop counts as a dictionary of dictionaries.

        The outer
        dictionary is keyed by module name, and the inner dictionary is keyed by
        operation name.

        Returns:
            Dict[str, Dict[Any, int]]: The flop counts as a dictionary.
        """
        return {k: dict(v) for k, v in self.flop_counts.items()}

    def get_table(self, depth=None):
        if depth is None:
            depth = self.depth
        if depth is None:
            depth = 999999

        import tabulate
        tabulate.PRESERVE_WHITESPACE = True
        header = ["Module", "FLOP", "% Total"]
        values = []
        global_flops = self.get_total_flops()
        global_suffix = get_suffix_str(global_flops)
        is_global_subsumed = False

        def process_mod(mod_name, depth):
            nonlocal is_global_subsumed

            total_flops = sum(self.flop_counts[mod_name].values())

            is_global_subsumed |= total_flops >= global_flops

            padding = " " * depth
            values = []
            values.append([
                padding + mod_name,
                convert_num_with_suffix(total_flops, global_suffix),
                convert_to_percent_str(total_flops, global_flops)
            ])
            for k, v in self.flop_counts[mod_name].items():
                values.append([
                    padding + " - " + str(k),
                    convert_num_with_suffix(v, global_suffix),
                    convert_to_percent_str(v, global_flops)
                ])
            return values

        for mod in sorted(self.flop_counts.keys()):
            if mod == 'Global':
                continue
            mod_depth = mod.count(".") + 1
            if mod_depth > depth:
                continue

            cur_values = process_mod(mod, mod_depth - 1)
            values.extend(cur_values)

        # We do a bit of messing around here to only output the "Global" value
        # if there are any FLOPs in there that aren't already fully contained by
        # a module.
        if 'Global' in self.flop_counts and not is_global_subsumed:
            for value in values:
                value[0] = " " + value[0]

            values = process_mod('Global', 0) + values

        if len(values) == 0:
            values = [["Global", "0", "0%"]]

        return tabulate.tabulate(values, headers=header, colalign=("left", "right", "right"))

    # NB: This context manager is NOT reentrant
    def __enter__(self):
        self.flop_counts.clear()
        self.mod_tracker.__enter__()
        self.mode = _FlopCounterMode(self)
        self.mode.__enter__()
        return self

    def __exit__(self, *args):
        assert self.mode is not None
        b = self.mode.__exit__(*args)
        self.mode = None  # break cycles
        self.mod_tracker.__exit__()
        if self.display:
            print(self.get_table(self.depth))
        return b

    def _count_flops(self, func_packet, out, args, kwargs):
        if func_packet in self.flop_registry:
            flop_count_func = self.flop_registry[func_packet]
            flop_count = flop_count_func(*args, **kwargs, out_val=out)  # type: ignore[operator]
            for par in set(self.mod_tracker.parents):
                self.flop_counts[par][func_packet] += flop_count

        return out


class _FlopCounterMode(TorchDispatchMode):
    def __init__(self, counter: FlopCounterMode):
        self.counter = counter

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        kwargs = kwargs if kwargs else {}

        # Skip ops from non-standard dispatch_sizes_strides_policy such as NJT
        if func in {torch.ops.aten.is_contiguous.default,
                    torch.ops.aten.is_contiguous.memory_format,
                    torch.ops.aten.is_strides_like_format.default,
                    torch.ops.aten.is_non_overlapping_and_dense.default,
                    torch.ops.aten.size.default,
                    torch.ops.aten.sym_size.default,
                    torch.ops.aten.stride.default,
                    torch.ops.aten.sym_stride.default,
                    torch.ops.aten.storage_offset.default,
                    torch.ops.aten.sym_storage_offset.default,
                    torch.ops.aten.numel.default,
                    torch.ops.aten.sym_numel.default,
                    torch.ops.aten.dim.default,
                    torch.ops.prim.layout.default}:

            return NotImplemented

        # If we don't have func in flop_registry, see if it can decompose
        if func not in self.counter.flop_registry and func is not torch.ops.prim.device.default:
            with self:
                r = func.decompose(*args, **kwargs)
                if r is not NotImplemented:
                    return r

        # no further decomposition; execute & count flops
        out = func(*args, **kwargs)
        return self.counter._count_flops(func._overloadpacket, out, args, kwargs)