File size: 127,459 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
# mypy: allow-untyped-defs
import copy
import glob
import importlib
import importlib.abc
import os
import re
import shlex
import shutil
import setuptools
import subprocess
import sys
import sysconfig
import warnings
import collections
from pathlib import Path
import errno

import torch
import torch._appdirs
from .file_baton import FileBaton
from ._cpp_extension_versioner import ExtensionVersioner
from .hipify import hipify_python
from .hipify.hipify_python import GeneratedFileCleaner
from typing import Optional, Union
from torch.torch_version import TorchVersion, Version

from setuptools.command.build_ext import build_ext

IS_WINDOWS = sys.platform == 'win32'
IS_MACOS = sys.platform.startswith('darwin')
IS_LINUX = sys.platform.startswith('linux')
LIB_EXT = '.pyd' if IS_WINDOWS else '.so'
EXEC_EXT = '.exe' if IS_WINDOWS else ''
CLIB_PREFIX = '' if IS_WINDOWS else 'lib'
CLIB_EXT = '.dll' if IS_WINDOWS else '.so'
SHARED_FLAG = '/DLL' if IS_WINDOWS else '-shared'

_HERE = os.path.abspath(__file__)
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
TORCH_LIB_PATH = os.path.join(_TORCH_PATH, 'lib')


SUBPROCESS_DECODE_ARGS = ('oem',) if IS_WINDOWS else ()
MINIMUM_GCC_VERSION = (5, 0, 0)
MINIMUM_MSVC_VERSION = (19, 0, 24215)

VersionRange = tuple[tuple[int, ...], tuple[int, ...]]
VersionMap = dict[str, VersionRange]
# The following values were taken from the following GitHub gist that
# summarizes the minimum valid major versions of g++/clang++ for each supported
# CUDA version: https://gist.github.com/ax3l/9489132
# Or from include/crt/host_config.h in the CUDA SDK
# The second value is the exclusive(!) upper bound, i.e. min <= version < max
CUDA_GCC_VERSIONS: VersionMap = {
    '11.0': (MINIMUM_GCC_VERSION, (10, 0)),
    '11.1': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.2': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.3': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.4': ((6, 0, 0), (12, 0)),
    '11.5': ((6, 0, 0), (12, 0)),
    '11.6': ((6, 0, 0), (12, 0)),
    '11.7': ((6, 0, 0), (12, 0)),
}

MINIMUM_CLANG_VERSION = (3, 3, 0)
CUDA_CLANG_VERSIONS: VersionMap = {
    '11.1': (MINIMUM_CLANG_VERSION, (11, 0)),
    '11.2': (MINIMUM_CLANG_VERSION, (12, 0)),
    '11.3': (MINIMUM_CLANG_VERSION, (12, 0)),
    '11.4': (MINIMUM_CLANG_VERSION, (13, 0)),
    '11.5': (MINIMUM_CLANG_VERSION, (13, 0)),
    '11.6': (MINIMUM_CLANG_VERSION, (14, 0)),
    '11.7': (MINIMUM_CLANG_VERSION, (14, 0)),
}

__all__ = ["get_default_build_root", "check_compiler_ok_for_platform", "get_compiler_abi_compatibility_and_version", "BuildExtension",
           "CppExtension", "CUDAExtension", "SyclExtension", "include_paths", "library_paths", "load", "load_inline", "is_ninja_available",
           "verify_ninja_availability", "remove_extension_h_precompiler_headers", "get_cxx_compiler", "check_compiler_is_gcc"]
# Taken directly from python stdlib < 3.9
# See https://github.com/pytorch/pytorch/issues/48617
def _nt_quote_args(args: Optional[list[str]]) -> list[str]:
    """Quote command-line arguments for DOS/Windows conventions.

    Just wraps every argument which contains blanks in double quotes, and
    returns a new argument list.
    """
    # Cover None-type
    if not args:
        return []
    return [f'"{arg}"' if ' ' in arg else arg for arg in args]

def _find_cuda_home() -> Optional[str]:
    """Find the CUDA install path."""
    # Guess #1
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
    if cuda_home is None:
        # Guess #2
        nvcc_path = shutil.which("nvcc")
        if nvcc_path is not None:
            cuda_home = os.path.dirname(os.path.dirname(nvcc_path))
        else:
            # Guess #3
            if IS_WINDOWS:
                cuda_homes = glob.glob(
                    'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
                if len(cuda_homes) == 0:
                    cuda_home = ''
                else:
                    cuda_home = cuda_homes[0]
            else:
                cuda_home = '/usr/local/cuda'
            if not os.path.exists(cuda_home):
                cuda_home = None
    if cuda_home and not torch.cuda.is_available():
        print(f"No CUDA runtime is found, using CUDA_HOME='{cuda_home}'",
              file=sys.stderr)
    return cuda_home

def _find_rocm_home() -> Optional[str]:
    """Find the ROCm install path."""
    # Guess #1
    rocm_home = os.environ.get('ROCM_HOME') or os.environ.get('ROCM_PATH')
    if rocm_home is None:
        # Guess #2
        hipcc_path = shutil.which('hipcc')
        if hipcc_path is not None:
            rocm_home = os.path.dirname(os.path.dirname(
                os.path.realpath(hipcc_path)))
            # can be either <ROCM_HOME>/hip/bin/hipcc or <ROCM_HOME>/bin/hipcc
            if os.path.basename(rocm_home) == 'hip':
                rocm_home = os.path.dirname(rocm_home)
        else:
            # Guess #3
            fallback_path = '/opt/rocm'
            if os.path.exists(fallback_path):
                rocm_home = fallback_path
    if rocm_home and torch.version.hip is None:
        print(f"No ROCm runtime is found, using ROCM_HOME='{rocm_home}'",
              file=sys.stderr)
    return rocm_home

def _find_sycl_home() -> Optional[str]:
    sycl_home = None
    icpx_path = shutil.which('icpx')
    # Guess 1: for source code build developer/user, we'll have icpx in PATH,
    # which will tell us the SYCL_HOME location.
    if icpx_path is not None:
        sycl_home = os.path.dirname(os.path.dirname(
            os.path.realpath(icpx_path)))

    # Guess 2: for users install Pytorch with XPU support, the sycl runtime is
    # inside intel-sycl-rt, which is automatically installed via pip dependency.
    else:
        try:
            files = importlib.metadata.files('intel-sycl-rt') or []
            for f in files:
                if f.name == "libsycl.so":
                    sycl_home = os.path.dirname(Path(f.locate()).parent.resolve())
                    break
        except importlib.metadata.PackageNotFoundError:
            print("Trying to find SYCL_HOME from intel-sycl-rt package, but it is not installed.",
                  file=sys.stderr)
    return sycl_home

def _join_rocm_home(*paths) -> str:
    """
    Join paths with ROCM_HOME, or raises an error if it ROCM_HOME is not set.

    This is basically a lazy way of raising an error for missing $ROCM_HOME
    only once we need to get any ROCm-specific path.
    """
    if ROCM_HOME is None:
        raise OSError('ROCM_HOME environment variable is not set. '
                      'Please set it to your ROCm install root.')
    elif IS_WINDOWS:
        raise OSError('Building PyTorch extensions using '
                      'ROCm and Windows is not supported.')
    return os.path.join(ROCM_HOME, *paths)

def _join_sycl_home(*paths) -> str:
    """
    Join paths with SYCL_HOME, or raises an error if it SYCL_HOME is not found.

    This is basically a lazy way of raising an error for missing SYCL_HOME
    only once we need to get any SYCL-specific path.
    """
    if SYCL_HOME is None:
        raise OSError('SYCL runtime is not dected. Please setup the pytorch '
                      'prerequisites for Intel GPU following the instruction in '
                      'https://github.com/pytorch/pytorch?tab=readme-ov-file#intel-gpu-support '
                      'or install intel-sycl-rt via pip.')

    return os.path.join(SYCL_HOME, *paths)



ABI_INCOMPATIBILITY_WARNING = '''

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler ({}) may be ABI-incompatible with PyTorch!
Please use a compiler that is ABI-compatible with GCC 5.0 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.

See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6
for instructions on how to install GCC 5 or higher.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!
'''
WRONG_COMPILER_WARNING = '''

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler ({user_compiler}) is not compatible with the compiler Pytorch was
built with for this platform, which is {pytorch_compiler} on {platform}. Please
use {pytorch_compiler} to to compile your extension. Alternatively, you may
compile PyTorch from source using {user_compiler}, and then you can also use
{user_compiler} to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!
'''
CUDA_MISMATCH_MESSAGE = '''
The detected CUDA version ({0}) mismatches the version that was used to compile
PyTorch ({1}). Please make sure to use the same CUDA versions.
'''
CUDA_MISMATCH_WARN = "The detected CUDA version ({0}) has a minor version mismatch with the version that was used to compile PyTorch ({1}). Most likely this shouldn't be a problem."
CUDA_NOT_FOUND_MESSAGE = '''
CUDA was not found on the system, please set the CUDA_HOME or the CUDA_PATH
environment variable or add NVCC to your system PATH. The extension compilation will fail.
'''
ROCM_HOME = _find_rocm_home()
HIP_HOME = _join_rocm_home('hip') if ROCM_HOME else None
IS_HIP_EXTENSION = True if ((ROCM_HOME is not None) and (torch.version.hip is not None)) else False
ROCM_VERSION = None
if torch.version.hip is not None:
    ROCM_VERSION = tuple(int(v) for v in torch.version.hip.split('.')[:2])

CUDA_HOME = _find_cuda_home() if torch.cuda._is_compiled() else None
CUDNN_HOME = os.environ.get('CUDNN_HOME') or os.environ.get('CUDNN_PATH')
SYCL_HOME = _find_sycl_home() if torch.xpu._is_compiled() else None

# PyTorch releases have the version pattern major.minor.patch, whereas when
# PyTorch is built from source, we append the git commit hash, which gives
# it the below pattern.
BUILT_FROM_SOURCE_VERSION_PATTERN = re.compile(r'\d+\.\d+\.\d+\w+\+\w+')

COMMON_MSVC_FLAGS = ['/MD', '/wd4819', '/wd4251', '/wd4244', '/wd4267', '/wd4275', '/wd4018', '/wd4190', '/wd4624', '/wd4067', '/wd4068', '/EHsc']

MSVC_IGNORE_CUDAFE_WARNINGS = [
    'base_class_has_different_dll_interface',
    'field_without_dll_interface',
    'dll_interface_conflict_none_assumed',
    'dll_interface_conflict_dllexport_assumed'
]

COMMON_NVCC_FLAGS = [
    '-D__CUDA_NO_HALF_OPERATORS__',
    '-D__CUDA_NO_HALF_CONVERSIONS__',
    '-D__CUDA_NO_BFLOAT16_CONVERSIONS__',
    '-D__CUDA_NO_HALF2_OPERATORS__',
    '--expt-relaxed-constexpr'
]

COMMON_HIP_FLAGS = [
    '-fPIC',
    '-D__HIP_PLATFORM_AMD__=1',
    '-DUSE_ROCM=1',
    '-DHIPBLAS_V2',
]

COMMON_HIPCC_FLAGS = [
    '-DCUDA_HAS_FP16=1',
    '-D__HIP_NO_HALF_OPERATORS__=1',
    '-D__HIP_NO_HALF_CONVERSIONS__=1',
]

_COMMON_SYCL_FLAGS = [
    '-fsycl',
    '-fsycl-targets=spir64_gen,spir64',
]

def _get_sycl_arch_list():
    if 'TORCH_XPU_ARCH_LIST' in os.environ:
        return os.environ.get('TORCH_XPU_ARCH_LIST')
    arch_list = torch.xpu.get_arch_list()
    # Dropping dg2-* archs since they lack hardware support for fp64 and require
    # special consideration from the user. If needed these platforms can
    # be requested thru TORCH_XPU_ARCH_LIST environment variable.
    arch_list = [x for x in arch_list if not x.startswith('dg2-')]
    return ','.join(arch_list)

_SYCL_DLINK_FLAGS = [
    *_COMMON_SYCL_FLAGS,
    '-fsycl-link',
    '--offload-compress',
    f'-Xs "-device {_get_sycl_arch_list()}"',
]

JIT_EXTENSION_VERSIONER = ExtensionVersioner()

PLAT_TO_VCVARS = {
    'win32' : 'x86',
    'win-amd64' : 'x86_amd64',
}

min_supported_cpython = "0x03090000"  # Python 3.9 hexcode

def get_cxx_compiler():
    if IS_WINDOWS:
        compiler = os.environ.get('CXX', 'cl')
    else:
        compiler = os.environ.get('CXX', 'c++')
    return compiler

def _is_binary_build() -> bool:
    return not BUILT_FROM_SOURCE_VERSION_PATTERN.match(torch.version.__version__)


def _accepted_compilers_for_platform() -> list[str]:
    # gnu-c++ and gnu-cc are the conda gcc compilers
    return ['clang++', 'clang'] if IS_MACOS else ['g++', 'gcc', 'gnu-c++', 'gnu-cc', 'clang++', 'clang']

def _maybe_write(filename, new_content):
    r'''
    Equivalent to writing the content into the file but will not touch the file
    if it already had the right content (to avoid triggering recompile).
    '''
    if os.path.exists(filename):
        with open(filename) as f:
            content = f.read()

        if content == new_content:
            # The file already contains the right thing!
            return

    with open(filename, 'w') as source_file:
        source_file.write(new_content)

def get_default_build_root() -> str:
    """
    Return the path to the root folder under which extensions will built.

    For each extension module built, there will be one folder underneath the
    folder returned by this function. For example, if ``p`` is the path
    returned by this function and ``ext`` the name of an extension, the build
    folder for the extension will be ``p/ext``.

    This directory is **user-specific** so that multiple users on the same
    machine won't meet permission issues.
    """
    return os.path.realpath(torch._appdirs.user_cache_dir(appname='torch_extensions'))


def check_compiler_ok_for_platform(compiler: str) -> bool:
    """
    Verify that the compiler is the expected one for the current platform.

    Args:
        compiler (str): The compiler executable to check.

    Returns:
        True if the compiler is gcc/g++ on Linux or clang/clang++ on macOS,
        and always True for Windows.
    """
    if IS_WINDOWS:
        return True
    compiler_path = shutil.which(compiler)
    if compiler_path is None:
        return False
    # Use os.path.realpath to resolve any symlinks, in particular from 'c++' to e.g. 'g++'.
    compiler_path = os.path.realpath(compiler_path)
    # Check the compiler name
    if any(name in compiler_path for name in _accepted_compilers_for_platform()):
        return True
    # If compiler wrapper is used try to infer the actual compiler by invoking it with -v flag
    env = os.environ.copy()
    env['LC_ALL'] = 'C'  # Don't localize output
    version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
    if IS_LINUX:
        # Check for 'gcc' or 'g++' for sccache wrapper
        pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
        results = re.findall(pattern, version_string)
        if len(results) != 1:
            # Clang is also a supported compiler on Linux
            # Though on Ubuntu it's sometimes called "Ubuntu clang version"
            return 'clang version' in version_string
        compiler_path = os.path.realpath(results[0].strip())
        # On RHEL/CentOS c++ is a gcc compiler wrapper
        if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
            return True
        return any(name in compiler_path for name in _accepted_compilers_for_platform())
    if IS_MACOS:
        # Check for 'clang' or 'clang++'
        return version_string.startswith("Apple clang")
    return False


def get_compiler_abi_compatibility_and_version(compiler) -> tuple[bool, TorchVersion]:
    """
    Determine if the given compiler is ABI-compatible with PyTorch alongside its version.

    Args:
        compiler (str): The compiler executable name to check (e.g. ``g++``).
            Must be executable in a shell process.

    Returns:
        A tuple that contains a boolean that defines if the compiler is (likely) ABI-incompatible with PyTorch,
        followed by a `TorchVersion` string that contains the compiler version separated by dots.
    """
    if not _is_binary_build():
        return (True, TorchVersion('0.0.0'))
    if os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') in ['ON', '1', 'YES', 'TRUE', 'Y']:
        return (True, TorchVersion('0.0.0'))

    # First check if the compiler is one of the expected ones for the particular platform.
    if not check_compiler_ok_for_platform(compiler):
        warnings.warn(WRONG_COMPILER_WARNING.format(
            user_compiler=compiler,
            pytorch_compiler=_accepted_compilers_for_platform()[0],
            platform=sys.platform))
        return (False, TorchVersion('0.0.0'))

    if IS_MACOS:
        # There is no particular minimum version we need for clang, so we're good here.
        return (True, TorchVersion('0.0.0'))
    try:
        if IS_LINUX:
            minimum_required_version = MINIMUM_GCC_VERSION
            versionstr = subprocess.check_output([compiler, '-dumpfullversion', '-dumpversion'])
            version = versionstr.decode(*SUBPROCESS_DECODE_ARGS).strip().split('.')
        else:
            minimum_required_version = MINIMUM_MSVC_VERSION
            compiler_info = subprocess.check_output(compiler, stderr=subprocess.STDOUT)
            match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.decode(*SUBPROCESS_DECODE_ARGS).strip())
            version = ['0', '0', '0'] if match is None else list(match.groups())
    except Exception:
        _, error, _ = sys.exc_info()
        warnings.warn(f'Error checking compiler version for {compiler}: {error}')
        return (False, TorchVersion('0.0.0'))

    if tuple(map(int, version)) >= minimum_required_version:
        return (True, TorchVersion('.'.join(version)))

    compiler = f'{compiler} {".".join(version)}'
    warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))

    return (False, TorchVersion('.'.join(version)))


def _check_cuda_version(compiler_name: str, compiler_version: TorchVersion) -> None:
    if not CUDA_HOME:
        raise RuntimeError(CUDA_NOT_FOUND_MESSAGE)

    nvcc = os.path.join(CUDA_HOME, 'bin', 'nvcc')
    cuda_version_str = subprocess.check_output([nvcc, '--version']).strip().decode(*SUBPROCESS_DECODE_ARGS)
    cuda_version = re.search(r'release (\d+[.]\d+)', cuda_version_str)
    if cuda_version is None:
        return

    cuda_str_version = cuda_version.group(1)
    cuda_ver = Version(cuda_str_version)
    if torch.version.cuda is None:
        return

    torch_cuda_version = Version(torch.version.cuda)
    if cuda_ver != torch_cuda_version:
        # major/minor attributes are only available in setuptools>=49.4.0
        if getattr(cuda_ver, "major", None) is None:
            raise ValueError("setuptools>=49.4.0 is required")
        if cuda_ver.major != torch_cuda_version.major:
            raise RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda))
        warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda))

    if not (sys.platform.startswith('linux') and
            os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') not in ['ON', '1', 'YES', 'TRUE', 'Y'] and
            _is_binary_build()):
        return

    cuda_compiler_bounds: VersionMap = CUDA_CLANG_VERSIONS if compiler_name.startswith('clang') else CUDA_GCC_VERSIONS

    if cuda_str_version not in cuda_compiler_bounds:
        warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}')
    else:
        min_compiler_version, max_excl_compiler_version = cuda_compiler_bounds[cuda_str_version]
        # Special case for 11.4.0, which has lower compiler bounds than 11.4.1
        if "V11.4.48" in cuda_version_str and cuda_compiler_bounds == CUDA_GCC_VERSIONS:
            max_excl_compiler_version = (11, 0)
        min_compiler_version_str = '.'.join(map(str, min_compiler_version))
        max_excl_compiler_version_str = '.'.join(map(str, max_excl_compiler_version))

        version_bound_str = f'>={min_compiler_version_str}, <{max_excl_compiler_version_str}'

        if compiler_version < TorchVersion(min_compiler_version_str):
            raise RuntimeError(
                f'The current installed version of {compiler_name} ({compiler_version}) is less '
                f'than the minimum required version by CUDA {cuda_str_version} ({min_compiler_version_str}). '
                f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
            )
        if compiler_version >= TorchVersion(max_excl_compiler_version_str):
            raise RuntimeError(
                f'The current installed version of {compiler_name} ({compiler_version}) is greater '
                f'than the maximum required version by CUDA {cuda_str_version}. '
                f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
            )


def _append_sycl_std_if_no_std_present(cflags):
    if not any(flag.startswith('-sycl-std=') for flag in cflags):
        cflags.append('-sycl-std=2020')


def _wrap_sycl_host_flags(cflags):
    host_cxx = get_cxx_compiler()
    host_cflags = [
        f'-fsycl-host-compiler={host_cxx}',
        shlex.quote(f'-fsycl-host-compiler-options={cflags}'),
    ]
    return host_cflags


class BuildExtension(build_ext):
    """
    A custom :mod:`setuptools` build extension .

    This :class:`setuptools.build_ext` subclass takes care of passing the
    minimum required compiler flags (e.g. ``-std=c++17``) as well as mixed
    C++/CUDA/SYCL compilation (and support for CUDA/SYCL files in general).

    When using :class:`BuildExtension`, it is allowed to supply a dictionary
    for ``extra_compile_args`` (rather than the usual list) that maps from
    languages/compilers (the only expected values are ``cxx``, ``nvcc`` or
    ``sycl``) to a list of additional compiler flags to supply to the compiler.
    This makes it possible to supply different flags to the C++, CUDA and SYCL
    compiler during mixed compilation.

    ``use_ninja`` (bool): If ``use_ninja`` is ``True`` (default), then we
    attempt to build using the Ninja backend. Ninja greatly speeds up
    compilation compared to the standard ``setuptools.build_ext``.
    Fallbacks to the standard distutils backend if Ninja is not available.

    .. note::
        By default, the Ninja backend uses #CPUS + 2 workers to build the
        extension. This may use up too many resources on some systems. One
        can control the number of workers by setting the `MAX_JOBS` environment
        variable to a non-negative number.
    """

    @classmethod
    def with_options(cls, **options):
        """Return a subclass with alternative constructor that extends any original keyword arguments to the original constructor with the given options."""
        class cls_with_options(cls):  # type: ignore[misc, valid-type]
            def __init__(self, *args, **kwargs):
                kwargs.update(options)
                super().__init__(*args, **kwargs)

        return cls_with_options

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.no_python_abi_suffix = kwargs.get("no_python_abi_suffix", False)

        self.use_ninja = kwargs.get('use_ninja', True)
        if self.use_ninja:
            # Test if we can use ninja. Fallback otherwise.
            msg = ('Attempted to use ninja as the BuildExtension backend but '
                   '{}. Falling back to using the slow distutils backend.')
            if not is_ninja_available():
                warnings.warn(msg.format('we could not find ninja.'))
                self.use_ninja = False

    def finalize_options(self) -> None:
        super().finalize_options()
        if self.use_ninja:
            self.force = True

    def build_extensions(self) -> None:
        compiler_name, compiler_version = self._check_abi()

        cuda_ext = False
        sycl_ext = False
        extension_iter = iter(self.extensions)
        extension = next(extension_iter, None)
        while not (cuda_ext and sycl_ext) and extension:
            for source in extension.sources:
                _, ext = os.path.splitext(source)
                if ext == '.cu':
                    cuda_ext = True
                elif ext == '.sycl':
                    sycl_ext = True

                # This check accounts on a case when cuda and sycl sources
                # are mixed in the same extension. We can stop checking
                # sources if both are found or there is no more sources.
                if cuda_ext and sycl_ext:
                    break

            extension = next(extension_iter, None)

        if sycl_ext:
            assert self.use_ninja, "ninja is required to build sycl extensions."

        if cuda_ext and not IS_HIP_EXTENSION:
            _check_cuda_version(compiler_name, compiler_version)

        for extension in self.extensions:
            # Ensure at least an empty list of flags for 'cxx', 'nvcc' and 'sycl' when
            # extra_compile_args is a dict. Otherwise, default torch flags do
            # not get passed. Necessary when only one of 'cxx', 'nvcc' or 'sycl' is
            # passed to extra_compile_args in CUDAExtension or SyclExtension, i.e.
            #   CUDAExtension(..., extra_compile_args={'cxx': [...]})
            # or
            #   CUDAExtension(..., extra_compile_args={'nvcc': [...]})
            if isinstance(extension.extra_compile_args, dict):
                for ext in ['cxx', 'nvcc', 'sycl']:
                    if ext not in extension.extra_compile_args:
                        extension.extra_compile_args[ext] = []

            self._add_compile_flag(extension, '-DTORCH_API_INCLUDE_EXTENSION_H')

            if IS_HIP_EXTENSION:
                self._hipify_compile_flags(extension)

            if extension.py_limited_api:
                # compile any extension that has passed in py_limited_api to the
                # Extension constructor with the Py_LIMITED_API flag set to our
                # min supported CPython version.
                # See https://docs.python.org/3/c-api/stable.html#c.Py_LIMITED_API
                self._add_compile_flag(extension, f'-DPy_LIMITED_API={min_supported_cpython}')
            else:
                # pybind11 is not CPython API stable so don't add these flags used when
                # compiling pybind11 when pybind11 is not even used. otherwise, the build
                # logs are confusing.
                # See note [Pybind11 ABI constants]
                for name in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
                    val = getattr(torch._C, f"_PYBIND11_{name}")
                    if val is not None and not IS_WINDOWS:
                        self._add_compile_flag(extension, f'-DPYBIND11_{name}="{val}"')
            self._define_torch_extension_name(extension)
            self._add_gnu_cpp_abi_flag(extension)

            if 'nvcc_dlink' in extension.extra_compile_args:
                assert self.use_ninja, f"With dlink=True, ninja is required to build cuda extension {extension.name}."

        # Register .cu, .cuh, .hip, .mm and .sycl as valid source extensions.
        # NOTE: At the moment .sycl is not a standard extension for SYCL supported
        # by compiler. Here we introduce a torch level convention that SYCL sources
        # should have .sycl file extension.
        self.compiler.src_extensions += ['.cu', '.cuh', '.hip', '.sycl']
        if torch.backends.mps.is_built():
            self.compiler.src_extensions += ['.mm']
        # Save the original _compile method for later.
        if self.compiler.compiler_type == 'msvc':
            self.compiler._cpp_extensions += ['.cu', '.cuh']
            original_compile = self.compiler.compile
            original_spawn = self.compiler.spawn
        else:
            original_compile = self.compiler._compile

        def append_std17_if_no_std_present(cflags) -> None:
            # NVCC does not allow multiple -std to be passed, so we avoid
            # overriding the option if the user explicitly passed it.
            cpp_format_prefix = '/{}:' if self.compiler.compiler_type == 'msvc' else '-{}='
            cpp_flag_prefix = cpp_format_prefix.format('std')
            cpp_flag = cpp_flag_prefix + 'c++17'
            if not any(flag.startswith(cpp_flag_prefix) for flag in cflags):
                cflags.append(cpp_flag)

        def unix_cuda_flags(cflags):
            cflags = (COMMON_NVCC_FLAGS +
                      ['--compiler-options', "'-fPIC'"] +
                      cflags + _get_cuda_arch_flags(cflags))

            # NVCC does not allow multiple -ccbin/--compiler-bindir to be passed, so we avoid
            # overriding the option if the user explicitly passed it.
            _ccbin = os.getenv("CC")
            if (
                _ccbin is not None
                and not any(flag.startswith(('-ccbin', '--compiler-bindir')) for flag in cflags)
            ):
                cflags.extend(['-ccbin', _ccbin])

            return cflags

        def convert_to_absolute_paths_inplace(paths):
            # Helper function. See Note [Absolute include_dirs]
            if paths is not None:
                for i in range(len(paths)):
                    if not os.path.isabs(paths[i]):
                        paths[i] = os.path.abspath(paths[i])

        def unix_wrap_single_compile(obj, src, ext, cc_args, extra_postargs, pp_opts) -> None:
            # Copy before we make any modifications.
            cflags = copy.deepcopy(extra_postargs)
            try:
                original_compiler = self.compiler.compiler_so
                if _is_cuda_file(src):
                    nvcc = [_join_rocm_home('bin', 'hipcc') if IS_HIP_EXTENSION else _join_cuda_home('bin', 'nvcc')]
                    self.compiler.set_executable('compiler_so', nvcc)
                    if isinstance(cflags, dict):
                        cflags = cflags['nvcc']
                    if IS_HIP_EXTENSION:
                        cflags = COMMON_HIPCC_FLAGS + cflags + _get_rocm_arch_flags(cflags)
                    else:
                        cflags = unix_cuda_flags(cflags)
                elif isinstance(cflags, dict):
                    cflags = cflags['cxx']
                if IS_HIP_EXTENSION:
                    cflags = COMMON_HIP_FLAGS + cflags
                append_std17_if_no_std_present(cflags)

                original_compile(obj, src, ext, cc_args, cflags, pp_opts)
            finally:
                # Put the original compiler back in place.
                self.compiler.set_executable('compiler_so', original_compiler)

        def unix_wrap_ninja_compile(sources,
                                    output_dir=None,
                                    macros=None,
                                    include_dirs=None,
                                    debug=0,
                                    extra_preargs=None,
                                    extra_postargs=None,
                                    depends=None):
            r"""Compiles sources by outputting a ninja file and running it."""
            # NB: I copied some lines from self.compiler (which is an instance
            # of distutils.UnixCCompiler). See the following link.
            # https://github.com/python/cpython/blob/f03a8f8d5001963ad5b5b28dbd95497e9cc15596/Lib/distutils/ccompiler.py#L564-L567
            # This can be fragile, but a lot of other repos also do this
            # (see https://github.com/search?q=_setup_compile&type=Code)
            # so it is probably OK; we'll also get CI signal if/when
            # we update our python version (which is when distutils can be
            # upgraded)

            # Use absolute path for output_dir so that the object file paths
            # (`objects`) get generated with absolute paths.
            output_dir = os.path.abspath(output_dir)

            # See Note [Absolute include_dirs]
            convert_to_absolute_paths_inplace(self.compiler.include_dirs)

            _, objects, extra_postargs, pp_opts, _ = \
                self.compiler._setup_compile(output_dir, macros,
                                             include_dirs, sources,
                                             depends, extra_postargs)
            common_cflags = self.compiler._get_cc_args(pp_opts, debug, extra_preargs)
            extra_cc_cflags = self.compiler.compiler_so[1:]
            with_cuda = any(map(_is_cuda_file, sources))
            with_sycl = any(map(_is_sycl_file, sources))

            # extra_postargs can be either:
            # - a dict mapping cxx/nvcc/sycl to extra flags
            # - a list of extra flags.
            if isinstance(extra_postargs, dict):
                post_cflags = extra_postargs['cxx']
            else:
                post_cflags = list(extra_postargs)
            if IS_HIP_EXTENSION:
                post_cflags = COMMON_HIP_FLAGS + post_cflags
            append_std17_if_no_std_present(post_cflags)

            cuda_post_cflags = None
            cuda_cflags = None
            if with_cuda:
                cuda_cflags = common_cflags
                if isinstance(extra_postargs, dict):
                    cuda_post_cflags = extra_postargs['nvcc']
                else:
                    cuda_post_cflags = list(extra_postargs)
                if IS_HIP_EXTENSION:
                    cuda_post_cflags = cuda_post_cflags + _get_rocm_arch_flags(cuda_post_cflags)
                    cuda_post_cflags = COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS + cuda_post_cflags
                else:
                    cuda_post_cflags = unix_cuda_flags(cuda_post_cflags)
                append_std17_if_no_std_present(cuda_post_cflags)
                cuda_cflags = [shlex.quote(f) for f in cuda_cflags]
                cuda_post_cflags = [shlex.quote(f) for f in cuda_post_cflags]

            if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
                cuda_dlink_post_cflags = unix_cuda_flags(extra_postargs['nvcc_dlink'])
            else:
                cuda_dlink_post_cflags = None

            sycl_post_cflags = None
            sycl_cflags = None
            sycl_dlink_post_cflags = None
            if with_sycl:
                sycl_cflags = extra_cc_cflags + common_cflags + _COMMON_SYCL_FLAGS
                if isinstance(extra_postargs, dict):
                    sycl_post_cflags = extra_postargs['sycl']
                else:
                    sycl_post_cflags = list(extra_postargs)
                append_std17_if_no_std_present(sycl_cflags)
                _append_sycl_std_if_no_std_present(sycl_cflags)
                host_cflags = extra_cc_cflags + common_cflags + post_cflags
                append_std17_if_no_std_present(host_cflags)
                # escaping quoted arguments to pass them thru SYCL compiler
                host_cflags = [item.replace('"', '\\\\"') for item in host_cflags]
                host_cflags = ' '.join(host_cflags)
                # Note the order: shlex.quote sycl_flags first, _wrap_sycl_host_flags
                # second. Reason is that sycl host flags are quoted, space containing
                # strings passed to SYCL compiler.
                sycl_cflags = [shlex.quote(f) for f in sycl_cflags]
                sycl_cflags += _wrap_sycl_host_flags(host_cflags)
                sycl_dlink_post_cflags = _SYCL_DLINK_FLAGS
                sycl_post_cflags = [shlex.quote(f) for f in sycl_post_cflags]

            _write_ninja_file_and_compile_objects(
                sources=sources,
                objects=objects,
                cflags=[shlex.quote(f) for f in extra_cc_cflags + common_cflags],
                post_cflags=[shlex.quote(f) for f in post_cflags],
                cuda_cflags=cuda_cflags,
                cuda_post_cflags=cuda_post_cflags,
                cuda_dlink_post_cflags=cuda_dlink_post_cflags,
                sycl_cflags=sycl_cflags,
                sycl_post_cflags=sycl_post_cflags,
                sycl_dlink_post_cflags=sycl_dlink_post_cflags,
                build_directory=output_dir,
                verbose=True,
                with_cuda=with_cuda,
                with_sycl=with_sycl)

            # Return *all* object filenames, not just the ones we just built.
            return objects

        def win_cuda_flags(cflags):
            return (COMMON_NVCC_FLAGS +
                    cflags + _get_cuda_arch_flags(cflags))

        def win_wrap_single_compile(sources,
                                    output_dir=None,
                                    macros=None,
                                    include_dirs=None,
                                    debug=0,
                                    extra_preargs=None,
                                    extra_postargs=None,
                                    depends=None):

            self.cflags = copy.deepcopy(extra_postargs)
            extra_postargs = None

            def spawn(cmd):
                # Using regex to match src, obj and include files
                src_regex = re.compile('/T(p|c)(.*)')
                src_list = [
                    m.group(2) for m in (src_regex.match(elem) for elem in cmd)
                    if m
                ]

                obj_regex = re.compile('/Fo(.*)')
                obj_list = [
                    m.group(1) for m in (obj_regex.match(elem) for elem in cmd)
                    if m
                ]

                include_regex = re.compile(r'((\-|\/)I.*)')
                include_list = [
                    m.group(1)
                    for m in (include_regex.match(elem) for elem in cmd) if m
                ]

                if len(src_list) >= 1 and len(obj_list) >= 1:
                    src = src_list[0]
                    obj = obj_list[0]
                    if _is_cuda_file(src):
                        nvcc = _join_cuda_home('bin', 'nvcc')
                        if isinstance(self.cflags, dict):
                            cflags = self.cflags['nvcc']
                        elif isinstance(self.cflags, list):
                            cflags = self.cflags
                        else:
                            cflags = []

                        cflags = win_cuda_flags(cflags) + ['-std=c++17', '--use-local-env']
                        for flag in COMMON_MSVC_FLAGS:
                            cflags = ['-Xcompiler', flag] + cflags
                        for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                            cflags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cflags
                        cmd = [nvcc, '-c', src, '-o', obj] + include_list + cflags
                    elif isinstance(self.cflags, dict):
                        cflags = COMMON_MSVC_FLAGS + self.cflags['cxx']
                        append_std17_if_no_std_present(cflags)
                        cmd += cflags
                    elif isinstance(self.cflags, list):
                        cflags = COMMON_MSVC_FLAGS + self.cflags
                        append_std17_if_no_std_present(cflags)
                        cmd += cflags

                return original_spawn(cmd)

            try:
                self.compiler.spawn = spawn
                return original_compile(sources, output_dir, macros,
                                        include_dirs, debug, extra_preargs,
                                        extra_postargs, depends)
            finally:
                self.compiler.spawn = original_spawn

        def win_wrap_ninja_compile(sources,
                                   output_dir=None,
                                   macros=None,
                                   include_dirs=None,
                                   debug=0,
                                   extra_preargs=None,
                                   extra_postargs=None,
                                   depends=None):

            if not self.compiler.initialized:
                self.compiler.initialize()
            output_dir = os.path.abspath(output_dir)

            # Note [Absolute include_dirs]
            # Convert relative path in self.compiler.include_dirs to absolute path if any.
            # For ninja build, the build location is not local, but instead, the build happens
            # in a script-created build folder. Thus, relative paths lose their correctness.
            # To be consistent with jit extension, we allow user to enter relative include_dirs
            # in setuptools.setup, and we convert the relative path to absolute path here.
            convert_to_absolute_paths_inplace(self.compiler.include_dirs)

            _, objects, extra_postargs, pp_opts, _ = \
                self.compiler._setup_compile(output_dir, macros,
                                             include_dirs, sources,
                                             depends, extra_postargs)
            common_cflags = extra_preargs or []
            cflags = []
            if debug:
                cflags.extend(self.compiler.compile_options_debug)
            else:
                cflags.extend(self.compiler.compile_options)
            common_cflags.extend(COMMON_MSVC_FLAGS)
            cflags = cflags + common_cflags + pp_opts
            with_cuda = any(map(_is_cuda_file, sources))

            # extra_postargs can be either:
            # - a dict mapping cxx/nvcc to extra flags
            # - a list of extra flags.
            if isinstance(extra_postargs, dict):
                post_cflags = extra_postargs['cxx']
            else:
                post_cflags = list(extra_postargs)
            append_std17_if_no_std_present(post_cflags)

            cuda_post_cflags = None
            cuda_cflags = None
            if with_cuda:
                cuda_cflags = ['-std=c++17', '--use-local-env']
                for common_cflag in common_cflags:
                    cuda_cflags.append('-Xcompiler')
                    cuda_cflags.append(common_cflag)
                for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                    cuda_cflags.append('-Xcudafe')
                    cuda_cflags.append('--diag_suppress=' + ignore_warning)
                cuda_cflags.extend(pp_opts)
                if isinstance(extra_postargs, dict):
                    cuda_post_cflags = extra_postargs['nvcc']
                else:
                    cuda_post_cflags = list(extra_postargs)
                cuda_post_cflags = win_cuda_flags(cuda_post_cflags)

            cflags = _nt_quote_args(cflags)
            post_cflags = _nt_quote_args(post_cflags)
            if with_cuda:
                cuda_cflags = _nt_quote_args(cuda_cflags)
                cuda_post_cflags = _nt_quote_args(cuda_post_cflags)
            if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
                cuda_dlink_post_cflags = win_cuda_flags(extra_postargs['nvcc_dlink'])
            else:
                cuda_dlink_post_cflags = None

            _write_ninja_file_and_compile_objects(
                sources=sources,
                objects=objects,
                cflags=cflags,
                post_cflags=post_cflags,
                cuda_cflags=cuda_cflags,
                cuda_post_cflags=cuda_post_cflags,
                cuda_dlink_post_cflags=cuda_dlink_post_cflags,
                sycl_cflags=None,
                sycl_post_cflags=None,
                sycl_dlink_post_cflags=None,
                build_directory=output_dir,
                verbose=True,
                with_cuda=with_cuda,
                with_sycl=False)

            # Return *all* object filenames, not just the ones we just built.
            return objects

        # Monkey-patch the _compile or compile method.
        # https://github.com/python/cpython/blob/dc0284ee8f7a270b6005467f26d8e5773d76e959/Lib/distutils/ccompiler.py#L511
        if self.compiler.compiler_type == 'msvc':
            if self.use_ninja:
                self.compiler.compile = win_wrap_ninja_compile
            else:
                self.compiler.compile = win_wrap_single_compile
        else:
            if self.use_ninja:
                self.compiler.compile = unix_wrap_ninja_compile
            else:
                self.compiler._compile = unix_wrap_single_compile

        build_ext.build_extensions(self)

    def get_ext_filename(self, ext_name):
        # Get the original shared library name. For Python 3, this name will be
        # suffixed with "<SOABI>.so", where <SOABI> will be something like
        # cpython-37m-x86_64-linux-gnu.
        ext_filename = super().get_ext_filename(ext_name)
        # If `no_python_abi_suffix` is `True`, we omit the Python 3 ABI
        # component. This makes building shared libraries with setuptools that
        # aren't Python modules nicer.
        if self.no_python_abi_suffix:
            # The parts will be e.g. ["my_extension", "cpython-37m-x86_64-linux-gnu", "so"].
            ext_filename_parts = ext_filename.split('.')
            # Omit the second to last element.
            without_abi = ext_filename_parts[:-2] + ext_filename_parts[-1:]
            ext_filename = '.'.join(without_abi)
        return ext_filename

    def _check_abi(self) -> tuple[str, TorchVersion]:
        # On some platforms, like Windows, compiler_cxx is not available.
        if hasattr(self.compiler, 'compiler_cxx'):
            compiler = self.compiler.compiler_cxx[0]
        else:
            compiler = get_cxx_compiler()
        _, version = get_compiler_abi_compatibility_and_version(compiler)
        # Warn user if VC env is activated but `DISTUILS_USE_SDK` is not set.
        if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' in os.environ and 'DISTUTILS_USE_SDK' not in os.environ:
            msg = ('It seems that the VC environment is activated but DISTUTILS_USE_SDK is not set.'
                   'This may lead to multiple activations of the VC env.'
                   'Please set `DISTUTILS_USE_SDK=1` and try again.')
            raise UserWarning(msg)
        return compiler, version

    def _add_compile_flag(self, extension, flag):
        extension.extra_compile_args = copy.deepcopy(extension.extra_compile_args)
        if isinstance(extension.extra_compile_args, dict):
            for args in extension.extra_compile_args.values():
                args.append(flag)
        else:
            extension.extra_compile_args.append(flag)

    # Simple hipify, replace the first occurrence of CUDA with HIP
    # in flags starting with "-" and containing "CUDA", but exclude -I flags
    def _hipify_compile_flags(self, extension):
        if isinstance(extension.extra_compile_args, dict) and 'nvcc' in extension.extra_compile_args:
            modified_flags = []
            for flag in extension.extra_compile_args['nvcc']:
                if flag.startswith("-") and "CUDA" in flag and not flag.startswith("-I"):
                    # check/split flag into flag and value
                    parts = flag.split("=", 1)
                    if len(parts) == 2:
                        flag_part, value_part = parts
                        # replace fist instance of "CUDA" with "HIP" only in the flag and not flag value
                        modified_flag_part = flag_part.replace("CUDA", "HIP", 1)
                        modified_flag = f"{modified_flag_part}={value_part}"
                    else:
                        # replace fist instance of "CUDA" with "HIP" in flag
                        modified_flag = flag.replace("CUDA", "HIP", 1)
                    modified_flags.append(modified_flag)
                    print(f'Modified flag: {flag} -> {modified_flag}', file=sys.stderr)
                else:
                    modified_flags.append(flag)
            extension.extra_compile_args['nvcc'] = modified_flags

    def _define_torch_extension_name(self, extension):
        # pybind11 doesn't support dots in the names
        # so in order to support extensions in the packages
        # like torch._C, we take the last part of the string
        # as the library name
        names = extension.name.split('.')
        name = names[-1]
        define = f'-DTORCH_EXTENSION_NAME={name}'
        self._add_compile_flag(extension, define)

    def _add_gnu_cpp_abi_flag(self, extension):
        # use the same CXX ABI as what PyTorch was compiled with
        self._add_compile_flag(extension, '-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI)))


def CppExtension(name, sources, *args, **kwargs):
    """
    Create a :class:`setuptools.Extension` for C++.

    Convenience method that creates a :class:`setuptools.Extension` with the
    bare minimum (but often sufficient) arguments to build a C++ extension.

    All arguments are forwarded to the :class:`setuptools.Extension`
    constructor. Full list arguments can be found at
    https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference

    .. warning::
        The PyTorch python API (as provided in libtorch_python) cannot be built
        with the flag ``py_limited_api=True``.  When this flag is passed, it is
        the user's responsibility in their library to not use APIs from
        libtorch_python (in particular pytorch/python bindings) and to only use
        APIs from libtorch (aten objects, operators and the dispatcher). For
        example, to give access to custom ops from python, the library should
        register the ops through the dispatcher.

        Contrary to CPython setuptools, who does not define -DPy_LIMITED_API
        as a compile flag when py_limited_api is specified as an option for
        the "bdist_wheel" command in ``setup``, PyTorch does! We will specify
        -DPy_LIMITED_API=min_supported_cpython to best enforce consistency,
        safety, and sanity in order to encourage best practices. To target a
        different version, set min_supported_cpython to the hexcode of the
        CPython version of choice.

    Example:
        >>> # xdoctest: +SKIP
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
        >>> from setuptools import setup
        >>> from torch.utils.cpp_extension import BuildExtension, CppExtension
        >>> setup(
        ...     name='extension',
        ...     ext_modules=[
        ...         CppExtension(
        ...             name='extension',
        ...             sources=['extension.cpp'],
        ...             extra_compile_args=['-g'],
        ...             extra_link_args=['-Wl,--no-as-needed', '-lm'])
        ...     ],
        ...     cmdclass={
        ...         'build_ext': BuildExtension
        ...     })
    """
    include_dirs = kwargs.get('include_dirs', [])
    include_dirs += include_paths()
    kwargs['include_dirs'] = include_dirs

    library_dirs = kwargs.get('library_dirs', [])
    library_dirs += library_paths()
    kwargs['library_dirs'] = library_dirs

    libraries = kwargs.get('libraries', [])
    libraries.append('c10')
    libraries.append('torch')
    libraries.append('torch_cpu')
    if not kwargs.get('py_limited_api', False):
        # torch_python uses more than the python limited api
        libraries.append('torch_python')
    if IS_WINDOWS:
        libraries.append("sleef")

    kwargs['libraries'] = libraries

    kwargs['language'] = 'c++'
    return setuptools.Extension(name, sources, *args, **kwargs)


def CUDAExtension(name, sources, *args, **kwargs):
    """
    Create a :class:`setuptools.Extension` for CUDA/C++.

    Convenience method that creates a :class:`setuptools.Extension` with the
    bare minimum (but often sufficient) arguments to build a CUDA/C++
    extension. This includes the CUDA include path, library path and runtime
    library.

    All arguments are forwarded to the :class:`setuptools.Extension`
    constructor. Full list arguments can be found at
    https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference

    .. warning::
        The PyTorch python API (as provided in libtorch_python) cannot be built
        with the flag ``py_limited_api=True``.  When this flag is passed, it is
        the user's responsibility in their library to not use APIs from
        libtorch_python (in particular pytorch/python bindings) and to only use
        APIs from libtorch (aten objects, operators and the dispatcher). For
        example, to give access to custom ops from python, the library should
        register the ops through the dispatcher.

        Contrary to CPython setuptools, who does not define -DPy_LIMITED_API
        as a compile flag when py_limited_api is specified as an option for
        the "bdist_wheel" command in ``setup``, PyTorch does! We will specify
        -DPy_LIMITED_API=min_supported_cpython to best enforce consistency,
        safety, and sanity in order to encourage best practices. To target a
        different version, set min_supported_cpython to the hexcode of the
        CPython version of choice.

    Example:
        >>> # xdoctest: +SKIP
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
        >>> from setuptools import setup
        >>> from torch.utils.cpp_extension import BuildExtension, CUDAExtension
        >>> setup(
        ...     name='cuda_extension',
        ...     ext_modules=[
        ...         CUDAExtension(
        ...                 name='cuda_extension',
        ...                 sources=['extension.cpp', 'extension_kernel.cu'],
        ...                 extra_compile_args={'cxx': ['-g'],
        ...                                     'nvcc': ['-O2']},
        ...                 extra_link_args=['-Wl,--no-as-needed', '-lcuda'])
        ...     ],
        ...     cmdclass={
        ...         'build_ext': BuildExtension
        ...     })

    Compute capabilities:

    By default the extension will be compiled to run on all archs of the cards visible during the
    building process of the extension, plus PTX. If down the road a new card is installed the
    extension may need to be recompiled. If a visible card has a compute capability (CC) that's
    newer than the newest version for which your nvcc can build fully-compiled binaries, PyTorch
    will make nvcc fall back to building kernels with the newest version of PTX your nvcc does
    support (see below for details on PTX).

    You can override the default behavior using `TORCH_CUDA_ARCH_LIST` to explicitly specify which
    CCs you want the extension to support:

    ``TORCH_CUDA_ARCH_LIST="6.1 8.6" python build_my_extension.py``
    ``TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX" python build_my_extension.py``

    The +PTX option causes extension kernel binaries to include PTX instructions for the specified
    CC. PTX is an intermediate representation that allows kernels to runtime-compile for any CC >=
    the specified CC (for example, 8.6+PTX generates PTX that can runtime-compile for any GPU with
    CC >= 8.6). This improves your binary's forward compatibility. However, relying on older PTX to
    provide forward compat by runtime-compiling for newer CCs can modestly reduce performance on
    those newer CCs. If you know exact CC(s) of the GPUs you want to target, you're always better
    off specifying them individually. For example, if you want your extension to run on 8.0 and 8.6,
    "8.0+PTX" would work functionally because it includes PTX that can runtime-compile for 8.6, but
    "8.0 8.6" would be better.

    Note that while it's possible to include all supported archs, the more archs get included the
    slower the building process will be, as it will build a separate kernel image for each arch.

    Note that CUDA-11.5 nvcc will hit internal compiler error while parsing torch/extension.h on Windows.
    To workaround the issue, move python binding logic to pure C++ file.

    Example use:
        #include <ATen/ATen.h>
        at::Tensor SigmoidAlphaBlendForwardCuda(....)

    Instead of:
        #include <torch/extension.h>
        torch::Tensor SigmoidAlphaBlendForwardCuda(...)

    Currently open issue for nvcc bug: https://github.com/pytorch/pytorch/issues/69460
    Complete workaround code example: https://github.com/facebookresearch/pytorch3d/commit/cb170ac024a949f1f9614ffe6af1c38d972f7d48

    Relocatable device code linking:

    If you want to reference device symbols across compilation units (across object files),
    the object files need to be built with `relocatable device code` (-rdc=true or -dc).
    An exception to this rule is "dynamic parallelism" (nested kernel launches)  which is not used a lot anymore.
    `Relocatable device code` is less optimized so it needs to be used only on object files that need it.
    Using `-dlto` (Device Link Time Optimization) at the device code compilation step and `dlink` step
    helps reduce the protentional perf degradation of `-rdc`.
    Note that it needs to be used at both steps to be useful.

    If you have `rdc` objects you need to have an extra `-dlink` (device linking) step before the CPU symbol linking step.
    There is also a case where `-dlink` is used without `-rdc`:
    when an extension is linked against a static lib containing rdc-compiled objects
    like the [NVSHMEM library](https://developer.nvidia.com/nvshmem).

    Note: Ninja is required to build a CUDA Extension with RDC linking.

    Example:
        >>> # xdoctest: +SKIP
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
        >>> CUDAExtension(
        ...        name='cuda_extension',
        ...        sources=['extension.cpp', 'extension_kernel.cu'],
        ...        dlink=True,
        ...        dlink_libraries=["dlink_lib"],
        ...        extra_compile_args={'cxx': ['-g'],
        ...                            'nvcc': ['-O2', '-rdc=true']})
    """
    library_dirs = kwargs.get('library_dirs', [])
    library_dirs += library_paths(device_type="cuda")
    kwargs['library_dirs'] = library_dirs

    libraries = kwargs.get('libraries', [])
    libraries.append('c10')
    libraries.append('torch')
    libraries.append('torch_cpu')
    if not kwargs.get('py_limited_api', False):
        # torch_python uses more than the python limited api
        libraries.append('torch_python')
    if IS_HIP_EXTENSION:
        libraries.append('amdhip64')
        libraries.append('c10_hip')
        libraries.append('torch_hip')
    else:
        libraries.append('cudart')
        libraries.append('c10_cuda')
        libraries.append('torch_cuda')
    kwargs['libraries'] = libraries

    include_dirs = kwargs.get('include_dirs', [])

    if IS_HIP_EXTENSION:
        build_dir = os.getcwd()
        hipify_result = hipify_python.hipify(
            project_directory=build_dir,
            output_directory=build_dir,
            header_include_dirs=include_dirs,
            includes=[os.path.join(build_dir, '*')],  # limit scope to build_dir only
            extra_files=[os.path.abspath(s) for s in sources],
            show_detailed=True,
            is_pytorch_extension=True,
            hipify_extra_files_only=True,  # don't hipify everything in includes path
        )

        hipified_sources = set()
        for source in sources:
            s_abs = os.path.abspath(source)
            hipified_s_abs = (hipify_result[s_abs].hipified_path if (s_abs in hipify_result and
                              hipify_result[s_abs].hipified_path is not None) else s_abs)
            # setup() arguments must *always* be /-separated paths relative to the setup.py directory,
            # *never* absolute paths
            hipified_sources.add(os.path.relpath(hipified_s_abs, build_dir))

        sources = list(hipified_sources)

    include_dirs += include_paths(device_type="cuda")
    kwargs['include_dirs'] = include_dirs

    kwargs['language'] = 'c++'

    dlink_libraries = kwargs.get('dlink_libraries', [])
    dlink = kwargs.get('dlink', False) or dlink_libraries
    if dlink:
        extra_compile_args = kwargs.get('extra_compile_args', {})

        extra_compile_args_dlink = extra_compile_args.get('nvcc_dlink', [])
        extra_compile_args_dlink += ['-dlink']
        extra_compile_args_dlink += [f'-L{x}' for x in library_dirs]
        extra_compile_args_dlink += [f'-l{x}' for x in dlink_libraries]

        if (torch.version.cuda is not None) and TorchVersion(torch.version.cuda) >= '11.2':
            extra_compile_args_dlink += ['-dlto']   # Device Link Time Optimization started from cuda 11.2

        extra_compile_args['nvcc_dlink'] = extra_compile_args_dlink

        kwargs['extra_compile_args'] = extra_compile_args

    return setuptools.Extension(name, sources, *args, **kwargs)


def SyclExtension(name, sources, *args, **kwargs):
    r"""
    Creates a :class:`setuptools.Extension` for SYCL/C++.

    Convenience method that creates a :class:`setuptools.Extension` with the
    bare minimum (but often sufficient) arguments to build a SYCL/C++
    extension.

    All arguments are forwarded to the :class:`setuptools.Extension`
    constructor.

    .. warning::
        The PyTorch python API (as provided in libtorch_python) cannot be built
        with the flag ``py_limited_api=True``.  When this flag is passed, it is
        the user's responsibility in their library to not use APIs from
        libtorch_python (in particular pytorch/python bindings) and to only use
        APIs from libtorch (aten objects, operators and the dispatcher). For
        example, to give access to custom ops from python, the library should
        register the ops through the dispatcher.

        Contrary to CPython setuptools, who does not define -DPy_LIMITED_API
        as a compile flag when py_limited_api is specified as an option for
        the "bdist_wheel" command in ``setup``, PyTorch does! We will specify
        -DPy_LIMITED_API=min_supported_cpython to best enforce consistency,
        safety, and sanity in order to encourage best practices. To target a
        different version, set min_supported_cpython to the hexcode of the
        CPython version of choice.

    Example:
        >>> # xdoctest: +SKIP
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
        >>> from torch.utils.cpp_extension import BuildExtension, SyclExtension
        >>> setup(
        ...     name='xpu_extension',
        ...     ext_modules=[
        ...     SyclExtension(
        ...                 name='xpu_extension',
        ...                 sources=['extension.cpp', 'extension_kernel.cpp'],
        ...                 extra_compile_args={'cxx': ['-g', '-std=c++20', '-fPIC']})
        ...     ],
        ...     cmdclass={
        ...         'build_ext': BuildExtension
        ...     })

    By default the extension will be compiled to run on all archs of the cards visible during the
    building process of the extension. If down the road a new card is installed the
    extension may need to be recompiled. You can override the default behavior using
    `TORCH_XPU_ARCH_LIST` to explicitly specify which device architectures you want the extension
    to support:

    ``TORCH_XPU_ARCH_LIST="pvc,xe-lpg" python build_my_extension.py``

    Note that while it's possible to include all supported archs, the more archs get included the
    slower the building process will be, as it will build a separate kernel image for each arch.

    Note: Ninja is required to build SyclExtension.
    """
    library_dirs = kwargs.get("library_dirs", [])
    library_dirs += library_paths()
    kwargs["library_dirs"] = library_dirs

    libraries = kwargs.get("libraries", [])
    libraries.append("c10")
    libraries.append("c10_xpu")
    libraries.append("torch")
    libraries.append("torch_cpu")
    if not kwargs.get('py_limited_api', False):
        # torch_python uses more than the python limited api
        libraries.append("torch_python")
    libraries.append("torch_xpu")
    kwargs["libraries"] = libraries

    include_dirs = kwargs.get("include_dirs", [])
    include_dirs += include_paths()
    kwargs["include_dirs"] = include_dirs

    kwargs["language"] = "c++"

    return setuptools.Extension(name, sources, *args, **kwargs)

def include_paths(device_type: str = "cpu") -> list[str]:
    """
    Get the include paths required to build a C++ or CUDA or SYCL extension.

    Args:
        device_type: Defaults to "cpu".
    Returns:
        A list of include path strings.
    """
    lib_include = os.path.join(_TORCH_PATH, 'include')
    paths = [
        lib_include,
        # Remove this once torch/torch.h is officially no longer supported for C++ extensions.
        os.path.join(lib_include, 'torch', 'csrc', 'api', 'include'),
    ]
    if device_type == "cuda" and IS_HIP_EXTENSION:
        paths.append(os.path.join(lib_include, 'THH'))
        paths.append(_join_rocm_home('include'))
    elif device_type == "cuda":
        cuda_home_include = _join_cuda_home('include')
        # if we have the Debian/Ubuntu packages for cuda, we get /usr as cuda home.
        # but gcc doesn't like having /usr/include passed explicitly
        if cuda_home_include != '/usr/include':
            paths.append(cuda_home_include)

        # Support CUDA_INC_PATH env variable supported by CMake files
        if (cuda_inc_path := os.environ.get("CUDA_INC_PATH", None)) and \
                cuda_inc_path != '/usr/include':
            paths.append(cuda_inc_path)
        if CUDNN_HOME is not None:
            paths.append(os.path.join(CUDNN_HOME, 'include'))
    elif device_type == "xpu":
        paths.append(_join_sycl_home('include'))
        paths.append(_join_sycl_home('include', 'sycl'))
    return paths


def library_paths(device_type: str = "cpu") -> list[str]:
    """
    Get the library paths required to build a C++ or CUDA extension.

    Args:
        device_type: Defaults to "cpu".

    Returns:
        A list of library path strings.
    """
    # We need to link against libtorch.so
    paths = [TORCH_LIB_PATH]

    if device_type == "cuda" and IS_HIP_EXTENSION:
        lib_dir = 'lib'
        paths.append(_join_rocm_home(lib_dir))
        if HIP_HOME is not None:
            paths.append(os.path.join(HIP_HOME, 'lib'))
    elif device_type == "cuda":
        if IS_WINDOWS:
            lib_dir = os.path.join('lib', 'x64')
        else:
            lib_dir = 'lib64'
            if (not os.path.exists(_join_cuda_home(lib_dir)) and
                    os.path.exists(_join_cuda_home('lib'))):
                # 64-bit CUDA may be installed in 'lib' (see e.g. gh-16955)
                # Note that it's also possible both don't exist (see
                # _find_cuda_home) - in that case we stay with 'lib64'.
                lib_dir = 'lib'

        paths.append(_join_cuda_home(lib_dir))
        if CUDNN_HOME is not None:
            paths.append(os.path.join(CUDNN_HOME, lib_dir))
    elif device_type == "xpu":
        if IS_WINDOWS:
            lib_dir = os.path.join('lib', 'x64')
        else:
            lib_dir = 'lib64'
            if (not os.path.exists(_join_sycl_home(lib_dir)) and
                    os.path.exists(_join_sycl_home('lib'))):
                lib_dir = 'lib'

        paths.append(_join_sycl_home(lib_dir))

    return paths


def load(name,
         sources: Union[str, list[str]],
         extra_cflags=None,
         extra_cuda_cflags=None,
         extra_sycl_cflags=None,
         extra_ldflags=None,
         extra_include_paths=None,
         build_directory=None,
         verbose=False,
         with_cuda: Optional[bool] = None,
         with_sycl: Optional[bool] = None,
         is_python_module=True,
         is_standalone=False,
         keep_intermediates=True):
    """
    Load a PyTorch C++ extension just-in-time (JIT).

    To load an extension, a Ninja build file is emitted, which is used to
    compile the given sources into a dynamic library. This library is
    subsequently loaded into the current Python process as a module and
    returned from this function, ready for use.

    By default, the directory to which the build file is emitted and the
    resulting library compiled to is ``<tmp>/torch_extensions/<name>``, where
    ``<tmp>`` is the temporary folder on the current platform and ``<name>``
    the name of the extension. This location can be overridden in two ways.
    First, if the ``TORCH_EXTENSIONS_DIR`` environment variable is set, it
    replaces ``<tmp>/torch_extensions`` and all extensions will be compiled
    into subfolders of this directory. Second, if the ``build_directory``
    argument to this function is supplied, it overrides the entire path, i.e.
    the library will be compiled into that folder directly.

    To compile the sources, the default system compiler (``c++``) is used,
    which can be overridden by setting the ``CXX`` environment variable. To pass
    additional arguments to the compilation process, ``extra_cflags`` or
    ``extra_ldflags`` can be provided. For example, to compile your extension
    with optimizations, pass ``extra_cflags=['-O3']``. You can also use
    ``extra_cflags`` to pass further include directories.

    CUDA support with mixed compilation is provided. Simply pass CUDA source
    files (``.cu`` or ``.cuh``) along with other sources. Such files will be
    detected and compiled with nvcc rather than the C++ compiler. This includes
    passing the CUDA lib64 directory as a library directory, and linking
    ``cudart``. You can pass additional flags to nvcc via
    ``extra_cuda_cflags``, just like with ``extra_cflags`` for C++. Various
    heuristics for finding the CUDA install directory are used, which usually
    work fine. If not, setting the ``CUDA_HOME`` environment variable is the
    safest option.

    SYCL support with mixed compilation is provided. Simply pass SYCL source
    files (``.sycl``) along with other sources. Such files will be detected
    and compiled with SYCL compiler (such as Intel DPC++ Compiler) rather
    than the C++ compiler. You can pass additional flags to SYCL compiler
    via ``extra_sycl_cflags``, just like with ``extra_cflags`` for C++.
    SYCL compiler is expected to be found via system PATH environment
    variable.

    Args:
        name: The name of the extension to build. This MUST be the same as the
            name of the pybind11 module!
        sources: A list of relative or absolute paths to C++ source files.
        extra_cflags: optional list of compiler flags to forward to the build.
        extra_cuda_cflags: optional list of compiler flags to forward to nvcc
            when building CUDA sources.
        extra_sycl_cflags: optional list of compiler flags to forward to SYCL
            compiler when building SYCL sources.
        extra_ldflags: optional list of linker flags to forward to the build.
        extra_include_paths: optional list of include directories to forward
            to the build.
        build_directory: optional path to use as build workspace.
        verbose: If ``True``, turns on verbose logging of load steps.
        with_cuda: Determines whether CUDA headers and libraries are added to
            the build. If set to ``None`` (default), this value is
            automatically determined based on the existence of ``.cu`` or
            ``.cuh`` in ``sources``. Set it to `True`` to force CUDA headers
            and libraries to be included.
        with_sycl: Determines whether SYCL headers and libraries are added to
            the build. If set to ``None`` (default), this value is
            automatically determined based on the existence of ``.sycl`` in
            ``sources``. Set it to `True`` to force SYCL headers and
            libraries to be included.
        is_python_module: If ``True`` (default), imports the produced shared
            library as a Python module. If ``False``, behavior depends on
            ``is_standalone``.
        is_standalone: If ``False`` (default) loads the constructed extension
            into the process as a plain dynamic library. If ``True``, build a
            standalone executable.

    Returns:
        If ``is_python_module`` is ``True``:
            Returns the loaded PyTorch extension as a Python module.

        If ``is_python_module`` is ``False`` and ``is_standalone`` is ``False``:
            Returns nothing. (The shared library is loaded into the process as
            a side effect.)

        If ``is_standalone`` is ``True``.
            Return the path to the executable. (On Windows, TORCH_LIB_PATH is
            added to the PATH environment variable as a side effect.)

    Example:
        >>> # xdoctest: +SKIP
        >>> from torch.utils.cpp_extension import load
        >>> module = load(
        ...     name='extension',
        ...     sources=['extension.cpp', 'extension_kernel.cu'],
        ...     extra_cflags=['-O2'],
        ...     verbose=True)
    """
    return _jit_compile(
        name,
        [sources] if isinstance(sources, str) else sources,
        extra_cflags,
        extra_cuda_cflags,
        extra_sycl_cflags,
        extra_ldflags,
        extra_include_paths,
        build_directory or _get_build_directory(name, verbose),
        verbose,
        with_cuda,
        with_sycl,
        is_python_module,
        is_standalone,
        keep_intermediates=keep_intermediates)

def _get_pybind11_abi_build_flags():
    # Note [Pybind11 ABI constants]
    #
    # Pybind11 before 2.4 used to build an ABI strings using the following pattern:
    # f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_BUILD_TYPE}__"
    # Since 2.4 compier type, stdlib and build abi parameters are also encoded like this:
    # f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_COMPILER_TYPE}{PYBIND11_STDLIB}{PYBIND11_BUILD_ABI}{PYBIND11_BUILD_TYPE}__"
    #
    # This was done in order to further narrow down the chances of compiler ABI incompatibility
    # that can cause a hard to debug segfaults.
    # For PyTorch extensions we want to relax those restrictions and pass compiler, stdlib and abi properties
    # captured during PyTorch native library compilation in torch/csrc/Module.cpp

    abi_cflags = []
    for pname in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
        pval = getattr(torch._C, f"_PYBIND11_{pname}")
        if pval is not None and not IS_WINDOWS:
            abi_cflags.append(f'-DPYBIND11_{pname}=\\"{pval}\\"')
    return abi_cflags

def _get_glibcxx_abi_build_flags():
    glibcxx_abi_cflags = ['-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))]
    return glibcxx_abi_cflags

def check_compiler_is_gcc(compiler):
    if not IS_LINUX:
        return False

    env = os.environ.copy()
    env['LC_ALL'] = 'C'  # Don't localize output
    try:
        version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
    except Exception:
        try:
            version_string = subprocess.check_output([compiler, '--version'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
        except Exception:
            return False
    # Check for 'gcc' or 'g++' for sccache wrapper
    pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
    results = re.findall(pattern, version_string)
    if len(results) != 1:
        return False
    compiler_path = os.path.realpath(results[0].strip())
    # On RHEL/CentOS c++ is a gcc compiler wrapper
    if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
        return True
    return False

def _check_and_build_extension_h_precompiler_headers(
        extra_cflags,
        extra_include_paths,
        is_standalone=False):
    r'''
    Precompiled Headers(PCH) can pre-build the same headers and reduce build time for pytorch load_inline modules.
    GCC offical manual: https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/Precompiled-Headers.html
    PCH only works when built pch file(header.h.gch) and build target have the same build parameters. So, We need
    add a signature file to record PCH file parameters. If the build parameters(signature) changed, it should rebuild
    PCH file.

    Note:
    1. Windows and MacOS have different PCH mechanism. We only support Linux currently.
    2. It only works on GCC/G++.
    '''
    if not IS_LINUX:
        return

    compiler = get_cxx_compiler()

    b_is_gcc = check_compiler_is_gcc(compiler)
    if b_is_gcc is False:
        return

    head_file = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h')
    head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
    head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')

    def listToString(s):
        # initialize an empty string
        string = ""
        if s is None:
            return string

        # traverse in the string
        for element in s:
            string += (element + ' ')
        # return string
        return string

    def format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags, torch_include_dirs, extra_cflags, extra_include_paths):
        return re.sub(
            r"[ \n]+",
            " ",
            f"""
                {compiler} -x c++-header {head_file} -o {head_file_pch} {torch_include_dirs} {extra_include_paths} {extra_cflags} {common_cflags}
            """,
        ).strip()

    def command_to_signature(cmd):
        signature = cmd.replace(' ', '_')
        return signature

    def check_pch_signature_in_file(file_path, signature):
        b_exist = os.path.isfile(file_path)
        if b_exist is False:
            return False

        with open(file_path) as file:
            # read all content of a file
            content = file.read()
            # check if string present in a file
            return signature == content

    def _create_if_not_exist(path_dir):
        if not os.path.exists(path_dir):
            try:
                Path(path_dir).mkdir(parents=True, exist_ok=True)
            except OSError as exc:  # Guard against race condition
                if exc.errno != errno.EEXIST:
                    raise RuntimeError(f"Fail to create path {path_dir}") from exc

    def write_pch_signature_to_file(file_path, pch_sign):
        _create_if_not_exist(os.path.dirname(file_path))
        with open(file_path, "w") as f:
            f.write(pch_sign)
            f.close()

    def build_precompile_header(pch_cmd):
        try:
            subprocess.check_output(pch_cmd, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError as e:
            raise RuntimeError(f"Compile PreCompile Header fail, command: {pch_cmd}") from e

    extra_cflags_str = listToString(extra_cflags)
    extra_include_paths_str = " ".join(
        [f"-I{include}" for include in extra_include_paths] if extra_include_paths else []
    )

    lib_include = os.path.join(_TORCH_PATH, 'include')
    torch_include_dirs = [
        f"-I {lib_include}",
        # Python.h
        "-I {}".format(sysconfig.get_path("include")),
        # torch/all.h
        "-I {}".format(os.path.join(lib_include, 'torch', 'csrc', 'api', 'include')),
    ]

    torch_include_dirs_str = listToString(torch_include_dirs)

    common_cflags = []
    if not is_standalone:
        common_cflags += ['-DTORCH_API_INCLUDE_EXTENSION_H']

    common_cflags += ['-std=c++17', '-fPIC']
    common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]
    common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]
    common_cflags_str = listToString(common_cflags)

    pch_cmd = format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags_str, torch_include_dirs_str, extra_cflags_str, extra_include_paths_str)
    pch_sign = command_to_signature(pch_cmd)

    if os.path.isfile(head_file_pch) is not True:
        build_precompile_header(pch_cmd)
        write_pch_signature_to_file(head_file_signature, pch_sign)
    else:
        b_same_sign = check_pch_signature_in_file(head_file_signature, pch_sign)
        if b_same_sign is False:
            build_precompile_header(pch_cmd)
            write_pch_signature_to_file(head_file_signature, pch_sign)

def remove_extension_h_precompiler_headers():
    def _remove_if_file_exists(path_file):
        if os.path.exists(path_file):
            os.remove(path_file)

    head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
    head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')

    _remove_if_file_exists(head_file_pch)
    _remove_if_file_exists(head_file_signature)

def load_inline(name,
                cpp_sources,
                cuda_sources=None,
                sycl_sources=None,
                functions=None,
                extra_cflags=None,
                extra_cuda_cflags=None,
                extra_sycl_cflags=None,
                extra_ldflags=None,
                extra_include_paths=None,
                build_directory=None,
                verbose=False,
                with_cuda=None,
                with_sycl=None,
                is_python_module=True,
                with_pytorch_error_handling=True,
                keep_intermediates=True,
                use_pch=False):
    r'''
    Load a PyTorch C++ extension just-in-time (JIT) from string sources.

    This function behaves exactly like :func:`load`, but takes its sources as
    strings rather than filenames. These strings are stored to files in the
    build directory, after which the behavior of :func:`load_inline` is
    identical to :func:`load`.

    See `the
    tests <https://github.com/pytorch/pytorch/blob/master/test/test_cpp_extensions_jit.py>`_
    for good examples of using this function.

    Sources may omit two required parts of a typical non-inline C++ extension:
    the necessary header includes, as well as the (pybind11) binding code. More
    precisely, strings passed to ``cpp_sources`` are first concatenated into a
    single ``.cpp`` file. This file is then prepended with ``#include
    <torch/extension.h>``.

    Furthermore, if the ``functions`` argument is supplied, bindings will be
    automatically generated for each function specified. ``functions`` can
    either be a list of function names, or a dictionary mapping from function
    names to docstrings. If a list is given, the name of each function is used
    as its docstring.

    The sources in ``cuda_sources`` are concatenated into a separate ``.cu``
    file and  prepended with ``torch/types.h``, ``cuda.h`` and
    ``cuda_runtime.h`` includes. The ``.cpp`` and ``.cu`` files are compiled
    separately, but ultimately linked into a single library. Note that no
    bindings are generated for functions in ``cuda_sources`` per se. To bind
    to a CUDA kernel, you must create a C++ function that calls it, and either
    declare or define this C++ function in one of the ``cpp_sources`` (and
    include its name in ``functions``).

    The sources in ``sycl_sources`` are concatenated into a separate ``.sycl``
    file and  prepended with ``torch/types.h``, ``sycl/sycl.hpp`` includes.
    The ``.cpp`` and ``.sycl`` files are compiled separately, but ultimately
    linked into a single library. Note that no bindings are generated for
    functions in ``sycl_sources`` per se. To bind to a SYCL kernel, you must
    create a C++ function that calls it, and either declare or define this
    C++ function in one of the ``cpp_sources`` (and include its name
    in ``functions``).

    See :func:`load` for a description of arguments omitted below.

    Args:
        cpp_sources: A string, or list of strings, containing C++ source code.
        cuda_sources: A string, or list of strings, containing CUDA source code.
        sycl_sources: A string, or list of strings, containing SYCL source code.
        functions: A list of function names for which to generate function
            bindings. If a dictionary is given, it should map function names to
            docstrings (which are otherwise just the function names).
        with_cuda: Determines whether CUDA headers and libraries are added to
            the build. If set to ``None`` (default), this value is
            automatically determined based on whether ``cuda_sources`` is
            provided. Set it to ``True`` to force CUDA headers
            and libraries to be included.
        with_sycl: Determines whether SYCL headers and libraries are added to
            the build. If set to ``None`` (default), this value is
            automatically determined based on whether ``sycl_sources`` is
            provided. Set it to ``True`` to force SYCL headers
            and libraries to be included.
        with_pytorch_error_handling: Determines whether pytorch error and
            warning macros are handled by pytorch instead of pybind. To do
            this, each function ``foo`` is called via an intermediary ``_safe_foo``
            function. This redirection might cause issues in obscure cases
            of cpp. This flag should be set to ``False`` when this redirect
            causes issues.

    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)
        >>> from torch.utils.cpp_extension import load_inline
        >>> source = """
        at::Tensor sin_add(at::Tensor x, at::Tensor y) {
          return x.sin() + y.sin();
        }
        """
        >>> module = load_inline(name='inline_extension',
        ...                      cpp_sources=[source],
        ...                      functions=['sin_add'])

    .. note::
        Since load_inline will just-in-time compile the source code, please ensure
        that you have the right toolchains installed in the runtime. For example,
        when loading C++, make sure a C++ compiler is available. If you're loading
        a CUDA extension, you will need to additionally install the corresponding CUDA
        toolkit (nvcc and any other dependencies your code has). Compiling toolchains
        are not included when you install torch and must be additionally installed.

        During compiling, by default, the Ninja backend uses #CPUS + 2 workers to build
        the extension. This may use up too many resources on some systems. One
        can control the number of workers by setting the `MAX_JOBS` environment
        variable to a non-negative number.
    '''
    build_directory = build_directory or _get_build_directory(name, verbose)

    if isinstance(cpp_sources, str):
        cpp_sources = [cpp_sources]
    cuda_sources = cuda_sources or []
    if isinstance(cuda_sources, str):
        cuda_sources = [cuda_sources]
    sycl_sources = sycl_sources or []
    if isinstance(sycl_sources, str):
        sycl_sources = [sycl_sources]

    cpp_sources.insert(0, '#include <torch/extension.h>')

    if use_pch is True:
        # Using PreCompile Header('torch/extension.h') to reduce compile time.
        _check_and_build_extension_h_precompiler_headers(extra_cflags, extra_include_paths)
    else:
        remove_extension_h_precompiler_headers()

    # If `functions` is supplied, we create the pybind11 bindings for the user.
    # Here, `functions` is (or becomes, after some processing) a map from
    # function names to function docstrings.
    if functions is not None:
        module_def = []
        module_def.append('PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {')
        if isinstance(functions, str):
            functions = [functions]
        if isinstance(functions, list):
            # Make the function docstring the same as the function name.
            functions = {f: f for f in functions}
        elif not isinstance(functions, dict):
            raise ValueError(f"Expected 'functions' to be a list or dict, but was {type(functions)}")
        for function_name, docstring in functions.items():
            if with_pytorch_error_handling:
                module_def.append(f'm.def("{function_name}", torch::wrap_pybind_function({function_name}), "{docstring}");')
            else:
                module_def.append(f'm.def("{function_name}", {function_name}, "{docstring}");')
        module_def.append('}')
        cpp_sources += module_def

    cpp_source_path = os.path.join(build_directory, 'main.cpp')
    _maybe_write(cpp_source_path, "\n".join(cpp_sources))

    sources = [cpp_source_path]

    if cuda_sources:
        cuda_sources.insert(0, '#include <torch/types.h>')
        cuda_sources.insert(1, '#include <cuda.h>')
        cuda_sources.insert(2, '#include <cuda_runtime.h>')

        cuda_source_path = os.path.join(build_directory, 'cuda.cu')
        _maybe_write(cuda_source_path, "\n".join(cuda_sources))

        sources.append(cuda_source_path)

    if sycl_sources:
        sycl_sources.insert(0, '#include <torch/types.h>')
        sycl_sources.insert(1, '#include <sycl/sycl.hpp>')

        sycl_source_path = os.path.join(build_directory, 'sycl.sycl')
        _maybe_write(sycl_source_path, "\n".join(sycl_sources))

        sources.append(sycl_source_path)

    return _jit_compile(
        name,
        sources,
        extra_cflags,
        extra_cuda_cflags,
        extra_sycl_cflags,
        extra_ldflags,
        extra_include_paths,
        build_directory,
        verbose,
        with_cuda,
        with_sycl,
        is_python_module,
        is_standalone=False,
        keep_intermediates=keep_intermediates)


def _jit_compile(name,
                 sources,
                 extra_cflags,
                 extra_cuda_cflags,
                 extra_sycl_cflags,
                 extra_ldflags,
                 extra_include_paths,
                 build_directory: str,
                 verbose: bool,
                 with_cuda: Optional[bool],
                 with_sycl: Optional[bool],
                 is_python_module,
                 is_standalone,
                 keep_intermediates=True) -> None:
    if is_python_module and is_standalone:
        raise ValueError("`is_python_module` and `is_standalone` are mutually exclusive.")

    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    with_cudnn = any('cudnn' in f for f in extra_ldflags or [])
    if with_sycl is None:
        with_sycl = any(map(_is_sycl_file, sources))
    old_version = JIT_EXTENSION_VERSIONER.get_version(name)
    version = JIT_EXTENSION_VERSIONER.bump_version_if_changed(
        name,
        sources,
        build_arguments=[extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths],
        build_directory=build_directory,
        with_cuda=with_cuda,
        with_sycl=with_sycl,
        is_python_module=is_python_module,
        is_standalone=is_standalone,
    )
    if version > 0:
        if version != old_version and verbose:
            print(f'The input conditions for extension module {name} have changed. ' +
                  f'Bumping to version {version} and re-building as {name}_v{version}...',
                  file=sys.stderr)
        name = f'{name}_v{version}'

    baton = FileBaton(os.path.join(build_directory, 'lock'))
    if baton.try_acquire():
        try:
            if version != old_version:
                with GeneratedFileCleaner(keep_intermediates=keep_intermediates) as clean_ctx:
                    if IS_HIP_EXTENSION and (with_cuda or with_cudnn):
                        hipify_result = hipify_python.hipify(
                            project_directory=build_directory,
                            output_directory=build_directory,
                            header_include_dirs=(extra_include_paths if extra_include_paths is not None else []),
                            extra_files=[os.path.abspath(s) for s in sources],
                            ignores=[_join_rocm_home('*'), os.path.join(_TORCH_PATH, '*')],  # no need to hipify ROCm or PyTorch headers
                            show_detailed=verbose,
                            show_progress=verbose,
                            is_pytorch_extension=True,
                            clean_ctx=clean_ctx
                        )

                        hipified_sources = set()
                        for source in sources:
                            s_abs = os.path.abspath(source)
                            hipified_sources.add(hipify_result[s_abs].hipified_path if s_abs in hipify_result else s_abs)

                        sources = list(hipified_sources)

                    _write_ninja_file_and_build_library(
                        name=name,
                        sources=sources,
                        extra_cflags=extra_cflags or [],
                        extra_cuda_cflags=extra_cuda_cflags or [],
                        extra_sycl_cflags=extra_sycl_cflags or [],
                        extra_ldflags=extra_ldflags or [],
                        extra_include_paths=extra_include_paths or [],
                        build_directory=build_directory,
                        verbose=verbose,
                        with_cuda=with_cuda,
                        with_sycl=with_sycl,
                        is_standalone=is_standalone)
            elif verbose:
                print('No modifications detected for re-loaded extension '
                      f'module {name}, skipping build step...', file=sys.stderr)
        finally:
            baton.release()
    else:
        baton.wait()

    if verbose:
        print(f'Loading extension module {name}...', file=sys.stderr)

    if is_standalone:
        return _get_exec_path(name, build_directory)

    return _import_module_from_library(name, build_directory, is_python_module)


def _write_ninja_file_and_compile_objects(
        sources: list[str],
        objects,
        cflags,
        post_cflags,
        cuda_cflags,
        cuda_post_cflags,
        cuda_dlink_post_cflags,
        sycl_cflags,
        sycl_post_cflags,
        sycl_dlink_post_cflags,
        build_directory: str,
        verbose: bool,
        with_cuda: Optional[bool],
        with_sycl: Optional[bool]) -> None:
    verify_ninja_availability()

    compiler = get_cxx_compiler()

    get_compiler_abi_compatibility_and_version(compiler)
    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    if with_sycl is None:
        with_sycl = any(map(_is_sycl_file, sources))
    build_file_path = os.path.join(build_directory, 'build.ninja')
    if verbose:
        print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)

    # Create build_directory if it does not exist
    if not os.path.exists(build_directory):
        if verbose:
            print(f'Creating directory {build_directory}...', file=sys.stderr)
        # This is like mkdir -p, i.e. will also create parent directories.
        os.makedirs(build_directory, exist_ok=True)

    _write_ninja_file(
        path=build_file_path,
        cflags=cflags,
        post_cflags=post_cflags,
        cuda_cflags=cuda_cflags,
        cuda_post_cflags=cuda_post_cflags,
        cuda_dlink_post_cflags=cuda_dlink_post_cflags,
        sycl_cflags=sycl_cflags,
        sycl_post_cflags=sycl_post_cflags,
        sycl_dlink_post_cflags=sycl_dlink_post_cflags,
        sources=sources,
        objects=objects,
        ldflags=None,
        library_target=None,
        with_cuda=with_cuda,
        with_sycl=with_sycl)
    if verbose:
        print('Compiling objects...', file=sys.stderr)
    _run_ninja_build(
        build_directory,
        verbose,
        # It would be better if we could tell users the name of the extension
        # that failed to build but there isn't a good way to get it here.
        error_prefix='Error compiling objects for extension')


def _write_ninja_file_and_build_library(
        name,
        sources: list[str],
        extra_cflags,
        extra_cuda_cflags,
        extra_sycl_cflags,
        extra_ldflags,
        extra_include_paths,
        build_directory: str,
        verbose: bool,
        with_cuda: Optional[bool],
        with_sycl: Optional[bool],
        is_standalone: bool = False) -> None:
    verify_ninja_availability()

    compiler = get_cxx_compiler()

    get_compiler_abi_compatibility_and_version(compiler)
    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    if with_sycl is None:
        with_sycl = any(map(_is_sycl_file, sources))
    extra_ldflags = _prepare_ldflags(
        extra_ldflags or [],
        with_cuda,
        verbose,
        is_standalone)
    build_file_path = os.path.join(build_directory, 'build.ninja')
    if verbose:
        print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)

    # Create build_directory if it does not exist
    if not os.path.exists(build_directory):
        if verbose:
            print(f'Creating directory {build_directory}...', file=sys.stderr)
        # This is like mkdir -p, i.e. will also create parent directories.
        os.makedirs(build_directory, exist_ok=True)

    # NOTE: Emitting a new ninja build file does not cause re-compilation if
    # the sources did not change, so it's ok to re-emit (and it's fast).
    _write_ninja_file_to_build_library(
        path=build_file_path,
        name=name,
        sources=sources,
        extra_cflags=extra_cflags or [],
        extra_cuda_cflags=extra_cuda_cflags or [],
        extra_sycl_cflags=extra_sycl_cflags or [],
        extra_ldflags=extra_ldflags or [],
        extra_include_paths=extra_include_paths or [],
        with_cuda=with_cuda,
        with_sycl=with_sycl,
        is_standalone=is_standalone)

    if verbose:
        print(f'Building extension module {name}...', file=sys.stderr)
    _run_ninja_build(
        build_directory,
        verbose,
        error_prefix=f"Error building extension '{name}'")


def is_ninja_available():
    """Return ``True`` if the `ninja <https://ninja-build.org/>`_ build system is available on the system, ``False`` otherwise."""
    try:
        subprocess.check_output('ninja --version'.split())
    except Exception:
        return False
    else:
        return True


def verify_ninja_availability():
    """Raise ``RuntimeError`` if `ninja <https://ninja-build.org/>`_ build system is not available on the system, does nothing otherwise."""
    if not is_ninja_available():
        raise RuntimeError("Ninja is required to load C++ extensions")


def _prepare_ldflags(extra_ldflags, with_cuda, verbose, is_standalone):
    if IS_WINDOWS:
        python_lib_path = os.path.join(sys.base_exec_prefix, 'libs')

        extra_ldflags.append('c10.lib')
        if with_cuda:
            extra_ldflags.append('c10_cuda.lib')
        extra_ldflags.append('torch_cpu.lib')
        if with_cuda:
            extra_ldflags.append('torch_cuda.lib')
            # /INCLUDE is used to ensure torch_cuda is linked against in a project that relies on it.
            # Related issue: https://github.com/pytorch/pytorch/issues/31611
            extra_ldflags.append('-INCLUDE:?warp_size@cuda@at@@YAHXZ')
        extra_ldflags.append('torch.lib')
        extra_ldflags.append(f'/LIBPATH:{TORCH_LIB_PATH}')
        if not is_standalone:
            extra_ldflags.append('torch_python.lib')
            extra_ldflags.append(f'/LIBPATH:{python_lib_path}')

    else:
        extra_ldflags.append(f'-L{TORCH_LIB_PATH}')
        extra_ldflags.append('-lc10')
        if with_cuda:
            extra_ldflags.append('-lc10_hip' if IS_HIP_EXTENSION else '-lc10_cuda')
        extra_ldflags.append('-ltorch_cpu')
        if with_cuda:
            extra_ldflags.append('-ltorch_hip' if IS_HIP_EXTENSION else '-ltorch_cuda')
        extra_ldflags.append('-ltorch')
        if not is_standalone:
            extra_ldflags.append('-ltorch_python')

        if is_standalone:
            extra_ldflags.append(f"-Wl,-rpath,{TORCH_LIB_PATH}")

    if with_cuda:
        if verbose:
            print('Detected CUDA files, patching ldflags', file=sys.stderr)
        if IS_WINDOWS:
            extra_ldflags.append(f'/LIBPATH:{_join_cuda_home("lib", "x64")}')
            extra_ldflags.append('cudart.lib')
            if CUDNN_HOME is not None:
                extra_ldflags.append(f'/LIBPATH:{os.path.join(CUDNN_HOME, "lib", "x64")}')
        elif not IS_HIP_EXTENSION:
            extra_lib_dir = "lib64"
            if (not os.path.exists(_join_cuda_home(extra_lib_dir)) and
                    os.path.exists(_join_cuda_home("lib"))):
                # 64-bit CUDA may be installed in "lib"
                # Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
                extra_lib_dir = "lib"
            extra_ldflags.append(f'-L{_join_cuda_home(extra_lib_dir)}')
            extra_ldflags.append('-lcudart')
            if CUDNN_HOME is not None:
                extra_ldflags.append(f'-L{os.path.join(CUDNN_HOME, "lib64")}')
        elif IS_HIP_EXTENSION:
            extra_ldflags.append(f'-L{_join_rocm_home("lib")}')
            extra_ldflags.append('-lamdhip64')
    return extra_ldflags


def _get_cuda_arch_flags(cflags: Optional[list[str]] = None) -> list[str]:
    """
    Determine CUDA arch flags to use.

    For an arch, say "6.1", the added compile flag will be
    ``-gencode=arch=compute_61,code=sm_61``.
    For an added "+PTX", an additional
    ``-gencode=arch=compute_xx,code=compute_xx`` is added.

    See select_compute_arch.cmake for corresponding named and supported arches
    when building with CMake.
    """
    # If cflags is given, there may already be user-provided arch flags in it
    # (from `extra_compile_args`)
    if cflags is not None:
        for flag in cflags:
            if 'TORCH_EXTENSION_NAME' in flag:
                continue
            if 'arch' in flag:
                return []

    # Note: keep combined names ("arch1+arch2") above single names, otherwise
    # string replacement may not do the right thing
    named_arches = collections.OrderedDict([
        ('Kepler+Tesla', '3.7'),
        ('Kepler', '3.5+PTX'),
        ('Maxwell+Tegra', '5.3'),
        ('Maxwell', '5.0;5.2+PTX'),
        ('Pascal', '6.0;6.1+PTX'),
        ('Volta+Tegra', '7.2'),
        ('Volta', '7.0+PTX'),
        ('Turing', '7.5+PTX'),
        ('Ampere+Tegra', '8.7'),
        ('Ampere', '8.0;8.6+PTX'),
        ('Ada', '8.9+PTX'),
        ('Hopper', '9.0+PTX'),
        ('Blackwell+Tegra', '10.1'),
        ('Blackwell', '10.0;12.0+PTX'),
    ])

    supported_arches = ['3.5', '3.7', '5.0', '5.2', '5.3', '6.0', '6.1', '6.2',
                        '7.0', '7.2', '7.5', '8.0', '8.6', '8.7', '8.9', '9.0', '9.0a',
                        '10.0', '10.0a', '10.1', '10.1a', '12.0', '12.0a']
    valid_arch_strings = supported_arches + [s + "+PTX" for s in supported_arches]

    # The default is sm_30 for CUDA 9.x and 10.x
    # First check for an env var (same as used by the main setup.py)
    # Can be one or more architectures, e.g. "6.1" or "3.5;5.2;6.0;6.1;7.0+PTX"
    # See cmake/Modules_CUDA_fix/upstream/FindCUDA/select_compute_arch.cmake
    _arch_list = os.environ.get('TORCH_CUDA_ARCH_LIST', None)

    # If not given, determine what's best for the GPU / CUDA version that can be found
    if not _arch_list:
        warnings.warn(
            "TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. \n"
            "If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].")
        arch_list = []
        # the assumption is that the extension should run on any of the currently visible cards,
        # which could be of different types - therefore all archs for visible cards should be included
        for i in range(torch.cuda.device_count()):
            capability = torch.cuda.get_device_capability(i)
            supported_sm = [int("".join(re.findall(r"\d+", arch.split('_')[1])))
                            for arch in torch.cuda.get_arch_list() if 'sm_' in arch]
            max_supported_sm = max((sm // 10, sm % 10) for sm in supported_sm)
            # Capability of the device may be higher than what's supported by the user's
            # NVCC, causing compilation error. User's NVCC is expected to match the one
            # used to build pytorch, so we use the maximum supported capability of pytorch
            # to clamp the capability.
            capability = min(max_supported_sm, capability)
            arch = f'{capability[0]}.{capability[1]}'
            if arch not in arch_list:
                arch_list.append(arch)
        arch_list = sorted(arch_list)
        arch_list[-1] += '+PTX'
    else:
        # Deal with lists that are ' ' separated (only deal with ';' after)
        _arch_list = _arch_list.replace(' ', ';')
        # Expand named arches
        for named_arch, archval in named_arches.items():
            _arch_list = _arch_list.replace(named_arch, archval)

        arch_list = _arch_list.split(';')

    flags = []
    for arch in arch_list:
        if arch not in valid_arch_strings:
            raise ValueError(f"Unknown CUDA arch ({arch}) or GPU not supported")
        else:
            # Handle both single and double-digit architecture versions
            version = arch.split('+')[0]  # Remove "+PTX" if present
            major, minor = version.split('.')
            num = f"{major}{minor}"
            flags.append(f'-gencode=arch=compute_{num},code=sm_{num}')
            if arch.endswith('+PTX'):
                flags.append(f'-gencode=arch=compute_{num},code=compute_{num}')

    return sorted(set(flags))


def _get_rocm_arch_flags(cflags: Optional[list[str]] = None) -> list[str]:
    # If cflags is given, there may already be user-provided arch flags in it
    # (from `extra_compile_args`)
    if cflags is not None:
        for flag in cflags:
            if 'amdgpu-target' in flag or 'offload-arch' in flag:
                return ['-fno-gpu-rdc']
    # Use same defaults as used for building PyTorch
    # Allow env var to override, just like during initial cmake build.
    _archs = os.environ.get('PYTORCH_ROCM_ARCH', None)
    if not _archs:
        archFlags = torch._C._cuda_getArchFlags()
        if archFlags:
            archs = archFlags.split()
        else:
            archs = []
    else:
        archs = _archs.replace(' ', ';').split(';')
    flags = [f'--offload-arch={arch}' for arch in archs]
    flags += ['-fno-gpu-rdc']
    return flags

def _get_build_directory(name: str, verbose: bool) -> str:
    root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
    if root_extensions_directory is None:
        root_extensions_directory = get_default_build_root()
        cu_str = ('cpu' if torch.version.cuda is None else
                  f'cu{torch.version.cuda.replace(".", "")}')
        python_version = f'py{sys.version_info.major}{sys.version_info.minor}{getattr(sys, "abiflags", "")}'
        build_folder = f'{python_version}_{cu_str}'

        root_extensions_directory = os.path.join(
            root_extensions_directory, build_folder)

    if verbose:
        print(f'Using {root_extensions_directory} as PyTorch extensions root...', file=sys.stderr)

    build_directory = os.path.join(root_extensions_directory, name)
    if not os.path.exists(build_directory):
        if verbose:
            print(f'Creating extension directory {build_directory}...', file=sys.stderr)
        # This is like mkdir -p, i.e. will also create parent directories.
        os.makedirs(build_directory, exist_ok=True)

    return build_directory


def _get_num_workers(verbose: bool) -> Optional[int]:
    max_jobs = os.environ.get('MAX_JOBS')
    if max_jobs is not None and max_jobs.isdigit():
        if verbose:
            print(f'Using envvar MAX_JOBS ({max_jobs}) as the number of workers...',
                  file=sys.stderr)
        return int(max_jobs)
    if verbose:
        print('Allowing ninja to set a default number of workers... '
              '(overridable by setting the environment variable MAX_JOBS=N)',
              file=sys.stderr)
    return None


def _get_vc_env(vc_arch: str) -> dict[str, str]:
    try:
        from setuptools import distutils
        return distutils._msvccompiler._get_vc_env(vc_arch)
    except AttributeError:
        from setuptools._distutils import _msvccompiler
        return _msvccompiler._get_vc_env(vc_arch)


def _run_ninja_build(build_directory: str, verbose: bool, error_prefix: str) -> None:
    command = ['ninja', '-v']
    num_workers = _get_num_workers(verbose)
    if num_workers is not None:
        command.extend(['-j', str(num_workers)])
    env = os.environ.copy()
    # Try to activate the vc env for the users
    if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' not in env:
        from setuptools import distutils

        plat_name = distutils.util.get_platform()
        plat_spec = PLAT_TO_VCVARS[plat_name]
        vc_env = {k.upper(): v for k, v in _get_vc_env(plat_spec).items()}
        for k, v in env.items():
            uk = k.upper()
            if uk not in vc_env:
                vc_env[uk] = v
        env = vc_env
    try:
        sys.stdout.flush()
        sys.stderr.flush()
        # Warning: don't pass stdout=None to subprocess.run to get output.
        # subprocess.run assumes that sys.__stdout__ has not been modified and
        # attempts to write to it by default.  However, when we call _run_ninja_build
        # from ahead-of-time cpp extensions, the following happens:
        # 1) If the stdout encoding is not utf-8, setuptools detachs __stdout__.
        #    https://github.com/pypa/setuptools/blob/7e97def47723303fafabe48b22168bbc11bb4821/setuptools/dist.py#L1110
        #    (it probably shouldn't do this)
        # 2) subprocess.run (on POSIX, with no stdout override) relies on
        #    __stdout__ not being detached:
        #    https://github.com/python/cpython/blob/c352e6c7446c894b13643f538db312092b351789/Lib/subprocess.py#L1214
        # To work around this, we pass in the fileno directly and hope that
        # it is valid.
        stdout_fileno = 1
        subprocess.run(
            command,
            stdout=stdout_fileno if verbose else subprocess.PIPE,
            stderr=subprocess.STDOUT,
            cwd=build_directory,
            check=True,
            env=env)
    except subprocess.CalledProcessError as e:
        # Python 2 and 3 compatible way of getting the error object.
        _, error, _ = sys.exc_info()
        # error.output contains the stdout and stderr of the build attempt.
        message = error_prefix
        # `error` is a CalledProcessError (which has an `output`) attribute, but
        # mypy thinks it's Optional[BaseException] and doesn't narrow
        if hasattr(error, 'output') and error.output:  # type: ignore[union-attr]
            message += f": {error.output.decode(*SUBPROCESS_DECODE_ARGS)}"  # type: ignore[union-attr]
        raise RuntimeError(message) from e


def _get_exec_path(module_name, path):
    if IS_WINDOWS and TORCH_LIB_PATH not in os.getenv('PATH', '').split(';'):
        torch_lib_in_path = any(
            os.path.exists(p) and os.path.samefile(p, TORCH_LIB_PATH)
            for p in os.getenv('PATH', '').split(';')
        )
        if not torch_lib_in_path:
            os.environ['PATH'] = f"{TORCH_LIB_PATH};{os.getenv('PATH', '')}"
    return os.path.join(path, f'{module_name}{EXEC_EXT}')


def _import_module_from_library(module_name, path, is_python_module):
    filepath = os.path.join(path, f"{module_name}{LIB_EXT}")
    if is_python_module:
        # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
        spec = importlib.util.spec_from_file_location(module_name, filepath)
        assert spec is not None
        module = importlib.util.module_from_spec(spec)
        assert isinstance(spec.loader, importlib.abc.Loader)
        spec.loader.exec_module(module)
        return module
    else:
        torch.ops.load_library(filepath)
        return filepath


def _write_ninja_file_to_build_library(path,
                                       name,
                                       sources,
                                       extra_cflags,
                                       extra_cuda_cflags,
                                       extra_sycl_cflags,
                                       extra_ldflags,
                                       extra_include_paths,
                                       with_cuda,
                                       with_sycl,
                                       is_standalone) -> None:
    extra_cflags = [flag.strip() for flag in extra_cflags]
    extra_cuda_cflags = [flag.strip() for flag in extra_cuda_cflags]
    extra_sycl_cflags = [flag.strip() for flag in extra_sycl_cflags]
    extra_ldflags = [flag.strip() for flag in extra_ldflags]
    extra_include_paths = [flag.strip() for flag in extra_include_paths]

    # Turn into absolute paths so we can emit them into the ninja build
    # file wherever it is.
    user_includes = [os.path.abspath(file) for file in extra_include_paths]

    # include_paths() gives us the location of torch/extension.h
    # TODO generalize with_cuda as specific device type.
    if with_cuda:
        system_includes = include_paths("cuda")
    else:
        system_includes = include_paths("cpu")
    # sysconfig.get_path('include') gives us the location of Python.h
    # Explicitly specify 'posix_prefix' scheme on non-Windows platforms to workaround error on some MacOS
    # installations where default `get_path` points to non-existing `/Library/Python/M.m/include` folder
    python_include_path = sysconfig.get_path('include', scheme='nt' if IS_WINDOWS else 'posix_prefix')
    if python_include_path is not None:
        system_includes.append(python_include_path)

    common_cflags = []
    if not is_standalone:
        common_cflags.append(f'-DTORCH_EXTENSION_NAME={name}')
        common_cflags.append('-DTORCH_API_INCLUDE_EXTENSION_H')

    common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]

    # Windows does not understand `-isystem` and quotes flags later.
    if IS_WINDOWS:
        common_cflags += [f'-I{include}' for include in user_includes + system_includes]
    else:
        common_cflags += [f'-I{shlex.quote(include)}' for include in user_includes]
        common_cflags += [f'-isystem {shlex.quote(include)}' for include in system_includes]

    common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]

    if IS_WINDOWS:
        cflags = common_cflags + COMMON_MSVC_FLAGS + ['/std:c++17'] + extra_cflags
        cflags = _nt_quote_args(cflags)
    else:
        cflags = common_cflags + ['-fPIC', '-std=c++17'] + extra_cflags

    if with_cuda and IS_HIP_EXTENSION:
        cuda_flags = ['-DWITH_HIP'] + cflags + COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS
        cuda_flags += extra_cuda_cflags
        cuda_flags += _get_rocm_arch_flags(cuda_flags)
    elif with_cuda:
        cuda_flags = common_cflags + COMMON_NVCC_FLAGS + _get_cuda_arch_flags()
        if IS_WINDOWS:
            for flag in COMMON_MSVC_FLAGS:
                cuda_flags = ['-Xcompiler', flag] + cuda_flags
            for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                cuda_flags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cuda_flags
            cuda_flags = cuda_flags + ['-std=c++17']
            cuda_flags = _nt_quote_args(cuda_flags)
            cuda_flags += _nt_quote_args(extra_cuda_cflags)
        else:
            cuda_flags += ['--compiler-options', "'-fPIC'"]
            cuda_flags += extra_cuda_cflags
            if not any(flag.startswith('-std=') for flag in cuda_flags):
                cuda_flags.append('-std=c++17')
            cc_env = os.getenv("CC")
            if cc_env is not None:
                cuda_flags = ['-ccbin', cc_env] + cuda_flags
    else:
        cuda_flags = None

    if with_sycl:
        sycl_cflags = cflags + _COMMON_SYCL_FLAGS
        sycl_cflags += extra_sycl_cflags
        _append_sycl_std_if_no_std_present(sycl_cflags)
        host_cflags = cflags
        # escaping quoted arguments to pass them thru SYCL compiler
        host_cflags = [item.replace('\\"', '\\\\"') for item in host_cflags]
        host_cflags = ' '.join(host_cflags)
        sycl_cflags += _wrap_sycl_host_flags(host_cflags)
        sycl_dlink_post_cflags = _SYCL_DLINK_FLAGS
    else:
        sycl_cflags = None
        sycl_dlink_post_cflags = None

    def object_file_path(source_file: str) -> str:
        # '/path/to/file.cpp' -> 'file'
        file_name = os.path.splitext(os.path.basename(source_file))[0]
        if _is_cuda_file(source_file) and with_cuda:
            # Use a different object filename in case a C++ and CUDA file have
            # the same filename but different extension (.cpp vs. .cu).
            target = f'{file_name}.cuda.o'
        elif _is_sycl_file(source_file) and with_sycl:
            target = f'{file_name}.sycl.o'
        else:
            target = f'{file_name}.o'
        return target

    objects = [object_file_path(src) for src in sources]
    ldflags = ([] if is_standalone else [SHARED_FLAG]) + extra_ldflags

    # The darwin linker needs explicit consent to ignore unresolved symbols.
    if IS_MACOS:
        ldflags.append('-undefined dynamic_lookup')
    elif IS_WINDOWS:
        ldflags = _nt_quote_args(ldflags)

    ext = EXEC_EXT if is_standalone else LIB_EXT
    library_target = f'{name}{ext}'

    _write_ninja_file(
        path=path,
        cflags=cflags,
        post_cflags=None,
        cuda_cflags=cuda_flags,
        cuda_post_cflags=None,
        cuda_dlink_post_cflags=None,
        sycl_cflags=sycl_cflags,
        sycl_post_cflags=[],
        sycl_dlink_post_cflags=sycl_dlink_post_cflags,
        sources=sources,
        objects=objects,
        ldflags=ldflags,
        library_target=library_target,
        with_cuda=with_cuda,
        with_sycl=with_sycl)


def _write_ninja_file(path,
                      cflags,
                      post_cflags,
                      cuda_cflags,
                      cuda_post_cflags,
                      cuda_dlink_post_cflags,
                      sycl_cflags,
                      sycl_post_cflags,
                      sycl_dlink_post_cflags,
                      sources,
                      objects,
                      ldflags,
                      library_target,
                      with_cuda,
                      with_sycl) -> None:
    r"""Write a ninja file that does the desired compiling and linking.

    `path`: Where to write this file
    `cflags`: list of flags to pass to $cxx. Can be None.
    `post_cflags`: list of flags to append to the $cxx invocation. Can be None.
    `cuda_cflags`: list of flags to pass to $nvcc. Can be None.
    `cuda_post_cflags`: list of flags to append to the $nvcc invocation. Can be None.
    `cuda_dlink_post_cflags`: list of flags to append to the $nvcc device code link invocation. Can be None.
    `sycl_cflags`: list of flags to pass to SYCL compiler. Can be None.
    `sycl_post_cflags`: list of flags to append to the SYCL compiler invocation. Can be None.
    `sycl_dlink_post_cflags`: list of flags to append to the SYCL compiler device code link invocation. Can be None.
e.
    `sources`: list of paths to source files
    `objects`: list of desired paths to objects, one per source.
    `ldflags`: list of flags to pass to linker. Can be None.
    `library_target`: Name of the output library. Can be None; in that case,
                      we do no linking.
    `with_cuda`: If we should be compiling with CUDA.
    """
    def sanitize_flags(flags):
        if flags is None:
            return []
        else:
            return [flag.strip() for flag in flags]

    cflags = sanitize_flags(cflags)
    post_cflags = sanitize_flags(post_cflags)
    cuda_cflags = sanitize_flags(cuda_cflags)
    cuda_post_cflags = sanitize_flags(cuda_post_cflags)
    cuda_dlink_post_cflags = sanitize_flags(cuda_dlink_post_cflags)
    sycl_cflags = sanitize_flags(sycl_cflags)
    sycl_post_cflags = sanitize_flags(sycl_post_cflags)
    sycl_dlink_post_cflags = sanitize_flags(sycl_dlink_post_cflags)
    ldflags = sanitize_flags(ldflags)

    # Sanity checks...
    assert len(sources) == len(objects)
    assert len(sources) > 0

    compiler = get_cxx_compiler()

    # Version 1.3 is required for the `deps` directive.
    config = ['ninja_required_version = 1.3']
    config.append(f'cxx = {compiler}')
    if with_cuda or cuda_dlink_post_cflags:
        if "PYTORCH_NVCC" in os.environ:
            nvcc = os.getenv("PYTORCH_NVCC")    # user can set nvcc compiler with ccache using the environment variable here
        else:
            if IS_HIP_EXTENSION:
                nvcc = _join_rocm_home('bin', 'hipcc')
            else:
                nvcc = _join_cuda_home('bin', 'nvcc')
        config.append(f'nvcc = {nvcc}')
    if with_sycl or sycl_dlink_post_cflags:
        sycl = 'icx' if IS_WINDOWS else 'icpx'
        config.append(f'sycl = {sycl}')

    if IS_HIP_EXTENSION:
        post_cflags = COMMON_HIP_FLAGS + post_cflags
    flags = [f'cflags = {" ".join(cflags)}']
    flags.append(f'post_cflags = {" ".join(post_cflags)}')
    if with_cuda:
        flags.append(f'cuda_cflags = {" ".join(cuda_cflags)}')
        flags.append(f'cuda_post_cflags = {" ".join(cuda_post_cflags)}')
    flags.append(f'cuda_dlink_post_cflags = {" ".join(cuda_dlink_post_cflags)}')
    if with_sycl:
        flags.append(f'sycl_cflags = {" ".join(sycl_cflags)}')
        flags.append(f'sycl_post_cflags = {" ".join(sycl_post_cflags)}')
    flags.append(f'sycl_dlink_post_cflags = {" ".join(sycl_dlink_post_cflags)}')
    flags.append(f'ldflags = {" ".join(ldflags)}')

    # Turn into absolute paths so we can emit them into the ninja build
    # file wherever it is.
    sources = [os.path.abspath(file) for file in sources]

    # See https://ninja-build.org/build.ninja.html for reference.
    compile_rule = ['rule compile']
    if IS_WINDOWS:
        compile_rule.append(
            '  command = cl /showIncludes $cflags -c $in /Fo$out $post_cflags')
        compile_rule.append('  deps = msvc')
    else:
        compile_rule.append(
            '  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags')
        compile_rule.append('  depfile = $out.d')
        compile_rule.append('  deps = gcc')

    if with_cuda:
        cuda_compile_rule = ['rule cuda_compile']
        nvcc_gendeps = ''
        # --generate-dependencies-with-compile is not supported by ROCm
        # Nvcc flag `--generate-dependencies-with-compile` is not supported by sccache, which may increase build time.
        if torch.version.cuda is not None and os.getenv('TORCH_EXTENSION_SKIP_NVCC_GEN_DEPENDENCIES', '0') != '1':
            cuda_compile_rule.append('  depfile = $out.d')
            cuda_compile_rule.append('  deps = gcc')
            # Note: non-system deps with nvcc are only supported
            # on Linux so use --generate-dependencies-with-compile
            # to make this work on Windows too.
            nvcc_gendeps = '--generate-dependencies-with-compile --dependency-output $out.d'
        cuda_compile_rule.append(
            f'  command = $nvcc {nvcc_gendeps} $cuda_cflags -c $in -o $out $cuda_post_cflags')

    if with_sycl:
        sycl_compile_rule = ['rule sycl_compile']
        # SYCL compiler does not recognize .sycl extension automatically,
        # so we pass '-x c++' explicitly notifying compiler of file format
        sycl_compile_rule.append(
            '  command = $sycl $sycl_cflags -c -x c++ $in -o $out $sycl_post_cflags')


    # Emit one build rule per source to enable incremental build.
    build = []
    for source_file, object_file in zip(sources, objects):
        is_cuda_source = _is_cuda_file(source_file) and with_cuda
        is_sycl_source = _is_sycl_file(source_file) and with_sycl
        if is_cuda_source:
            rule = 'cuda_compile'
        elif is_sycl_source:
            rule = 'sycl_compile'
        else:
            rule = 'compile'
        if IS_WINDOWS:
            source_file = source_file.replace(':', '$:')
            object_file = object_file.replace(':', '$:')
        source_file = source_file.replace(" ", "$ ")
        object_file = object_file.replace(" ", "$ ")
        build.append(f'build {object_file}: {rule} {source_file}')

    if cuda_dlink_post_cflags:
        cuda_devlink_out = os.path.join(os.path.dirname(objects[0]), 'dlink.o')
        cuda_devlink_rule = ['rule cuda_devlink']
        cuda_devlink_rule.append('  command = $nvcc $in -o $out $cuda_dlink_post_cflags')
        cuda_devlink = [f'build {cuda_devlink_out}: cuda_devlink {" ".join(objects)}']
        objects += [cuda_devlink_out]
    else:
        cuda_devlink_rule, cuda_devlink = [], []

    if sycl_dlink_post_cflags:
        sycl_devlink_out = os.path.join(os.path.dirname(objects[0]), 'sycl_dlink.o')
        sycl_devlink_rule = ['rule sycl_devlink']
        sycl_devlink_rule.append('  command = $sycl $in -o $out $sycl_dlink_post_cflags')
        sycl_devlink = [f'build {sycl_devlink_out}: sycl_devlink {" ".join(objects)}']
        objects += [sycl_devlink_out]
    else:
        sycl_devlink_rule, sycl_devlink = [], []

    if library_target is not None:
        link_rule = ['rule link']
        if IS_WINDOWS:
            cl_paths = subprocess.check_output(['where',
                                                'cl']).decode(*SUBPROCESS_DECODE_ARGS).split('\r\n')
            if len(cl_paths) >= 1:
                cl_path = os.path.dirname(cl_paths[0]).replace(':', '$:')
            else:
                raise RuntimeError("MSVC is required to load C++ extensions")
            link_rule.append(f'  command = "{cl_path}/link.exe" $in /nologo $ldflags /out:$out')
        else:
            link_rule.append('  command = $cxx $in $ldflags -o $out')

        link = [f'build {library_target}: link {" ".join(objects)}']

        default = [f'default {library_target}']
    else:
        link_rule, link, default = [], [], []

    # 'Blocks' should be separated by newlines, for visual benefit.
    blocks = [config, flags, compile_rule]
    if with_cuda:
        blocks.append(cuda_compile_rule)  # type: ignore[possibly-undefined]
    if with_sycl:
        blocks.append(sycl_compile_rule)  # type: ignore[possibly-undefined]
    blocks += [cuda_devlink_rule, sycl_devlink_rule, link_rule, build, cuda_devlink, sycl_devlink, link, default]
    content = "\n\n".join("\n".join(b) for b in blocks)
    # Ninja requires a new lines at the end of the .ninja file
    content += "\n"
    _maybe_write(path, content)

def _join_cuda_home(*paths) -> str:
    """
    Join paths with CUDA_HOME, or raises an error if it CUDA_HOME is not set.

    This is basically a lazy way of raising an error for missing $CUDA_HOME
    only once we need to get any CUDA-specific path.
    """
    if CUDA_HOME is None:
        raise OSError('CUDA_HOME environment variable is not set. '
                      'Please set it to your CUDA install root.')
    return os.path.join(CUDA_HOME, *paths)


def _is_cuda_file(path: str) -> bool:
    valid_ext = ['.cu', '.cuh']
    if IS_HIP_EXTENSION:
        valid_ext.append('.hip')
    return os.path.splitext(path)[1] in valid_ext

def _is_sycl_file(path: str) -> bool:
    valid_ext = ['.sycl']
    return os.path.splitext(path)[1] in valid_ext