File size: 62,263 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 |
"""
Contains utility functions for working with nested python data structures.
A *pytree* is Python nested data structure. It is a tree in the sense that
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
Python values. Furthermore, a pytree should not contain reference cycles.
pytrees are useful for working with nested collections of Tensors. For example,
one can use `tree_map` to map a function over all Tensors inside some nested
collection of Tensors and `tree_leaves` to get a flat list of all Tensors
inside some nested collection. pytrees are helpful for implementing nested
collection support for PyTorch APIs.
This pytree implementation is not very performant due to Python overhead
To improve the performance we can move parts of the implementation to C++.
"""
import dataclasses
import functools
import importlib
import importlib.metadata
import json
import sys
import threading
import types
import warnings
from collections import defaultdict, deque, namedtuple, OrderedDict
from collections.abc import Hashable, Iterable, Mapping, Sequence
from enum import Enum
from typing import (
Any,
Callable,
cast,
Generic,
Optional,
overload,
Protocol,
TypeVar,
Union,
)
from typing_extensions import deprecated, NamedTuple
__all__ = [
"PyTree",
"Context",
"FlattenFunc",
"UnflattenFunc",
"DumpableContext",
"ToDumpableContextFn",
"FromDumpableContextFn",
"TreeSpec",
"LeafSpec",
"keystr",
"key_get",
"register_pytree_node",
"tree_flatten",
"tree_flatten_with_path",
"tree_unflatten",
"tree_iter",
"tree_leaves",
"tree_leaves_with_path",
"tree_structure",
"tree_map",
"tree_map_with_path",
"tree_map_",
"tree_map_only",
"tree_map_only_",
"tree_all",
"tree_any",
"tree_all_only",
"tree_any_only",
"treespec_dumps",
"treespec_loads",
"treespec_pprint",
]
T = TypeVar("T")
S = TypeVar("S")
U = TypeVar("U")
R = TypeVar("R")
DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL = 1
NO_SERIALIZED_TYPE_NAME_FOUND = "NO_SERIALIZED_TYPE_NAME_FOUND"
class KeyEntry(Protocol):
def __hash__(self) -> int:
...
def __eq__(self, other: object) -> bool:
...
def __str__(self) -> str:
...
def get(self, parent: Any) -> Any:
...
class EnumEncoder(json.JSONEncoder):
def default(self, obj: object) -> str:
if isinstance(obj, Enum):
return obj.value # type: ignore[no-any-return]
return super().default(obj) # type: ignore[no-any-return]
Context = Any
PyTree = Any
FlattenFunc = Callable[[PyTree], tuple[list[Any], Context]]
UnflattenFunc = Callable[[Iterable[Any], Context], PyTree]
DumpableContext = Any # Any json dumpable text
ToDumpableContextFn = Callable[[Context], DumpableContext]
FromDumpableContextFn = Callable[[DumpableContext], Context]
ToStrFunc = Callable[["TreeSpec", list[str]], str]
MaybeFromStrFunc = Callable[[str], Optional[tuple[Any, Context, str]]]
KeyPath = tuple[KeyEntry, ...]
FlattenWithKeysFunc = Callable[[PyTree], tuple[list[tuple[KeyEntry, Any]], Any]]
# A NodeDef holds two callables:
# - flatten_fn should take the collection and return a flat list of values.
# It can also return some context that is used in reconstructing the
# collection.
# - unflatten_fn should take a flat list of values and some context
# (returned by flatten_fn). It returns the collection by reconstructing
# it from the list and the context.
# - flatten_with_keys_fn, which is a callable that takes a
# pytree and returns a list of (keypath, value) pairs and a context.
class NodeDef(NamedTuple):
type: type[Any]
flatten_fn: FlattenFunc
unflatten_fn: UnflattenFunc
flatten_with_keys_fn: Optional[FlattenWithKeysFunc]
_NODE_REGISTRY_LOCK = threading.RLock()
SUPPORTED_NODES: dict[type[Any], NodeDef] = {}
# _SerializeNodeDef holds the following:
# - typ: the type of the node (e.g., "Dict", "List", etc)
# - serialized_type_name: the fully qualified name of the type, e.g. "collections.OrderedDict"
# - to_dumpable_context takes a TreeSpec, and returns a serialized string format of the
# context, and the version number
# - from_dumpable_context takes in a string representation of the context, and the
# version, and returns the deserialized context
class _SerializeNodeDef(NamedTuple):
typ: type[Any]
serialized_type_name: str
to_dumpable_context: Optional[ToDumpableContextFn]
from_dumpable_context: Optional[FromDumpableContextFn]
SUPPORTED_SERIALIZED_TYPES: dict[type[Any], _SerializeNodeDef] = {}
SERIALIZED_TYPE_TO_PYTHON_TYPE: dict[str, type[Any]] = {}
# NB: we try really hard to not import _cxx_pytree (which depends on optree)
# as much as possible. This is for isolation: a user who is not using C++ pytree
# shouldn't pay for it, and it helps makes things like cpython upgrades easier.
try:
_optree_version = importlib.metadata.version("optree")
except importlib.metadata.PackageNotFoundError:
# No optree package found
_cxx_pytree_dynamo_traceable = _cxx_pytree_exists = False
else:
from torch._vendor.packaging.version import Version
# Keep this in sync with torch.utils._cxx_pytree!
if Version(_optree_version) < Version("0.13.0"):
# optree package less than our required minimum version.
# Pretend the optree package doesn't exist.
# NB: We will raise ImportError if the user directly tries to
# `import torch.utils._cxx_pytree` (look in that file for the check).
_cxx_pytree_dynamo_traceable = _cxx_pytree_exists = False
else:
_cxx_pytree_dynamo_traceable = _cxx_pytree_exists = True
_cxx_pytree_imported = False
_cxx_pytree_pending_imports: list[Any] = []
def register_pytree_node(
cls: type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""Register a container-like type as pytree node.
Args:
cls: the type to register
flatten_fn: A callable that takes a pytree and returns a flattened
representation of the pytree and additional context to represent the
flattened pytree.
unflatten_fn: A callable that takes a flattened version of the pytree,
additional context, and returns an unflattened pytree.
serialized_type_name: A keyword argument used to specify the fully qualified
name used when serializing the tree spec.
to_dumpable_context: An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable
representation. This is used for json serialization, which is being
used in torch.export right now.
from_dumpable_context: An optional keyword argument to custom specify how
to convert the custom json dumpable representation of the context
back to the original context. This is used for json deserialization,
which is being used in torch.export right now.
flatten_with_keys_fn: An optional keyword argument to specify how to
access each pytree leaf's keypath when flattening and tree-mapping.
Like ``flatten_fn``, but in place of a List[leaf], it should return
a List[(keypath, leaf)].
"""
with _NODE_REGISTRY_LOCK:
if cls in SUPPORTED_NODES:
raise ValueError(f"{cls} is already registered as pytree node.")
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
flatten_with_keys_fn=flatten_with_keys_fn,
)
if not _cxx_pytree_exists:
return
if _cxx_pytree_imported:
from . import _cxx_pytree as cxx
cxx._private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
else:
args = (cls, flatten_fn, unflatten_fn)
kwargs = {
"serialized_type_name": serialized_type_name,
"to_dumpable_context": to_dumpable_context,
"from_dumpable_context": from_dumpable_context,
}
_cxx_pytree_pending_imports.append((args, kwargs))
def register_dataclass(cls: type[Any]) -> None:
"""Registers a ``dataclasses.dataclass`` type as a pytree node.
This is a simpler API than :func:`register_pytree_node` for registering
a dataclass.
Args:
cls: the dataclass type to register
Example:
>>> from torch import Tensor
>>> from dataclasses import dataclass
>>> import torch.utils._pytree as pytree
>>>
>>> @dataclass
>>> class Point:
>>> x: Tensor
>>> y: Tensor
>>>
>>> pytree.register_dataclass(Point)
>>>
>>> point = Point(torch.tensor(0), torch.tensor(1))
>>> point = pytree.tree_map(lambda x: x + 1, point)
>>> assert torch.allclose(point.x, torch.tensor(1))
>>> assert torch.allclose(point.y, torch.tensor(2))
"""
import torch.export
# Eventually we should move the export code here. It is not specific to export,
# aside from the serialization pieces.
torch.export.register_dataclass(cls)
CONSTANT_NODES: set[type] = set()
def register_constant(cls: type[Any]) -> None:
"""Registers a type as a pytree node with no leaves.
In a :func:`torch.compile` region, if instances of these types get passed to
:func:`torch._dynamo.nonstrict_trace`-ed function, they treated as a
constant (sometimes referred to as "static"):
1. if the instance object existed before the :func:`torch.compile` region,
we _assume_ no mutation will happen to it inside the :func:`torch.compile`
region, require that it has non-default `__eq__` and `__hash__` methods, and
we guard on the instance based on its `__eq__` method, i.e., if a new
instance fails to match any instances from the previous compilations,
:func:`torch.compile` will recompile the function using the new instance.
2. else if the instance object is created inside the :func:`torch.compile`
region, we currently don't support using it in a
:func:`torch._dynamo.nonstrict_trace`-ed function.
In general, if your class holds Tensors or dynamic int/float/bool (values that
may change from run-to-run of a function being compiled), then you probably
do not want to register it as a constant.
Otherwise if you want to pass instance of a class to a
:func:`torch._dynamo.nonstrict_trace`-ed function, but you either can't use
:func:`register_pytree_node` on the class, or the class is "constant" enough
that you don't want to bother using :func:`register_pytree_node`, you should
consider using this function.
Args:
cls: the type to register as a constant. This type must be hashable.
Example:
>>> from dataclasses import dataclass
>>> import torch.utils._pytree as pytree
>>>
>>> @dataclass(frozen=True)
>>> class Config:
>>> norm: str
>>>
>>> pytree.register_constant(Config)
>>>
>>> config = Config("l2")
>>> values, spec = pytree.tree_flatten(config)
>>> assert len(values) == 0
"""
if cls.__eq__ is object.__eq__: # type: ignore[comparison-overlap]
raise TypeError(
"register_constant(cls) expects `cls` to have a non-default `__eq__` implementation."
)
# Class with a custom `__eq__` without `__hash__` won't inherit the default
# `__hash__` from object; see https://stackoverflow.com/a/1608907.
if cls.__hash__ is None: # type: ignore[comparison-overlap]
raise TypeError(
"register_constant(cls) expects `cls` to have a non-default `__hash__` implementation."
)
def _flatten(x): # type: ignore[no-untyped-def]
return [], ConstantNode(x)
def _unflatten(_, context): # type: ignore[no-untyped-def]
return context.value
def _flatten_with_keys(x): # type: ignore[no-untyped-def]
return [], ConstantNode(x)
with _NODE_REGISTRY_LOCK:
_private_register_pytree_node(
cls,
_flatten,
_unflatten,
flatten_with_keys_fn=_flatten_with_keys,
)
CONSTANT_NODES.add(cls)
def is_constant_class(cls: type[Any]) -> bool:
return isinstance(cls, type) and cls in CONSTANT_NODES
@dataclasses.dataclass(frozen=True)
class ConstantNode:
value: Any
def _is_constant_holder(spec: "TreeSpec") -> bool:
"""Checks if the spec is from a pytree registered with register_constant"""
return isinstance(spec.context, ConstantNode)
def _retrieve_constant(spec: "TreeSpec") -> Any:
"""Given a spec from a pytree registered with register_constant, retrieves the constant"""
assert _is_constant_holder(spec)
return tree_unflatten([], spec)
def _register_namedtuple(
cls: type[Any],
*,
serialized_type_name: str,
) -> None:
"""
Registers a namedtuple as a valid pytree node. By default namedtuples are
valid pytree nodes, but they are not serializable. This API provides the
argument `serialized_type_name` which allows these namedtuples to be
serialized.
Args:
cls: the dataclass type to register
serialized_type_name: The serialized name for the dataclass. This is
required if you want to serialize the pytree TreeSpec containing this
namedtuple.
"""
_private_register_pytree_node(
cls,
_namedtuple_flatten,
_namedtuple_unflatten,
serialized_type_name=serialized_type_name,
to_dumpable_context=_namedtuple_serialize,
from_dumpable_context=_namedtuple_deserialize,
flatten_with_keys_fn=_namedtuple_flatten_with_keys,
)
@deprecated(
"`torch.utils._pytree._register_pytree_node` is deprecated. "
"Please use `torch.utils._pytree.register_pytree_node` instead.",
category=FutureWarning,
)
def _register_pytree_node(
cls: type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
to_str_fn: Optional[ToStrFunc] = None, # deprecated
maybe_from_str_fn: Optional[MaybeFromStrFunc] = None, # deprecated
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""Register a container-like type as pytree node for the Python pytree only.
Args:
cls: the type to register
flatten_fn: A callable that takes a pytree and returns a flattened
representation of the pytree and additional context to represent the
flattened pytree.
unflatten_fn: A callable that takes a flattened version of the pytree,
additional context, and returns an unflattened pytree.
serialized_type_name: A keyword argument used to specify the fully qualified
name used when serializing the tree spec.
to_dumpable_context: An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable
representation. This is used for json serialization, which is being
used in torch.export right now.
from_dumpable_context: An optional keyword argument to custom specify how
to convert the custom json dumpable representation of the context
back to the original context. This is used for json deserialization,
which is being used in torch.export right now.
flatten_with_keys_fn: An optional keyword argument to specify how to
access each pytree leaf's keypath when flattening and tree-mapping.
Like ``flatten_fn``, but in place of a List[leaf], it should return
a List[(keypath, leaf)].
"""
if to_str_fn is not None or maybe_from_str_fn is not None:
warnings.warn(
"`to_str_fn` and `maybe_from_str_fn` is deprecated. "
"Please use `to_dumpable_context` and `from_dumpable_context` instead.",
FutureWarning,
stacklevel=2,
)
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
flatten_with_keys_fn=flatten_with_keys_fn,
)
def _deregister_pytree_node(
cls: type[Any],
) -> None:
"""This is an internal function that is used to deregister a pytree node type
for the Python pytree only. This should be only used inside PyTorch.
"""
with _NODE_REGISTRY_LOCK:
del SUPPORTED_NODES[cls]
node_def = SUPPORTED_SERIALIZED_TYPES[cls]
del SERIALIZED_TYPE_TO_PYTHON_TYPE[node_def.serialized_type_name]
del SUPPORTED_SERIALIZED_TYPES[cls]
CONSTANT_NODES.discard(cls)
def _private_register_pytree_node(
cls: type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""This is an internal function that is used to register a pytree node type
for the Python pytree only. End-users should use :func:`register_pytree_node`
instead.
"""
with _NODE_REGISTRY_LOCK:
if cls in SUPPORTED_NODES:
# TODO: change this warning to an error after OSS/internal stabilize
warnings.warn(
f"{cls} is already registered as pytree node. "
"Overwriting the previous registration.",
)
node_def = NodeDef(cls, flatten_fn, unflatten_fn, flatten_with_keys_fn)
SUPPORTED_NODES[cls] = node_def
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
raise ValueError(
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
"be None or registered."
)
if serialized_type_name is None:
serialized_type_name = NO_SERIALIZED_TYPE_NAME_FOUND
serialize_node_def = _SerializeNodeDef(
cls,
serialized_type_name,
to_dumpable_context,
from_dumpable_context,
)
SUPPORTED_SERIALIZED_TYPES[cls] = serialize_node_def
SERIALIZED_TYPE_TO_PYTHON_TYPE[serialized_type_name] = cls
@dataclasses.dataclass(frozen=True)
class SequenceKey(Generic[T]):
idx: int
def __str__(self) -> str:
return f"[{self.idx!r}]"
def get(self, sequence: Sequence[T]) -> T:
return sequence[self.idx]
K = TypeVar("K", bound=Hashable)
@dataclasses.dataclass(frozen=True)
class MappingKey(Generic[K, T]):
key: K
def __str__(self) -> str:
return f"[{self.key!r}]"
def get(self, mapping: Mapping[K, T]) -> T:
return mapping[self.key]
@dataclasses.dataclass(frozen=True)
class GetAttrKey:
name: str
def __str__(self) -> str:
return f".{self.name}"
def get(self, obj: Any) -> Any:
return getattr(obj, self.name)
def _tuple_flatten(d: tuple[T, ...]) -> tuple[list[T], Context]:
return list(d), None
def _tuple_flatten_with_keys(
d: tuple[T, ...]
) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _tuple_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _tuple_unflatten(values: Iterable[T], context: Context) -> tuple[T, ...]:
return tuple(values)
def _list_flatten(d: list[T]) -> tuple[list[T], Context]:
return d, None
def _list_flatten_with_keys(d: list[T]) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _list_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _list_unflatten(values: Iterable[T], context: Context) -> list[T]:
return list(values)
def _dict_flatten(d: dict[Any, T]) -> tuple[list[T], Context]:
return list(d.values()), list(d.keys())
def _dict_flatten_with_keys(
d: dict[Any, T]
) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _dict_flatten(d)
return [(MappingKey(k), v) for k, v in zip(context, values)], context
def _dict_unflatten(values: Iterable[T], context: Context) -> dict[Any, T]:
return dict(zip(context, values))
def _namedtuple_flatten(d: NamedTuple) -> tuple[list[Any], Context]:
return list(d), type(d)
def _namedtuple_flatten_with_keys(
d: NamedTuple,
) -> tuple[list[tuple[KeyEntry, Any]], Context]:
values, context = _namedtuple_flatten(d)
return (
[(GetAttrKey(field), v) for field, v in zip(context._fields, values)],
context,
)
def _namedtuple_unflatten(values: Iterable[T], context: Context) -> NamedTuple:
return cast(NamedTuple, context(*values))
def _namedtuple_serialize(context: Context) -> DumpableContext:
if context not in SUPPORTED_SERIALIZED_TYPES:
raise NotImplementedError(
f"Can't serialize TreeSpec of namedtuple class {context} because we "
"didn't register a serializated_type_name. Please register using "
"`_register_namedtuple`."
)
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[context]
serialized_type_name = serialize_node_def.serialized_type_name
if serialized_type_name == NO_SERIALIZED_TYPE_NAME_FOUND:
raise NotImplementedError(
f"Can't serialize TreeSpec of namedtuple class {context} because we "
"couldn't find a serializated_type_name. Please register using "
"`_register_namedtuple`."
)
return serialized_type_name
def _namedtuple_deserialize(dumpable_context: DumpableContext) -> Context:
if dumpable_context not in SERIALIZED_TYPE_TO_PYTHON_TYPE:
raise NotImplementedError(
f"Can't deserialize TreeSpec of namedtuple class {dumpable_context} "
"because we couldn't find a serializated name."
)
typ = SERIALIZED_TYPE_TO_PYTHON_TYPE[dumpable_context]
return typ
def _ordereddict_flatten(d: OrderedDict[Any, T]) -> tuple[list[T], Context]:
return list(d.values()), list(d.keys())
def _ordereddict_flatten_with_keys(
d: OrderedDict[Any, T]
) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _ordereddict_flatten(d)
return [(MappingKey(k), v) for k, v in zip(context, values)], context
def _ordereddict_unflatten(
values: Iterable[T],
context: Context,
) -> OrderedDict[Any, T]:
return OrderedDict((key, value) for key, value in zip(context, values))
_odict_flatten = _ordereddict_flatten
_odict_unflatten = _ordereddict_unflatten
def _defaultdict_flatten(d: defaultdict[Any, T]) -> tuple[list[T], Context]:
values, dict_context = _dict_flatten(d)
return values, [d.default_factory, dict_context]
def _defaultdict_flatten_with_keys(
d: defaultdict[Any, T]
) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _defaultdict_flatten(d)
_, dict_context = context
return [(MappingKey(k), v) for k, v in zip(dict_context, values)], context
def _defaultdict_unflatten(
values: Iterable[T],
context: Context,
) -> defaultdict[Any, T]:
default_factory, dict_context = context
return defaultdict(default_factory, _dict_unflatten(values, dict_context))
def _defaultdict_serialize(context: Context) -> DumpableContext:
default_factory, dict_context = context
json_defaultdict = {
"default_factory_module": default_factory.__module__,
"default_factory_name": default_factory.__qualname__,
"dict_context": dict_context,
}
return json_defaultdict
def _defaultdict_deserialize(dumpable_context: DumpableContext) -> Context:
assert isinstance(dumpable_context, dict)
assert set(dumpable_context) == {
"default_factory_module",
"default_factory_name",
"dict_context",
}
default_factory_module = dumpable_context["default_factory_module"]
default_factory_name = dumpable_context["default_factory_name"]
assert isinstance(default_factory_module, str)
assert isinstance(default_factory_name, str)
module = importlib.import_module(default_factory_module)
default_factory = getattr(module, default_factory_name)
dict_context = dumpable_context["dict_context"]
return [default_factory, dict_context]
def _deque_flatten(d: deque[T]) -> tuple[list[T], Context]:
return list(d), d.maxlen
def _deque_flatten_with_keys(
d: deque[T],
) -> tuple[list[tuple[KeyEntry, T]], Context]:
values, context = _deque_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _deque_unflatten(values: Iterable[T], context: Context) -> deque[T]:
return deque(values, maxlen=context)
_private_register_pytree_node(
tuple,
_tuple_flatten,
_tuple_unflatten,
serialized_type_name="builtins.tuple",
flatten_with_keys_fn=_tuple_flatten_with_keys,
)
_private_register_pytree_node(
list,
_list_flatten,
_list_unflatten,
serialized_type_name="builtins.list",
flatten_with_keys_fn=_list_flatten_with_keys,
)
_private_register_pytree_node(
dict,
_dict_flatten,
_dict_unflatten,
serialized_type_name="builtins.dict",
flatten_with_keys_fn=_dict_flatten_with_keys,
)
_private_register_pytree_node(
namedtuple, # type: ignore[arg-type]
_namedtuple_flatten,
_namedtuple_unflatten,
serialized_type_name="collections.namedtuple",
to_dumpable_context=_namedtuple_serialize,
from_dumpable_context=_namedtuple_deserialize,
flatten_with_keys_fn=_namedtuple_flatten_with_keys,
)
_private_register_pytree_node(
OrderedDict,
_ordereddict_flatten,
_ordereddict_unflatten,
serialized_type_name="collections.OrderedDict",
flatten_with_keys_fn=_ordereddict_flatten_with_keys,
)
_private_register_pytree_node(
defaultdict,
_defaultdict_flatten,
_defaultdict_unflatten,
serialized_type_name="collections.defaultdict",
to_dumpable_context=_defaultdict_serialize,
from_dumpable_context=_defaultdict_deserialize,
flatten_with_keys_fn=_defaultdict_flatten_with_keys,
)
_private_register_pytree_node(
deque,
_deque_flatten,
_deque_unflatten,
serialized_type_name="collections.deque",
flatten_with_keys_fn=_deque_flatten_with_keys,
)
STANDARD_DICT_TYPES: frozenset[type] = frozenset(
{dict, OrderedDict, defaultdict},
)
BUILTIN_TYPES: frozenset[type] = frozenset(
{tuple, list, dict, namedtuple, OrderedDict, defaultdict, deque}, # type: ignore[arg-type]
)
# h/t https://stackoverflow.com/questions/2166818/how-to-check-if-an-object-is-an-instance-of-a-namedtuple
def _is_namedtuple_instance(tree: Any) -> bool:
typ = type(tree)
bases = typ.__bases__
if len(bases) != 1 or bases[0] != tuple:
return False
fields = getattr(typ, "_fields", None)
if not isinstance(fields, tuple):
return False
return all(type(entry) == str for entry in fields)
def _get_node_type(tree: Any) -> Any:
if _is_namedtuple_instance(tree):
return namedtuple
return type(tree)
# A leaf is defined as anything that is not a Node.
def _is_leaf(tree: PyTree, is_leaf: Optional[Callable[[PyTree], bool]] = None) -> bool:
return (is_leaf is not None and is_leaf(tree)) or _get_node_type(
tree
) not in SUPPORTED_NODES
# A TreeSpec represents the structure of a pytree. It holds:
# "type": the type of root Node of the pytree
# context: some context that is useful in unflattening the pytree
# children_specs: specs for each child of the root Node
# num_leaves: the number of leaves
@dataclasses.dataclass(init=True, frozen=True, eq=True, repr=False)
class TreeSpec:
type: Any
context: Context
children_specs: list["TreeSpec"]
num_nodes: int = dataclasses.field(init=False)
num_leaves: int = dataclasses.field(init=False)
num_children: int = dataclasses.field(init=False)
def __post_init__(self) -> None:
num_nodes = sum((spec.num_nodes for spec in self.children_specs), start=1)
num_leaves = sum(spec.num_leaves for spec in self.children_specs)
num_children = len(self.children_specs)
object.__setattr__(self, "num_nodes", num_nodes)
object.__setattr__(self, "num_leaves", num_leaves)
object.__setattr__(self, "num_children", num_children)
def __repr__(self, indent: int = 0) -> str:
repr_prefix: str = f"TreeSpec({self.type.__name__}, {self.context}, ["
children_specs_str: str = ""
if self.num_children > 0:
indent += 2
children_specs_str += self.children_specs[0].__repr__(indent)
children_specs_str += "," if self.num_children > 1 else ""
children_specs_str += ",".join(
[
"\n" + " " * indent + child.__repr__(indent)
for child in self.children_specs[1:]
]
)
repr_suffix: str = f"{children_specs_str}])"
return repr_prefix + repr_suffix
def __eq__(self, other: PyTree) -> bool:
if self is other:
return True
elif other.__class__ is self.__class__:
if str(self.type) != str(other.type):
return False
if self.context != other.context:
return False
elif self.children_specs != other.children_specs:
return False
return True
return NotImplemented
def is_leaf(self) -> bool:
return self.num_nodes == 1 and self.num_leaves == 1
def flatten_up_to(self, tree: PyTree) -> list[PyTree]:
def helper(treespec: TreeSpec, tree: PyTree, subtrees: list[PyTree]) -> None:
if treespec.is_leaf():
subtrees.append(tree)
return
node_type = _get_node_type(tree)
if treespec.type not in BUILTIN_TYPES:
# Always require custom node types to match exactly
if node_type != treespec.type:
raise ValueError(
f"Type mismatch; "
f"expected {treespec.type!r}, but got {node_type!r}.",
)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
children, context = flatten_fn(tree)
if len(children) != treespec.num_children:
raise ValueError(
f"Node arity mismatch; "
f"expected {treespec.num_children}, but got {len(children)}.",
)
if context != treespec.context:
raise ValueError(
f"Node context mismatch for custom node type {treespec.type!r}.",
)
else:
# For builtin dictionary types, we allow some flexibility
# Otherwise, we require exact matches
both_standard_dict = (
treespec.type in STANDARD_DICT_TYPES
and node_type in STANDARD_DICT_TYPES
)
if not both_standard_dict and node_type != treespec.type:
raise ValueError(
f"Node type mismatch; "
f"expected {treespec.type!r}, but got {node_type!r}.",
)
if len(tree) != treespec.num_children:
raise ValueError(
f"Node arity mismatch; "
f"expected {treespec.num_children}, but got {len(tree)}.",
)
if both_standard_dict:
# dictionary types are compatible with each other
dict_context = (
treespec.context
if treespec.type is not defaultdict
# ignore mismatch of `default_factory` for defaultdict
else treespec.context[1]
)
expected_keys = dict_context
got_key_set = set(tree)
expected_key_set = set(expected_keys)
if got_key_set != expected_key_set:
missing_keys = expected_key_set.difference(got_key_set)
extra_keys = got_key_set.difference(expected_key_set)
message = ""
if missing_keys:
message += f"; missing key(s): {missing_keys}"
if extra_keys:
message += f"; extra key(s): {extra_keys}"
raise ValueError(f"Node keys mismatch{message}.")
children = [tree[key] for key in expected_keys]
else:
# node_type is treespec.type
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
children, context = flatten_fn(tree)
if (
node_type is not deque # ignore mismatch of `maxlen` for deque
) and context != treespec.context:
raise ValueError(
f"Node context mismatch for node type {treespec.type!r}; "
f"expected {treespec.context!r}, but got {context!r}.", # namedtuple type mismatch
)
for subtree, subspec in zip(children, treespec.children_specs):
helper(subspec, subtree, subtrees)
subtrees: list[PyTree] = []
helper(self, tree, subtrees)
return subtrees
def unflatten(self, leaves: Iterable[Any]) -> PyTree:
if not isinstance(leaves, (list, tuple)):
leaves = list(leaves)
if len(leaves) != self.num_leaves:
raise ValueError(
f"treespec.unflatten(leaves): `leaves` has length {len(leaves)} "
f"but the spec refers to a pytree that holds {self.num_leaves} "
f"items ({self}).",
)
if self.is_leaf():
return leaves[0]
unflatten_fn = SUPPORTED_NODES[self.type].unflatten_fn
# Recursively unflatten the children
start = 0
end = 0
child_pytrees = []
for child_spec in self.children_specs:
end += child_spec.num_leaves
child_pytrees.append(child_spec.unflatten(leaves[start:end]))
start = end
return unflatten_fn(child_pytrees, self.context)
# NOTE: subclassing a dataclass is subtle. In order to enable reasoning about
# this class with `dataclasses.fields`, etc., while having a simplified
# constructor that takes no argument, we wrap with `dataclass(init=True, ...)`
# again, with fields that have `init=False`.
@dataclasses.dataclass(init=True, frozen=True, eq=False, repr=False)
class LeafSpec(TreeSpec):
type: Any = dataclasses.field(default=None, init=False)
context: Context = dataclasses.field(default=None, init=False)
children_specs: list["TreeSpec"] = dataclasses.field(
default_factory=list, init=False
)
def __post_init__(self) -> None:
# Override `__post_init__` for `num_leaves` derivation.
object.__setattr__(self, "num_nodes", 1)
object.__setattr__(self, "num_leaves", 1)
object.__setattr__(self, "num_children", 0)
def __repr__(self, indent: int = 0) -> str:
return "*"
# All leaves are equivalent, so represent with a single object to save on
# object construction time
_LEAF_SPEC = LeafSpec()
def tree_flatten(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> tuple[list[Any], TreeSpec]:
"""Flattens a pytree into a list of values and a TreeSpec that can be used
to reconstruct the pytree.
"""
def helper(node: PyTree, leaves: list[Any]) -> TreeSpec:
if _is_leaf(node, is_leaf=is_leaf):
leaves.append(node)
return _LEAF_SPEC
node_type = _get_node_type(node)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
children, context = flatten_fn(node)
# Recursively flatten the children
subspecs = [helper(child, leaves) for child in children]
return TreeSpec(node_type, context, subspecs)
leaves: list[Any] = []
treespec = helper(tree, leaves)
return leaves, treespec
def tree_unflatten(leaves: Iterable[Any], treespec: TreeSpec) -> PyTree:
"""Given a list of values and a TreeSpec, builds a pytree.
This is the inverse operation of `tree_flatten`.
"""
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"tree_unflatten(leaves, treespec): Expected `treespec` to be "
f"instance of TreeSpec but got item of type {type(treespec)}.",
)
return treespec.unflatten(leaves)
def tree_iter(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Iterable[Any]:
"""Get an iterator over the leaves of a pytree."""
if _is_leaf(tree, is_leaf=is_leaf):
yield tree
else:
node_type = _get_node_type(tree)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, _ = flatten_fn(tree)
# Recursively flatten the children
for child in child_pytrees:
yield from tree_iter(child, is_leaf=is_leaf)
def tree_leaves(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> list[Any]:
"""Get a list of leaves of a pytree."""
return list(tree_iter(tree, is_leaf=is_leaf))
def tree_structure(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> TreeSpec:
"""Get the TreeSpec for a pytree."""
return tree_flatten(tree, is_leaf=is_leaf)[1]
def tree_map(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Map a multi-input function over pytree args to produce a new pytree.
See also :func:`tree_map_`.
>>> tree_map(lambda x: x + 1, {'x': 7, 'y': (42, 64)})
{'x': 8, 'y': (43, 65)}
>>> tree_map(lambda x: x is None, {'x': 7, 'y': (42, 64), 'z': None})
{'x': False, 'y': (False, False), 'z': True}
If multiple inputs are given, the structure of the tree is taken from the first input;
subsequent inputs need only have ``tree`` as a prefix:
>>> tree_map(lambda x, y: [x] + y, [5, 6], [[7, 9], [1, 2]])
[[5, 7, 9], [6, 1, 2]]
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(x, *xs)`` where ``x`` is the value at the corresponding leaf in ``tree`` and ``xs``
is the tuple of values at corresponding nodes in ``rests``.
"""
leaves, treespec = tree_flatten(tree, is_leaf=is_leaf)
flat_args = [leaves] + [treespec.flatten_up_to(r) for r in rests]
return treespec.unflatten(map(func, *flat_args))
def tree_map_(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but do an inplace call on each leaf and return the original tree.
See also :func:`tree_map`.
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
The original ``tree`` with the value at each leaf is given by the side-effect of function
``func(x, *xs)`` (not the return value) where ``x`` is the value at the corresponding leaf
in ``tree`` and ``xs`` is the tuple of values at values at corresponding nodes in ``rests``.
"""
leaves, treespec = tree_flatten(tree, is_leaf=is_leaf)
flat_args = [leaves] + [treespec.flatten_up_to(r) for r in rests]
deque(map(func, *flat_args), maxlen=0) # consume and exhaust the iterable
return tree
Type2 = tuple[type[T], type[S]]
Type3 = tuple[type[T], type[S], type[U]]
if sys.version_info >= (3, 10):
TypeAny = Union[type[Any], tuple[type[Any], ...], types.UnionType]
else:
TypeAny = Union[type[Any], tuple[type[Any], ...]]
Fn2 = Callable[[Union[T, S]], R]
Fn3 = Callable[[Union[T, S, U]], R]
Fn = Callable[[T], R]
FnAny = Callable[[Any], R]
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
# These specializations help with type inference on the lambda passed to this
# function
@overload
def map_only(type_or_types_or_pred: type[T], /) -> MapOnlyFn[Fn[T, Any]]:
...
@overload
def map_only(type_or_types_or_pred: Type2[T, S], /) -> MapOnlyFn[Fn2[T, S, Any]]:
...
@overload
def map_only(type_or_types_or_pred: Type3[T, S, U], /) -> MapOnlyFn[Fn3[T, S, U, Any]]:
...
# This specialization is needed for the implementations below that call
@overload
def map_only(type_or_types_or_pred: TypeAny, /) -> MapOnlyFn[FnAny[Any]]:
...
@overload
def map_only(type_or_types_or_pred: Callable[[Any], bool], /) -> MapOnlyFn[FnAny[Any]]:
...
def map_only(
type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]], /
) -> MapOnlyFn[FnAny[Any]]:
"""
Suppose you are writing a tree_map over tensors, leaving everything
else unchanged. Ordinarily you would have to write:
def go(t):
if isinstance(t, Tensor):
return ...
else:
return t
With this function, you only need to write:
@map_only(Tensor)
def go(t):
return ...
You can also directly use 'tree_map_only'
"""
if isinstance(type_or_types_or_pred, (type, tuple)) or (
sys.version_info >= (3, 10)
and isinstance(type_or_types_or_pred, types.UnionType)
):
def pred(x: Any) -> bool:
return isinstance(x, type_or_types_or_pred) # type: ignore[arg-type]
elif callable(type_or_types_or_pred):
pred = type_or_types_or_pred # type: ignore[assignment]
else:
raise TypeError("Argument must be a type, a tuple of types, or a callable.")
def wrapper(func: Callable[[T], Any]) -> Callable[[Any], Any]:
@functools.wraps(func)
def wrapped(x: T) -> Any:
if pred(x):
return func(x)
return x
return wrapped
return wrapper
@overload
def tree_map_only(
type_or_types_or_pred: type[T],
/,
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
type_or_types_or_pred: Type2[T, S],
/,
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
type_or_types_or_pred: Type3[T, S, U],
/,
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
type_or_types_or_pred: TypeAny,
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
type_or_types_or_pred: Callable[[Any], bool],
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only(
type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map(map_only(type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
@overload
def tree_map_only_(
type_or_types_or_pred: type[T],
/,
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
type_or_types_or_pred: Type2[T, S],
/,
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
type_or_types_or_pred: Type3[T, S, U],
/,
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
type_or_types_or_pred: TypeAny,
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
type_or_types_or_pred: Callable[[Any], bool],
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only_(
type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
/,
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map_(map_only(type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
def tree_all(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return all(map(pred, flat_args))
def tree_any(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return any(map(pred, flat_args))
@overload
def tree_all_only(
type_or_types: type[T],
/,
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
type_or_types: Type2[T, S],
/,
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
type_or_types: Type3[T, S, U],
/,
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_all_only(
type_or_types: TypeAny,
/,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return all(pred(x) for x in flat_args if isinstance(x, type_or_types))
@overload
def tree_any_only(
type_or_types: type[T],
/,
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
type_or_types: Type2[T, S],
/,
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
type_or_types: Type3[T, S, U],
/,
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_any_only(
type_or_types: TypeAny,
/,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return any(pred(x) for x in flat_args if isinstance(x, type_or_types))
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
# values. If this is not possible, then this function returns None.
#
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
# would return [0, 0]. This is useful for part of the vmap implementation:
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
# broadcastable to the tree structure of `inputs` and we use
# _broadcast_to_and_flatten to check this.
def _broadcast_to_and_flatten(
tree: PyTree,
treespec: TreeSpec,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Optional[list[Any]]:
assert isinstance(treespec, TreeSpec)
if _is_leaf(tree, is_leaf=is_leaf):
return [tree] * treespec.num_leaves
if treespec.is_leaf():
return None
node_type = _get_node_type(tree)
if node_type != treespec.type:
return None
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, ctx = flatten_fn(tree)
# Check if the Node is different from the spec
if len(child_pytrees) != treespec.num_children or ctx != treespec.context:
return None
# Recursively flatten the children
result: list[Any] = []
for child, child_spec in zip(child_pytrees, treespec.children_specs):
flat = _broadcast_to_and_flatten(child, child_spec, is_leaf=is_leaf)
if flat is not None:
result += flat
else:
return None
return result
@dataclasses.dataclass
class _TreeSpecSchema:
"""
_TreeSpecSchema is the schema used to serialize the TreeSpec
It contains the following fields:
- type: A string name of the type. null for the case of a LeafSpec.
- context: Any format which is json dumpable
- children_spec: A list of children serialized specs.
"""
type: Optional[str]
context: DumpableContext
children_spec: list["_TreeSpecSchema"]
class _ProtocolFn(NamedTuple):
treespec_to_json: Callable[[TreeSpec], DumpableContext]
json_to_treespec: Callable[[DumpableContext], TreeSpec]
_SUPPORTED_PROTOCOLS: dict[int, _ProtocolFn] = {}
def _treespec_to_json(treespec: TreeSpec) -> _TreeSpecSchema:
if treespec.is_leaf():
return _TreeSpecSchema(None, None, [])
if treespec.type not in SUPPORTED_SERIALIZED_TYPES:
raise NotImplementedError(
f"Serializing {treespec.type} in pytree is not registered.",
)
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[treespec.type]
serialized_type_name = serialize_node_def.serialized_type_name
if serialized_type_name == NO_SERIALIZED_TYPE_NAME_FOUND:
raise NotImplementedError(
f"No registered serialization name for {treespec.type} found. "
"Please update your _register_pytree_node call with a `serialized_type_name` kwarg."
)
if serialize_node_def.to_dumpable_context is None:
try:
serialized_context = json.dumps(treespec.context, cls=EnumEncoder)
except TypeError as e:
raise TypeError(
"Unable to serialize context. "
"Please make the context json dump-able, or register a "
"custom serializer using _register_pytree_node."
) from e
else:
serialized_context = serialize_node_def.to_dumpable_context(treespec.context)
child_schemas = [_treespec_to_json(child) for child in treespec.children_specs]
return _TreeSpecSchema(serialized_type_name, serialized_context, child_schemas)
def _json_to_treespec(json_schema: DumpableContext) -> TreeSpec:
if (
json_schema["type"] is None
and json_schema["context"] is None
and len(json_schema["children_spec"]) == 0
):
return _LEAF_SPEC
if json_schema["type"] not in SERIALIZED_TYPE_TO_PYTHON_TYPE:
raise NotImplementedError(
f'Deserializing {json_schema["type"]} in pytree is not registered.',
)
typ = SERIALIZED_TYPE_TO_PYTHON_TYPE[json_schema["type"]]
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[typ]
if serialize_node_def.from_dumpable_context is None:
try:
context = json.loads(json_schema["context"])
except TypeError as ex:
raise TypeError(
"Unable to deserialize context. "
"Please make the context json load-able, or register a "
"custom serializer using _register_pytree_node.",
) from ex
else:
context = serialize_node_def.from_dumpable_context(json_schema["context"])
children_specs = [
_json_to_treespec(child_string) for child_string in json_schema["children_spec"]
]
return TreeSpec(typ, context, children_specs)
_SUPPORTED_PROTOCOLS[1] = _ProtocolFn(_treespec_to_json, _json_to_treespec)
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"treespec_dumps(treespec, protocol): Expected `treespec` to be instance of "
f"TreeSpec but got item of type {type(treespec)}.",
)
if protocol is None:
protocol = DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL
if protocol in _SUPPORTED_PROTOCOLS:
json_spec = _SUPPORTED_PROTOCOLS[protocol].treespec_to_json(treespec)
else:
raise ValueError(
f"Unknown protocol {protocol}. "
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
)
str_spec = json.dumps((protocol, dataclasses.asdict(json_spec)), cls=EnumEncoder)
return str_spec
@functools.lru_cache
def treespec_loads(serialized: str) -> TreeSpec:
protocol, json_schema = json.loads(serialized)
if protocol in _SUPPORTED_PROTOCOLS:
return _SUPPORTED_PROTOCOLS[protocol].json_to_treespec(json_schema)
raise ValueError(
f"Unknown protocol {protocol}. "
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
)
class _DummyLeaf:
def __repr__(self) -> str:
return "*"
def treespec_pprint(treespec: TreeSpec) -> str:
dummy_tree = tree_unflatten(
[_DummyLeaf() for _ in range(treespec.num_leaves)],
treespec,
)
return repr(dummy_tree)
# TODO(angelayi): remove this function after OSS/internal stabilize
@deprecated(
"`pytree_to_str` is deprecated. Please use `treespec_dumps` instead.",
category=FutureWarning,
)
def pytree_to_str(treespec: TreeSpec) -> str:
return treespec_dumps(treespec)
# TODO(angelayi): remove this function after OSS/internal stabilize
@deprecated(
"`str_to_pytree` is deprecated. Please use `treespec_loads` instead.",
category=FutureWarning,
)
def str_to_pytree(json: str) -> TreeSpec:
return treespec_loads(json)
def arg_tree_leaves(*args: PyTree, **kwargs: PyTree) -> list[Any]:
"""Get a flat list of arguments to this function
A slightly faster version of tree_leaves((args, kwargs))
"""
leaves: list[Any] = []
for a in args:
leaves.extend(tree_iter(a))
for a in kwargs.values():
leaves.extend(tree_iter(a))
return leaves
def tree_flatten_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> tuple[list[tuple[KeyPath, Any]], TreeSpec]:
"""Flattens a pytree like :func:`tree_flatten`, but also returns each leaf's key path.
Args:
tree: a pytree to flatten. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A tuple where the first element is a list of (key path, leaf) pairs, and the
second element is a :class:`TreeSpec` representing the structure of the flattened
tree.
"""
_, treespec = tree_flatten(tree, is_leaf)
return list(_generate_key_paths((), tree, is_leaf)), treespec
def tree_leaves_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> list[tuple[KeyPath, Any]]:
"""Gets the leaves of a pytree like ``tree_leaves`` and returns each leaf's key path.
Args:
tree: a pytree. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A list of (key path, leaf) pairs.
"""
return list(_generate_key_paths((), tree, is_leaf))
def _generate_key_paths(
key_path: KeyPath,
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Iterable[tuple[KeyPath, Any]]:
if is_leaf and is_leaf(tree):
yield key_path, tree
return
node_type = _get_node_type(tree)
handler = SUPPORTED_NODES.get(node_type)
if not handler:
# This is a leaf
yield key_path, tree
return
flatten_with_keys = handler.flatten_with_keys_fn
if flatten_with_keys:
key_children, _ = flatten_with_keys(tree)
for k, c in key_children:
yield from _generate_key_paths((*key_path, k), c, is_leaf)
else:
# We registered this pytree but didn't add a flatten_with_keys_fn, complain.
raise ValueError(
f"Did not find a flatten_with_keys_fn for type: {node_type}. "
"Please pass a flatten_with_keys_fn argument to register_pytree_node."
)
def tree_map_with_path(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but the provided callable takes an additional key path argument.
Args:
func: A function that takes ``2 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees. The first positional argument
to ``func`` is the key path of the leaf in question. The second
positional argument is the value of the leaf.
tree: A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests: A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(keypath, x, *xs)`` where ``keypath`` is the key path at the
corresponding leaf in ``tree``, ``x`` is the value at that leaf, and
``xs`` is the tuple of values at corresponding nodes in ``rests``.
"""
keypath_leaves, treespec = tree_flatten_with_path(tree, is_leaf)
keypath_leaves = list(zip(*keypath_leaves))
all_keypath_leaves = keypath_leaves + [treespec.flatten_up_to(r) for r in rests]
return treespec.unflatten(func(*xs) for xs in zip(*all_keypath_leaves))
def keystr(kp: KeyPath) -> str:
"""Given a key path, return a pretty-printed representation."""
return "".join([str(k) for k in kp])
def key_get(obj: Any, kp: KeyPath) -> Any:
"""Given an object and a key path, return the value at the key path."""
for k in kp:
obj = k.get(obj)
return obj
|