File size: 63,290 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
# mypy: allow-untyped-defs
import abc
import cmath
import collections.abc
import contextlib
from collections.abc import Collection, Sequence
from typing import Any, Callable, NoReturn, Optional, Union
from typing_extensions import deprecated

import torch


try:
    import numpy as np

    HAS_NUMPY = True
except ModuleNotFoundError:
    HAS_NUMPY = False
    np = None  # type: ignore[assignment]


class ErrorMeta(Exception):
    """Internal testing exception that makes that carries error metadata."""

    def __init__(
        self, type: type[Exception], msg: str, *, id: tuple[Any, ...] = ()
    ) -> None:
        super().__init__(
            "If you are a user and see this message during normal operation "
            "please file an issue at https://github.com/pytorch/pytorch/issues. "
            "If you are a developer and working on the comparison functions, please `raise ErrorMeta.to_error()` "
            "for user facing errors."
        )
        self.type = type
        self.msg = msg
        self.id = id

    def to_error(
        self, msg: Optional[Union[str, Callable[[str], str]]] = None
    ) -> Exception:
        if not isinstance(msg, str):
            generated_msg = self.msg
            if self.id:
                generated_msg += f"\n\nThe failure occurred for item {''.join(str([item]) for item in self.id)}"

            msg = msg(generated_msg) if callable(msg) else generated_msg

        return self.type(msg)


# Some analysis of tolerance by logging tests from test_torch.py can be found in
# https://github.com/pytorch/pytorch/pull/32538.
# {dtype: (rtol, atol)}
_DTYPE_PRECISIONS = {
    torch.float16: (0.001, 1e-5),
    torch.bfloat16: (0.016, 1e-5),
    torch.float32: (1.3e-6, 1e-5),
    torch.float64: (1e-7, 1e-7),
    torch.complex32: (0.001, 1e-5),
    torch.complex64: (1.3e-6, 1e-5),
    torch.complex128: (1e-7, 1e-7),
}
# The default tolerances of torch.float32 are used for quantized dtypes, because quantized tensors are compared in
# their dequantized and floating point representation. For more details see `TensorLikePair._compare_quantized_values`
_DTYPE_PRECISIONS.update(
    dict.fromkeys(
        (torch.quint8, torch.quint2x4, torch.quint4x2, torch.qint8, torch.qint32),
        _DTYPE_PRECISIONS[torch.float32],
    )
)


def default_tolerances(
    *inputs: Union[torch.Tensor, torch.dtype],
    dtype_precisions: Optional[dict[torch.dtype, tuple[float, float]]] = None,
) -> tuple[float, float]:
    """Returns the default absolute and relative testing tolerances for a set of inputs based on the dtype.

    See :func:`assert_close` for a table of the default tolerance for each dtype.

    Returns:
        (Tuple[float, float]): Loosest tolerances of all input dtypes.
    """
    dtypes = []
    for input in inputs:
        if isinstance(input, torch.Tensor):
            dtypes.append(input.dtype)
        elif isinstance(input, torch.dtype):
            dtypes.append(input)
        else:
            raise TypeError(
                f"Expected a torch.Tensor or a torch.dtype, but got {type(input)} instead."
            )
    dtype_precisions = dtype_precisions or _DTYPE_PRECISIONS
    rtols, atols = zip(*[dtype_precisions.get(dtype, (0.0, 0.0)) for dtype in dtypes])
    return max(rtols), max(atols)


def get_tolerances(
    *inputs: Union[torch.Tensor, torch.dtype],
    rtol: Optional[float],
    atol: Optional[float],
    id: tuple[Any, ...] = (),
) -> tuple[float, float]:
    """Gets absolute and relative to be used for numeric comparisons.

    If both ``rtol`` and ``atol`` are specified, this is a no-op. If both are not specified, the return value of
    :func:`default_tolerances` is used.

    Raises:
        ErrorMeta: With :class:`ValueError`, if only ``rtol`` or ``atol`` is specified.

    Returns:
        (Tuple[float, float]): Valid absolute and relative tolerances.
    """
    if (rtol is None) ^ (atol is None):
        # We require both tolerance to be omitted or specified, because specifying only one might lead to surprising
        # results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0.
        raise ErrorMeta(
            ValueError,
            f"Both 'rtol' and 'atol' must be either specified or omitted, "
            f"but got no {'rtol' if rtol is None else 'atol'}.",
            id=id,
        )
    elif rtol is not None and atol is not None:
        return rtol, atol
    else:
        return default_tolerances(*inputs)


def _make_mismatch_msg(
    *,
    default_identifier: str,
    identifier: Optional[Union[str, Callable[[str], str]]] = None,
    extra: Optional[str] = None,
    abs_diff: float,
    abs_diff_idx: Optional[Union[int, tuple[int, ...]]] = None,
    atol: float,
    rel_diff: float,
    rel_diff_idx: Optional[Union[int, tuple[int, ...]]] = None,
    rtol: float,
) -> str:
    """Makes a mismatch error message for numeric values.

    Args:
        default_identifier (str): Default description of the compared values, e.g. "Tensor-likes".
        identifier (Optional[Union[str, Callable[[str], str]]]): Optional identifier that overrides
            ``default_identifier``. Can be passed as callable in which case it will be called with
            ``default_identifier`` to create the description at runtime.
        extra (Optional[str]): Extra information to be placed after the message header and the mismatch statistics.
        abs_diff (float): Absolute difference.
        abs_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the absolute difference.
        atol (float): Allowed absolute tolerance. Will only be added to mismatch statistics if it or ``rtol`` are
            ``> 0``.
        rel_diff (float): Relative difference.
        rel_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the relative difference.
        rtol (float): Allowed relative tolerance. Will only be added to mismatch statistics if it or ``atol`` are
            ``> 0``.
    """
    equality = rtol == 0 and atol == 0

    def make_diff_msg(
        *,
        type: str,
        diff: float,
        idx: Optional[Union[int, tuple[int, ...]]],
        tol: float,
    ) -> str:
        if idx is None:
            msg = f"{type.title()} difference: {diff}"
        else:
            msg = f"Greatest {type} difference: {diff} at index {idx}"
        if not equality:
            msg += f" (up to {tol} allowed)"
        return msg + "\n"

    if identifier is None:
        identifier = default_identifier
    elif callable(identifier):
        identifier = identifier(default_identifier)

    msg = f"{identifier} are not {'equal' if equality else 'close'}!\n\n"

    if extra:
        msg += f"{extra.strip()}\n"

    msg += make_diff_msg(type="absolute", diff=abs_diff, idx=abs_diff_idx, tol=atol)
    msg += make_diff_msg(type="relative", diff=rel_diff, idx=rel_diff_idx, tol=rtol)

    return msg.strip()


def make_scalar_mismatch_msg(
    actual: Union[bool, int, float, complex],
    expected: Union[bool, int, float, complex],
    *,
    rtol: float,
    atol: float,
    identifier: Optional[Union[str, Callable[[str], str]]] = None,
) -> str:
    """Makes a mismatch error message for scalars.

    Args:
        actual (Union[bool, int, float, complex]): Actual scalar.
        expected (Union[bool, int, float, complex]): Expected scalar.
        rtol (float): Relative tolerance.
        atol (float): Absolute tolerance.
        identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the scalars. Can be passed
            as callable in which case it will be called by the default value to create the description at runtime.
            Defaults to "Scalars".
    """
    abs_diff = abs(actual - expected)
    rel_diff = float("inf") if expected == 0 else abs_diff / abs(expected)
    return _make_mismatch_msg(
        default_identifier="Scalars",
        identifier=identifier,
        extra=f"Expected {expected} but got {actual}.",
        abs_diff=abs_diff,
        atol=atol,
        rel_diff=rel_diff,
        rtol=rtol,
    )


def make_tensor_mismatch_msg(
    actual: torch.Tensor,
    expected: torch.Tensor,
    matches: torch.Tensor,
    *,
    rtol: float,
    atol: float,
    identifier: Optional[Union[str, Callable[[str], str]]] = None,
):
    """Makes a mismatch error message for tensors.

    Args:
        actual (torch.Tensor): Actual tensor.
        expected (torch.Tensor): Expected tensor.
        matches (torch.Tensor): Boolean mask of the same shape as ``actual`` and ``expected`` that indicates the
            location of matches.
        rtol (float): Relative tolerance.
        atol (float): Absolute tolerance.
        identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the tensors. Can be passed
            as callable in which case it will be called by the default value to create the description at runtime.
            Defaults to "Tensor-likes".
    """

    def unravel_flat_index(flat_index: int) -> tuple[int, ...]:
        if not matches.shape:
            return ()

        inverse_index = []
        for size in matches.shape[::-1]:
            div, mod = divmod(flat_index, size)
            flat_index = div
            inverse_index.append(mod)

        return tuple(inverse_index[::-1])

    number_of_elements = matches.numel()
    total_mismatches = number_of_elements - int(torch.sum(matches))
    extra = (
        f"Mismatched elements: {total_mismatches} / {number_of_elements} "
        f"({total_mismatches / number_of_elements:.1%})"
    )

    actual_flat = actual.flatten()
    expected_flat = expected.flatten()
    matches_flat = matches.flatten()

    if not actual.dtype.is_floating_point and not actual.dtype.is_complex:
        # TODO: Instead of always upcasting to int64, it would be sufficient to cast to the next higher dtype to avoid
        #  overflow
        actual_flat = actual_flat.to(torch.int64)
        expected_flat = expected_flat.to(torch.int64)

    abs_diff = torch.abs(actual_flat - expected_flat)
    # Ensure that only mismatches are used for the max_abs_diff computation
    abs_diff[matches_flat] = 0
    max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0)

    rel_diff = abs_diff / torch.abs(expected_flat)
    # Ensure that only mismatches are used for the max_rel_diff computation
    rel_diff[matches_flat] = 0
    max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0)
    return _make_mismatch_msg(
        default_identifier="Tensor-likes",
        identifier=identifier,
        extra=extra,
        abs_diff=max_abs_diff.item(),
        abs_diff_idx=unravel_flat_index(int(max_abs_diff_flat_idx)),
        atol=atol,
        rel_diff=max_rel_diff.item(),
        rel_diff_idx=unravel_flat_index(int(max_rel_diff_flat_idx)),
        rtol=rtol,
    )


class UnsupportedInputs(Exception):  # noqa: B903
    """Exception to be raised during the construction of a :class:`Pair` in case it doesn't support the inputs."""


class Pair(abc.ABC):
    """ABC for all comparison pairs to be used in conjunction with :func:`assert_equal`.

    Each subclass needs to overwrite :meth:`Pair.compare` that performs the actual comparison.

    Each pair receives **all** options, so select the ones applicable for the subclass and forward the rest to the
    super class. Raising an :class:`UnsupportedInputs` during constructions indicates that the pair is not able to
    handle the inputs and the next pair type will be tried.

    All other errors should be raised as :class:`ErrorMeta`. After the instantiation, :meth:`Pair._make_error_meta` can
    be used to automatically handle overwriting the message with a user supplied one and id handling.
    """

    def __init__(
        self,
        actual: Any,
        expected: Any,
        *,
        id: tuple[Any, ...] = (),
        **unknown_parameters: Any,
    ) -> None:
        self.actual = actual
        self.expected = expected
        self.id = id
        self._unknown_parameters = unknown_parameters

    @staticmethod
    def _inputs_not_supported() -> NoReturn:
        raise UnsupportedInputs

    @staticmethod
    def _check_inputs_isinstance(*inputs: Any, cls: Union[type, tuple[type, ...]]):
        """Checks if all inputs are instances of a given class and raise :class:`UnsupportedInputs` otherwise."""
        if not all(isinstance(input, cls) for input in inputs):
            Pair._inputs_not_supported()

    def _fail(
        self, type: type[Exception], msg: str, *, id: tuple[Any, ...] = ()
    ) -> NoReturn:
        """Raises an :class:`ErrorMeta` from a given exception type and message and the stored id.

        .. warning::

            If you use this before the ``super().__init__(...)`` call in the constructor, you have to pass the ``id``
            explicitly.
        """
        raise ErrorMeta(type, msg, id=self.id if not id and hasattr(self, "id") else id)

    @abc.abstractmethod
    def compare(self) -> None:
        """Compares the inputs and raises an :class`ErrorMeta` in case they mismatch."""

    def extra_repr(self) -> Sequence[Union[str, tuple[str, Any]]]:
        """Returns extra information that will be included in the representation.

        Should be overwritten by all subclasses that use additional options. The representation of the object will only
        be surfaced in case we encounter an unexpected error and thus should help debug the issue. Can be a sequence of
        key-value-pairs or attribute names.
        """
        return []

    def __repr__(self) -> str:
        head = f"{type(self).__name__}("
        tail = ")"
        body = [
            f"    {name}={value!s},"
            for name, value in [
                ("id", self.id),
                ("actual", self.actual),
                ("expected", self.expected),
                *[
                    (extra, getattr(self, extra)) if isinstance(extra, str) else extra
                    for extra in self.extra_repr()
                ],
            ]
        ]
        return "\n".join((head, *body, *tail))


class ObjectPair(Pair):
    """Pair for any type of inputs that will be compared with the `==` operator.

    .. note::

        Since this will instantiate for any kind of inputs, it should only be used as fallback after all other pairs
        couldn't handle the inputs.

    """

    def compare(self) -> None:
        try:
            equal = self.actual == self.expected
        except Exception as error:
            # We are not using `self._raise_error_meta` here since we need the exception chaining
            raise ErrorMeta(
                ValueError,
                f"{self.actual} == {self.expected} failed with:\n{error}.",
                id=self.id,
            ) from error

        if not equal:
            self._fail(AssertionError, f"{self.actual} != {self.expected}")


class NonePair(Pair):
    """Pair for ``None`` inputs."""

    def __init__(self, actual: Any, expected: Any, **other_parameters: Any) -> None:
        if not (actual is None or expected is None):
            self._inputs_not_supported()

        super().__init__(actual, expected, **other_parameters)

    def compare(self) -> None:
        if not (self.actual is None and self.expected is None):
            self._fail(
                AssertionError, f"None mismatch: {self.actual} is not {self.expected}"
            )


class BooleanPair(Pair):
    """Pair for :class:`bool` inputs.

    .. note::

        If ``numpy`` is available, also handles :class:`numpy.bool_` inputs.

    """

    def __init__(
        self,
        actual: Any,
        expected: Any,
        *,
        id: tuple[Any, ...],
        **other_parameters: Any,
    ) -> None:
        actual, expected = self._process_inputs(actual, expected, id=id)
        super().__init__(actual, expected, **other_parameters)

    @property
    def _supported_types(self) -> tuple[type, ...]:
        cls: list[type] = [bool]
        if HAS_NUMPY:
            cls.append(np.bool_)
        return tuple(cls)

    def _process_inputs(
        self, actual: Any, expected: Any, *, id: tuple[Any, ...]
    ) -> tuple[bool, bool]:
        self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
        actual, expected = (
            self._to_bool(bool_like, id=id) for bool_like in (actual, expected)
        )
        return actual, expected

    def _to_bool(self, bool_like: Any, *, id: tuple[Any, ...]) -> bool:
        if isinstance(bool_like, bool):
            return bool_like
        elif isinstance(bool_like, np.bool_):
            return bool_like.item()
        else:
            raise ErrorMeta(
                TypeError, f"Unknown boolean type {type(bool_like)}.", id=id
            )

    def compare(self) -> None:
        if self.actual is not self.expected:
            self._fail(
                AssertionError,
                f"Booleans mismatch: {self.actual} is not {self.expected}",
            )


class NumberPair(Pair):
    """Pair for Python number (:class:`int`, :class:`float`, and :class:`complex`) inputs.

    .. note::

        If ``numpy`` is available, also handles :class:`numpy.number` inputs.

    Kwargs:
        rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
            values based on the type are selected with the below table.
        atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
            values based on the type are selected with the below table.
        equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
        check_dtype (bool): If ``True``, the type of the inputs will be checked for equality. Defaults to ``False``.

    The following table displays correspondence between Python number type and the ``torch.dtype``'s. See
    :func:`assert_close` for the corresponding tolerances.

    +------------------+-------------------------------+
    | ``type``         | corresponding ``torch.dtype`` |
    +==================+===============================+
    | :class:`int`     | :attr:`~torch.int64`          |
    +------------------+-------------------------------+
    | :class:`float`   | :attr:`~torch.float64`        |
    +------------------+-------------------------------+
    | :class:`complex` | :attr:`~torch.complex64`      |
    +------------------+-------------------------------+
    """

    _TYPE_TO_DTYPE = {
        int: torch.int64,
        float: torch.float64,
        complex: torch.complex128,
    }
    _NUMBER_TYPES = tuple(_TYPE_TO_DTYPE.keys())

    def __init__(
        self,
        actual: Any,
        expected: Any,
        *,
        id: tuple[Any, ...] = (),
        rtol: Optional[float] = None,
        atol: Optional[float] = None,
        equal_nan: bool = False,
        check_dtype: bool = False,
        **other_parameters: Any,
    ) -> None:
        actual, expected = self._process_inputs(actual, expected, id=id)
        super().__init__(actual, expected, id=id, **other_parameters)

        self.rtol, self.atol = get_tolerances(
            *[self._TYPE_TO_DTYPE[type(input)] for input in (actual, expected)],
            rtol=rtol,
            atol=atol,
            id=id,
        )
        self.equal_nan = equal_nan
        self.check_dtype = check_dtype

    @property
    def _supported_types(self) -> tuple[type, ...]:
        cls = list(self._NUMBER_TYPES)
        if HAS_NUMPY:
            cls.append(np.number)
        return tuple(cls)

    def _process_inputs(
        self, actual: Any, expected: Any, *, id: tuple[Any, ...]
    ) -> tuple[Union[int, float, complex], Union[int, float, complex]]:
        self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
        actual, expected = (
            self._to_number(number_like, id=id) for number_like in (actual, expected)
        )
        return actual, expected

    def _to_number(
        self, number_like: Any, *, id: tuple[Any, ...]
    ) -> Union[int, float, complex]:
        if HAS_NUMPY and isinstance(number_like, np.number):
            return number_like.item()
        elif isinstance(number_like, self._NUMBER_TYPES):
            return number_like  # type: ignore[return-value]
        else:
            raise ErrorMeta(
                TypeError, f"Unknown number type {type(number_like)}.", id=id
            )

    def compare(self) -> None:
        if self.check_dtype and type(self.actual) is not type(self.expected):
            self._fail(
                AssertionError,
                f"The (d)types do not match: {type(self.actual)} != {type(self.expected)}.",
            )

        if self.actual == self.expected:
            return

        if self.equal_nan and cmath.isnan(self.actual) and cmath.isnan(self.expected):
            return

        abs_diff = abs(self.actual - self.expected)
        tolerance = self.atol + self.rtol * abs(self.expected)

        if cmath.isfinite(abs_diff) and abs_diff <= tolerance:
            return

        self._fail(
            AssertionError,
            make_scalar_mismatch_msg(
                self.actual, self.expected, rtol=self.rtol, atol=self.atol
            ),
        )

    def extra_repr(self) -> Sequence[str]:
        return (
            "rtol",
            "atol",
            "equal_nan",
            "check_dtype",
        )


class TensorLikePair(Pair):
    """Pair for :class:`torch.Tensor`-like inputs.

    Kwargs:
        allow_subclasses (bool):
        rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
            values based on the type are selected. See :func:assert_close: for details.
        atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
            values based on the type are selected. See :func:assert_close: for details.
        equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
        check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
            :attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
            :attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
        check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
            check is disabled, tensors with different ``dtype``'s are promoted  to a common ``dtype`` (according to
            :func:`torch.promote_types`) before being compared.
        check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
            check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
            compared.
        check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
    """

    def __init__(
        self,
        actual: Any,
        expected: Any,
        *,
        id: tuple[Any, ...] = (),
        allow_subclasses: bool = True,
        rtol: Optional[float] = None,
        atol: Optional[float] = None,
        equal_nan: bool = False,
        check_device: bool = True,
        check_dtype: bool = True,
        check_layout: bool = True,
        check_stride: bool = False,
        **other_parameters: Any,
    ):
        actual, expected = self._process_inputs(
            actual, expected, id=id, allow_subclasses=allow_subclasses
        )
        super().__init__(actual, expected, id=id, **other_parameters)

        self.rtol, self.atol = get_tolerances(
            actual, expected, rtol=rtol, atol=atol, id=self.id
        )
        self.equal_nan = equal_nan
        self.check_device = check_device
        self.check_dtype = check_dtype
        self.check_layout = check_layout
        self.check_stride = check_stride

    def _process_inputs(
        self, actual: Any, expected: Any, *, id: tuple[Any, ...], allow_subclasses: bool
    ) -> tuple[torch.Tensor, torch.Tensor]:
        directly_related = isinstance(actual, type(expected)) or isinstance(
            expected, type(actual)
        )
        if not directly_related:
            self._inputs_not_supported()

        if not allow_subclasses and type(actual) is not type(expected):
            self._inputs_not_supported()

        actual, expected = (self._to_tensor(input) for input in (actual, expected))
        for tensor in (actual, expected):
            self._check_supported(tensor, id=id)
        return actual, expected

    def _to_tensor(self, tensor_like: Any) -> torch.Tensor:
        if isinstance(tensor_like, torch.Tensor):
            return tensor_like

        try:
            return torch.as_tensor(tensor_like)
        except Exception:
            self._inputs_not_supported()

    def _check_supported(self, tensor: torch.Tensor, *, id: tuple[Any, ...]) -> None:
        if tensor.layout not in {
            torch.strided,
            torch.jagged,
            torch.sparse_coo,
            torch.sparse_csr,
            torch.sparse_csc,
            torch.sparse_bsr,
            torch.sparse_bsc,
        }:
            raise ErrorMeta(
                ValueError, f"Unsupported tensor layout {tensor.layout}", id=id
            )

    def compare(self) -> None:
        actual, expected = self.actual, self.expected

        self._compare_attributes(actual, expected)
        if any(input.device.type == "meta" for input in (actual, expected)):
            return

        actual, expected = self._equalize_attributes(actual, expected)
        self._compare_values(actual, expected)

    def _compare_attributes(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
    ) -> None:
        """Checks if the attributes of two tensors match.

        Always checks

        - the :attr:`~torch.Tensor.shape`,
        - whether both inputs are quantized or not,
        - and if they use the same quantization scheme.

        Checks for

        - :attr:`~torch.Tensor.layout`,
        - :meth:`~torch.Tensor.stride`,
        - :attr:`~torch.Tensor.device`, and
        - :attr:`~torch.Tensor.dtype`

        are optional and can be disabled through the corresponding ``check_*`` flag during construction of the pair.
        """

        def raise_mismatch_error(
            attribute_name: str, actual_value: Any, expected_value: Any
        ) -> NoReturn:
            self._fail(
                AssertionError,
                f"The values for attribute '{attribute_name}' do not match: {actual_value} != {expected_value}.",
            )

        if actual.shape != expected.shape:
            raise_mismatch_error("shape", actual.shape, expected.shape)

        if actual.is_quantized != expected.is_quantized:
            raise_mismatch_error(
                "is_quantized", actual.is_quantized, expected.is_quantized
            )
        elif actual.is_quantized and actual.qscheme() != expected.qscheme():
            raise_mismatch_error("qscheme()", actual.qscheme(), expected.qscheme())

        if actual.layout != expected.layout:
            if self.check_layout:
                raise_mismatch_error("layout", actual.layout, expected.layout)
        elif (
            actual.layout == torch.strided
            and self.check_stride
            and actual.stride() != expected.stride()
        ):
            raise_mismatch_error("stride()", actual.stride(), expected.stride())

        if self.check_device and actual.device != expected.device:
            raise_mismatch_error("device", actual.device, expected.device)

        if self.check_dtype and actual.dtype != expected.dtype:
            raise_mismatch_error("dtype", actual.dtype, expected.dtype)

    def _equalize_attributes(
        self, actual: torch.Tensor, expected: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """Equalizes some attributes of two tensors for value comparison.

        If ``actual`` and ``expected`` are ...

        - ... not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory.
        - ... not of the same ``dtype``, they are promoted  to a common ``dtype`` (according to
            :func:`torch.promote_types`).
        - ... not of the same ``layout``, they are converted to strided tensors.

        Args:
            actual (Tensor): Actual tensor.
            expected (Tensor): Expected tensor.

        Returns:
            (Tuple[Tensor, Tensor]): Equalized tensors.
        """
        # The comparison logic uses operators currently not supported by the MPS backends.
        #  See https://github.com/pytorch/pytorch/issues/77144 for details.
        # TODO: Remove this conversion as soon as all operations are supported natively by the MPS backend
        if actual.is_mps or expected.is_mps:  # type: ignore[attr-defined]
            actual = actual.cpu()
            expected = expected.cpu()

        if actual.device != expected.device:
            actual = actual.cpu()
            expected = expected.cpu()

        if actual.dtype != expected.dtype:
            actual_dtype = actual.dtype
            expected_dtype = expected.dtype
            # For uint64, this is not sound in general, which is why promote_types doesn't
            # allow it, but for easy testing, we're unlikely to get confused
            # by large uint64 overflowing into negative int64
            if actual_dtype in [torch.uint64, torch.uint32, torch.uint16]:
                actual_dtype = torch.int64
            if expected_dtype in [torch.uint64, torch.uint32, torch.uint16]:
                expected_dtype = torch.int64
            dtype = torch.promote_types(actual_dtype, expected_dtype)
            actual = actual.to(dtype)
            expected = expected.to(dtype)

        if actual.layout != expected.layout:
            # These checks are needed, since Tensor.to_dense() fails on tensors that are already strided
            actual = actual.to_dense() if actual.layout != torch.strided else actual
            expected = (
                expected.to_dense() if expected.layout != torch.strided else expected
            )

        return actual, expected

    def _compare_values(self, actual: torch.Tensor, expected: torch.Tensor) -> None:
        if actual.is_quantized:
            compare_fn = self._compare_quantized_values
        elif actual.is_sparse:
            compare_fn = self._compare_sparse_coo_values
        elif actual.layout in {
            torch.sparse_csr,
            torch.sparse_csc,
            torch.sparse_bsr,
            torch.sparse_bsc,
        }:
            compare_fn = self._compare_sparse_compressed_values
        elif actual.layout == torch.jagged:
            actual, expected = actual.values(), expected.values()
            compare_fn = self._compare_regular_values_close
        else:
            compare_fn = self._compare_regular_values_close

        compare_fn(
            actual, expected, rtol=self.rtol, atol=self.atol, equal_nan=self.equal_nan
        )

    def _compare_quantized_values(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
        *,
        rtol: float,
        atol: float,
        equal_nan: bool,
    ) -> None:
        """Compares quantized tensors by comparing the :meth:`~torch.Tensor.dequantize`'d variants for closeness.

        .. note::

            A detailed discussion about why only the dequantized variant is checked for closeness rather than checking
            the individual quantization parameters for closeness and the integer representation for equality can be
            found in https://github.com/pytorch/pytorch/issues/68548.
        """
        return self._compare_regular_values_close(
            actual.dequantize(),
            expected.dequantize(),
            rtol=rtol,
            atol=atol,
            equal_nan=equal_nan,
            identifier=lambda default_identifier: f"Quantized {default_identifier.lower()}",
        )

    def _compare_sparse_coo_values(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
        *,
        rtol: float,
        atol: float,
        equal_nan: bool,
    ) -> None:
        """Compares sparse COO tensors by comparing

        - the number of sparse dimensions,
        - the number of non-zero elements (nnz) for equality,
        - the indices for equality, and
        - the values for closeness.
        """
        if actual.sparse_dim() != expected.sparse_dim():
            self._fail(
                AssertionError,
                (
                    f"The number of sparse dimensions in sparse COO tensors does not match: "
                    f"{actual.sparse_dim()} != {expected.sparse_dim()}"
                ),
            )

        if actual._nnz() != expected._nnz():
            self._fail(
                AssertionError,
                (
                    f"The number of specified values in sparse COO tensors does not match: "
                    f"{actual._nnz()} != {expected._nnz()}"
                ),
            )

        self._compare_regular_values_equal(
            actual._indices(),
            expected._indices(),
            identifier="Sparse COO indices",
        )
        self._compare_regular_values_close(
            actual._values(),
            expected._values(),
            rtol=rtol,
            atol=atol,
            equal_nan=equal_nan,
            identifier="Sparse COO values",
        )

    def _compare_sparse_compressed_values(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
        *,
        rtol: float,
        atol: float,
        equal_nan: bool,
    ) -> None:
        """Compares sparse compressed tensors by comparing

        - the number of non-zero elements (nnz) for equality,
        - the plain indices for equality,
        - the compressed indices for equality, and
        - the values for closeness.
        """
        format_name, compressed_indices_method, plain_indices_method = {
            torch.sparse_csr: (
                "CSR",
                torch.Tensor.crow_indices,
                torch.Tensor.col_indices,
            ),
            torch.sparse_csc: (
                "CSC",
                torch.Tensor.ccol_indices,
                torch.Tensor.row_indices,
            ),
            torch.sparse_bsr: (
                "BSR",
                torch.Tensor.crow_indices,
                torch.Tensor.col_indices,
            ),
            torch.sparse_bsc: (
                "BSC",
                torch.Tensor.ccol_indices,
                torch.Tensor.row_indices,
            ),
        }[actual.layout]

        if actual._nnz() != expected._nnz():
            self._fail(
                AssertionError,
                (
                    f"The number of specified values in sparse {format_name} tensors does not match: "
                    f"{actual._nnz()} != {expected._nnz()}"
                ),
            )

        # Compressed and plain indices in the CSR / CSC / BSR / BSC sparse formats can be `torch.int32` _or_
        # `torch.int64`. While the same dtype is enforced for the compressed and plain indices of a single tensor, it
        # can be different between two tensors. Thus, we need to convert them to the same dtype, or the comparison will
        # fail.
        actual_compressed_indices = compressed_indices_method(actual)
        expected_compressed_indices = compressed_indices_method(expected)
        indices_dtype = torch.promote_types(
            actual_compressed_indices.dtype, expected_compressed_indices.dtype
        )

        self._compare_regular_values_equal(
            actual_compressed_indices.to(indices_dtype),
            expected_compressed_indices.to(indices_dtype),
            identifier=f"Sparse {format_name} {compressed_indices_method.__name__}",
        )
        self._compare_regular_values_equal(
            plain_indices_method(actual).to(indices_dtype),
            plain_indices_method(expected).to(indices_dtype),
            identifier=f"Sparse {format_name} {plain_indices_method.__name__}",
        )
        self._compare_regular_values_close(
            actual.values(),
            expected.values(),
            rtol=rtol,
            atol=atol,
            equal_nan=equal_nan,
            identifier=f"Sparse {format_name} values",
        )

    def _compare_regular_values_equal(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
        *,
        equal_nan: bool = False,
        identifier: Optional[Union[str, Callable[[str], str]]] = None,
    ) -> None:
        """Checks if the values of two tensors are equal."""
        self._compare_regular_values_close(
            actual, expected, rtol=0, atol=0, equal_nan=equal_nan, identifier=identifier
        )

    def _compare_regular_values_close(
        self,
        actual: torch.Tensor,
        expected: torch.Tensor,
        *,
        rtol: float,
        atol: float,
        equal_nan: bool,
        identifier: Optional[Union[str, Callable[[str], str]]] = None,
    ) -> None:
        """Checks if the values of two tensors are close up to a desired tolerance."""
        matches = torch.isclose(
            actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan
        )
        if torch.all(matches):
            return

        if actual.shape == torch.Size([]):
            msg = make_scalar_mismatch_msg(
                actual.item(),
                expected.item(),
                rtol=rtol,
                atol=atol,
                identifier=identifier,
            )
        else:
            msg = make_tensor_mismatch_msg(
                actual, expected, matches, rtol=rtol, atol=atol, identifier=identifier
            )
        self._fail(AssertionError, msg)

    def extra_repr(self) -> Sequence[str]:
        return (
            "rtol",
            "atol",
            "equal_nan",
            "check_device",
            "check_dtype",
            "check_layout",
            "check_stride",
        )


def originate_pairs(
    actual: Any,
    expected: Any,
    *,
    pair_types: Sequence[type[Pair]],
    sequence_types: tuple[type, ...] = (collections.abc.Sequence,),
    mapping_types: tuple[type, ...] = (collections.abc.Mapping,),
    id: tuple[Any, ...] = (),
    **options: Any,
) -> list[Pair]:
    """Originates pairs from the individual inputs.

    ``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
    :class:`~collections.abc.Mapping`'s. In this case the pairs are originated by recursing through them.

    Args:
        actual (Any): Actual input.
        expected (Any): Expected input.
        pair_types (Sequence[Type[Pair]]): Sequence of pair types that will be tried to construct with the inputs.
            First successful pair will be used.
        sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
        mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
        id (Tuple[Any, ...]): Optional id of a pair that will be included in an error message.
        **options (Any): Options passed to each pair during construction.

    Raises:
        ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Sequence`'s, but their
            length does not match.
        ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Mapping`'s, but their set of
            keys do not match.
        ErrorMeta: With :class`TypeError`, if no pair is able to handle the inputs.
        ErrorMeta: With any expected exception that happens during the construction of a pair.

    Returns:
        (List[Pair]): Originated pairs.
    """
    # We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop:
    # "a" == "a"[0][0]...
    if (
        isinstance(actual, sequence_types)
        and not isinstance(actual, str)
        and isinstance(expected, sequence_types)
        and not isinstance(expected, str)
    ):
        actual_len = len(actual)  # type: ignore[arg-type]
        expected_len = len(expected)  # type: ignore[arg-type]
        if actual_len != expected_len:
            raise ErrorMeta(
                AssertionError,
                f"The length of the sequences mismatch: {actual_len} != {expected_len}",
                id=id,
            )

        pairs = []
        for idx in range(actual_len):
            pairs.extend(
                originate_pairs(
                    actual[idx],  # type: ignore[index]
                    expected[idx],  # type: ignore[index]
                    pair_types=pair_types,
                    sequence_types=sequence_types,
                    mapping_types=mapping_types,
                    id=(*id, idx),
                    **options,
                )
            )
        return pairs

    elif isinstance(actual, mapping_types) and isinstance(expected, mapping_types):
        actual_keys = set(actual.keys())  # type: ignore[attr-defined]
        expected_keys = set(expected.keys())  # type: ignore[attr-defined]
        if actual_keys != expected_keys:
            missing_keys = expected_keys - actual_keys
            additional_keys = actual_keys - expected_keys
            raise ErrorMeta(
                AssertionError,
                (
                    f"The keys of the mappings do not match:\n"
                    f"Missing keys in the actual mapping: {sorted(missing_keys)}\n"
                    f"Additional keys in the actual mapping: {sorted(additional_keys)}"
                ),
                id=id,
            )

        keys: Collection = actual_keys
        # Since the origination aborts after the first failure, we try to be deterministic
        with contextlib.suppress(Exception):
            keys = sorted(keys)

        pairs = []
        for key in keys:
            pairs.extend(
                originate_pairs(
                    actual[key],  # type: ignore[index]
                    expected[key],  # type: ignore[index]
                    pair_types=pair_types,
                    sequence_types=sequence_types,
                    mapping_types=mapping_types,
                    id=(*id, key),
                    **options,
                )
            )
        return pairs

    else:
        for pair_type in pair_types:
            try:
                return [pair_type(actual, expected, id=id, **options)]
            # Raising an `UnsupportedInputs` during origination indicates that the pair type is not able to handle the
            # inputs. Thus, we try the next pair type.
            except UnsupportedInputs:
                continue
            # Raising an `ErrorMeta` during origination is the orderly way to abort and so we simply re-raise it. This
            # is only in a separate branch, because the one below would also except it.
            except ErrorMeta:
                raise
            # Raising any other exception during origination is unexpected and will give some extra information about
            # what happened. If applicable, the exception should be expected in the future.
            except Exception as error:
                raise RuntimeError(
                    f"Originating a {pair_type.__name__}() at item {''.join(str([item]) for item in id)} with\n\n"
                    f"{type(actual).__name__}(): {actual}\n\n"
                    f"and\n\n"
                    f"{type(expected).__name__}(): {expected}\n\n"
                    f"resulted in the unexpected exception above. "
                    f"If you are a user and see this message during normal operation "
                    "please file an issue at https://github.com/pytorch/pytorch/issues. "
                    "If you are a developer and working on the comparison functions, "
                    "please except the previous error and raise an expressive `ErrorMeta` instead."
                ) from error
        else:
            raise ErrorMeta(
                TypeError,
                f"No comparison pair was able to handle inputs of type {type(actual)} and {type(expected)}.",
                id=id,
            )


def not_close_error_metas(
    actual: Any,
    expected: Any,
    *,
    pair_types: Sequence[type[Pair]] = (ObjectPair,),
    sequence_types: tuple[type, ...] = (collections.abc.Sequence,),
    mapping_types: tuple[type, ...] = (collections.abc.Mapping,),
    **options: Any,
) -> list[ErrorMeta]:
    """Asserts that inputs are equal.

    ``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
    :class:`~collections.abc.Mapping`'s. In this case the comparison happens elementwise by recursing through them.

    Args:
        actual (Any): Actual input.
        expected (Any): Expected input.
        pair_types (Sequence[Type[Pair]]): Sequence of :class:`Pair` types that will be tried to construct with the
            inputs. First successful pair will be used. Defaults to only using :class:`ObjectPair`.
        sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
        mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
        **options (Any): Options passed to each pair during construction.
    """
    # Hide this function from `pytest`'s traceback
    __tracebackhide__ = True

    try:
        pairs = originate_pairs(
            actual,
            expected,
            pair_types=pair_types,
            sequence_types=sequence_types,
            mapping_types=mapping_types,
            **options,
        )
    except ErrorMeta as error_meta:
        # Explicitly raising from None to hide the internal traceback
        raise error_meta.to_error() from None  # noqa: RSE102

    error_metas: list[ErrorMeta] = []
    for pair in pairs:
        try:
            pair.compare()
        except ErrorMeta as error_meta:
            error_metas.append(error_meta)
        # Raising any exception besides `ErrorMeta` while comparing is unexpected and will give some extra information
        # about what happened. If applicable, the exception should be expected in the future.
        except Exception as error:
            raise RuntimeError(
                f"Comparing\n\n"
                f"{pair}\n\n"
                f"resulted in the unexpected exception above. "
                f"If you are a user and see this message during normal operation "
                "please file an issue at https://github.com/pytorch/pytorch/issues. "
                "If you are a developer and working on the comparison functions, "
                "please except the previous error and raise an expressive `ErrorMeta` instead."
            ) from error

    # [ErrorMeta Cycles]
    # ErrorMeta objects in this list capture
    # tracebacks that refer to the frame of this function.
    # The local variable `error_metas` refers to the error meta
    # objects, creating a reference cycle. Frames in the traceback
    # would not get freed until cycle collection, leaking cuda memory in tests.
    # We break the cycle by removing the reference to the error_meta objects
    # from this frame as it returns.
    error_metas = [error_metas]
    return error_metas.pop()


def assert_close(
    actual: Any,
    expected: Any,
    *,
    allow_subclasses: bool = True,
    rtol: Optional[float] = None,
    atol: Optional[float] = None,
    equal_nan: bool = False,
    check_device: bool = True,
    check_dtype: bool = True,
    check_layout: bool = True,
    check_stride: bool = False,
    msg: Optional[Union[str, Callable[[str], str]]] = None,
):
    r"""Asserts that ``actual`` and ``expected`` are close.

    If ``actual`` and ``expected`` are strided, non-quantized, real-valued, and finite, they are considered close if

    .. math::

        \lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert

    Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are
    only considered equal to each other if ``equal_nan`` is ``True``.

    In addition, they are only considered close if they have the same

    - :attr:`~torch.Tensor.device` (if ``check_device`` is ``True``),
    - ``dtype`` (if ``check_dtype`` is ``True``),
    - ``layout`` (if ``check_layout`` is ``True``), and
    - stride (if ``check_stride`` is ``True``).

    If either ``actual`` or ``expected`` is a meta tensor, only the attribute checks will be performed.

    If ``actual`` and ``expected`` are sparse (either having COO, CSR, CSC, BSR, or BSC layout), their strided members are
    checked individually. Indices, namely ``indices`` for COO, ``crow_indices`` and ``col_indices`` for CSR and BSR,
    or ``ccol_indices``  and ``row_indices`` for CSC and BSC layouts, respectively,
    are always checked for equality whereas the values are checked for closeness according to the definition above.

    If ``actual`` and ``expected`` are quantized, they are considered close if they have the same
    :meth:`~torch.Tensor.qscheme` and the result of :meth:`~torch.Tensor.dequantize` is close according to the
    definition above.

    ``actual`` and ``expected`` can be :class:`~torch.Tensor`'s or any tensor-or-scalar-likes from which
    :class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. Except for Python scalars the input types
    have to be directly related. In addition, ``actual`` and ``expected`` can be :class:`~collections.abc.Sequence`'s
    or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all
    their elements are considered close according to the above definition.

    .. note::

        Python scalars are an exception to the type relation requirement, because their :func:`type`, i.e.
        :class:`int`, :class:`float`, and :class:`complex`, is equivalent to the ``dtype`` of a tensor-like. Thus,
        Python scalars of different types can be checked, but require ``check_dtype=False``.

    Args:
        actual (Any): Actual input.
        expected (Any): Expected input.
        allow_subclasses (bool): If ``True`` (default) and except for Python scalars, inputs of directly related types
            are allowed. Otherwise type equality is required.
        rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
            values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
        atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
            values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
        equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal.
        check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
            :attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
            :attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
        check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
            check is disabled, tensors with different ``dtype``'s are promoted  to a common ``dtype`` (according to
            :func:`torch.promote_types`) before being compared.
        check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
            check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
            compared.
        check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
        msg (Optional[Union[str, Callable[[str], str]]]): Optional error message to use in case a failure occurs during
            the comparison. Can also passed as callable in which case it will be called with the generated message and
            should return the new message.

    Raises:
        ValueError: If no :class:`torch.Tensor` can be constructed from an input.
        ValueError: If only ``rtol`` or ``atol`` is specified.
        AssertionError: If corresponding inputs are not Python scalars and are not directly related.
        AssertionError: If ``allow_subclasses`` is ``False``, but corresponding inputs are not Python scalars and have
            different types.
        AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match.
        AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match.
        AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`.
        AssertionError: If ``check_layout`` is ``True``, but corresponding tensors do not have the same
            :attr:`~torch.Tensor.layout`.
        AssertionError: If only one of corresponding tensors is quantized.
        AssertionError: If corresponding tensors are quantized, but have different :meth:`~torch.Tensor.qscheme`'s.
        AssertionError: If ``check_device`` is ``True``, but corresponding tensors are not on the same
            :attr:`~torch.Tensor.device`.
        AssertionError: If ``check_dtype`` is ``True``, but corresponding tensors do not have the same ``dtype``.
        AssertionError: If ``check_stride`` is ``True``, but corresponding strided tensors do not have the same stride.
        AssertionError: If the values of corresponding tensors are not close according to the definition above.

    The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. In case of mismatching
    ``dtype``'s, the maximum of both tolerances is used.

    +---------------------------+------------+----------+
    | ``dtype``                 | ``rtol``   | ``atol`` |
    +===========================+============+==========+
    | :attr:`~torch.float16`    | ``1e-3``   | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.bfloat16`   | ``1.6e-2`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.float32`    | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.float64`    | ``1e-7``   | ``1e-7`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.complex32`  | ``1e-3``   | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.complex64`  | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.complex128` | ``1e-7``   | ``1e-7`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.quint8`     | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.quint2x4`   | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.quint4x2`   | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.qint8`      | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | :attr:`~torch.qint32`     | ``1.3e-6`` | ``1e-5`` |
    +---------------------------+------------+----------+
    | other                     | ``0.0``    | ``0.0``  |
    +---------------------------+------------+----------+

    .. note::

        :func:`~torch.testing.assert_close` is highly configurable with strict default settings. Users are encouraged
        to :func:`~functools.partial` it to fit their use case. For example, if an equality check is needed, one might
        define an ``assert_equal`` that uses zero tolerances for every ``dtype`` by default:

        >>> import functools
        >>> assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=0)
        >>> assert_equal(1e-9, 1e-10)
        Traceback (most recent call last):
        ...
        AssertionError: Scalars are not equal!
        <BLANKLINE>
        Expected 1e-10 but got 1e-09.
        Absolute difference: 9.000000000000001e-10
        Relative difference: 9.0

    Examples:
        >>> # tensor to tensor comparison
        >>> expected = torch.tensor([1e0, 1e-1, 1e-2])
        >>> actual = torch.acos(torch.cos(expected))
        >>> torch.testing.assert_close(actual, expected)

        >>> # scalar to scalar comparison
        >>> import math
        >>> expected = math.sqrt(2.0)
        >>> actual = 2.0 / math.sqrt(2.0)
        >>> torch.testing.assert_close(actual, expected)

        >>> # numpy array to numpy array comparison
        >>> import numpy as np
        >>> expected = np.array([1e0, 1e-1, 1e-2])
        >>> actual = np.arccos(np.cos(expected))
        >>> torch.testing.assert_close(actual, expected)

        >>> # sequence to sequence comparison
        >>> import numpy as np
        >>> # The types of the sequences do not have to match. They only have to have the same
        >>> # length and their elements have to match.
        >>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)]
        >>> actual = tuple(expected)
        >>> torch.testing.assert_close(actual, expected)

        >>> # mapping to mapping comparison
        >>> from collections import OrderedDict
        >>> import numpy as np
        >>> foo = torch.tensor(1.0)
        >>> bar = 2.0
        >>> baz = np.array(3.0)
        >>> # The types and a possible ordering of mappings do not have to match. They only
        >>> # have to have the same set of keys and their elements have to match.
        >>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)])
        >>> actual = {"baz": baz, "bar": bar, "foo": foo}
        >>> torch.testing.assert_close(actual, expected)

        >>> expected = torch.tensor([1.0, 2.0, 3.0])
        >>> actual = expected.clone()
        >>> # By default, directly related instances can be compared
        >>> torch.testing.assert_close(torch.nn.Parameter(actual), expected)
        >>> # This check can be made more strict with allow_subclasses=False
        >>> torch.testing.assert_close(
        ...     torch.nn.Parameter(actual), expected, allow_subclasses=False
        ... )
        Traceback (most recent call last):
        ...
        TypeError: No comparison pair was able to handle inputs of type
        <class 'torch.nn.parameter.Parameter'> and <class 'torch.Tensor'>.
        >>> # If the inputs are not directly related, they are never considered close
        >>> torch.testing.assert_close(actual.numpy(), expected)
        Traceback (most recent call last):
        ...
        TypeError: No comparison pair was able to handle inputs of type <class 'numpy.ndarray'>
        and <class 'torch.Tensor'>.
        >>> # Exceptions to these rules are Python scalars. They can be checked regardless of
        >>> # their type if check_dtype=False.
        >>> torch.testing.assert_close(1.0, 1, check_dtype=False)

        >>> # NaN != NaN by default.
        >>> expected = torch.tensor(float("Nan"))
        >>> actual = expected.clone()
        >>> torch.testing.assert_close(actual, expected)
        Traceback (most recent call last):
        ...
        AssertionError: Scalars are not close!
        <BLANKLINE>
        Expected nan but got nan.
        Absolute difference: nan (up to 1e-05 allowed)
        Relative difference: nan (up to 1.3e-06 allowed)
        >>> torch.testing.assert_close(actual, expected, equal_nan=True)

        >>> expected = torch.tensor([1.0, 2.0, 3.0])
        >>> actual = torch.tensor([1.0, 4.0, 5.0])
        >>> # The default error message can be overwritten.
        >>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!")
        Traceback (most recent call last):
        ...
        AssertionError: Argh, the tensors are not close!
        >>> # If msg is a callable, it can be used to augment the generated message with
        >>> # extra information
        >>> torch.testing.assert_close(
        ...     actual, expected, msg=lambda msg: f"Header\n\n{msg}\n\nFooter"
        ... )
        Traceback (most recent call last):
        ...
        AssertionError: Header
        <BLANKLINE>
        Tensor-likes are not close!
        <BLANKLINE>
        Mismatched elements: 2 / 3 (66.7%)
        Greatest absolute difference: 2.0 at index (1,) (up to 1e-05 allowed)
        Greatest relative difference: 1.0 at index (1,) (up to 1.3e-06 allowed)
        <BLANKLINE>
        Footer
    """
    # Hide this function from `pytest`'s traceback
    __tracebackhide__ = True

    error_metas = not_close_error_metas(
        actual,
        expected,
        pair_types=(
            NonePair,
            BooleanPair,
            NumberPair,
            TensorLikePair,
        ),
        allow_subclasses=allow_subclasses,
        rtol=rtol,
        atol=atol,
        equal_nan=equal_nan,
        check_device=check_device,
        check_dtype=check_dtype,
        check_layout=check_layout,
        check_stride=check_stride,
        msg=msg,
    )

    if error_metas:
        # TODO: compose all metas into one AssertionError
        raise error_metas[0].to_error(msg)


@deprecated(
    "`torch.testing.assert_allclose()` is deprecated since 1.12 and will be removed in a future release. "
    "Please use `torch.testing.assert_close()` instead. "
    "You can find detailed upgrade instructions in https://github.com/pytorch/pytorch/issues/61844.",
    category=FutureWarning,
)
def assert_allclose(
    actual: Any,
    expected: Any,
    rtol: Optional[float] = None,
    atol: Optional[float] = None,
    equal_nan: bool = True,
    msg: str = "",
) -> None:
    """
    .. warning::

       :func:`torch.testing.assert_allclose` is deprecated since ``1.12`` and will be removed in a future release.
       Please use :func:`torch.testing.assert_close` instead. You can find detailed upgrade instructions
       `here <https://github.com/pytorch/pytorch/issues/61844>`_.
    """
    if not isinstance(actual, torch.Tensor):
        actual = torch.tensor(actual)
    if not isinstance(expected, torch.Tensor):
        expected = torch.tensor(expected, dtype=actual.dtype)

    if rtol is None and atol is None:
        rtol, atol = default_tolerances(
            actual,
            expected,
            dtype_precisions={
                torch.float16: (1e-3, 1e-3),
                torch.float32: (1e-4, 1e-5),
                torch.float64: (1e-5, 1e-8),
            },
        )

    torch.testing.assert_close(
        actual,
        expected,
        rtol=rtol,
        atol=atol,
        equal_nan=equal_nan,
        check_device=True,
        check_dtype=False,
        check_stride=False,
        msg=msg or None,
    )