File size: 63,290 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
# mypy: allow-untyped-defs
import abc
import cmath
import collections.abc
import contextlib
from collections.abc import Collection, Sequence
from typing import Any, Callable, NoReturn, Optional, Union
from typing_extensions import deprecated
import torch
try:
import numpy as np
HAS_NUMPY = True
except ModuleNotFoundError:
HAS_NUMPY = False
np = None # type: ignore[assignment]
class ErrorMeta(Exception):
"""Internal testing exception that makes that carries error metadata."""
def __init__(
self, type: type[Exception], msg: str, *, id: tuple[Any, ...] = ()
) -> None:
super().__init__(
"If you are a user and see this message during normal operation "
"please file an issue at https://github.com/pytorch/pytorch/issues. "
"If you are a developer and working on the comparison functions, please `raise ErrorMeta.to_error()` "
"for user facing errors."
)
self.type = type
self.msg = msg
self.id = id
def to_error(
self, msg: Optional[Union[str, Callable[[str], str]]] = None
) -> Exception:
if not isinstance(msg, str):
generated_msg = self.msg
if self.id:
generated_msg += f"\n\nThe failure occurred for item {''.join(str([item]) for item in self.id)}"
msg = msg(generated_msg) if callable(msg) else generated_msg
return self.type(msg)
# Some analysis of tolerance by logging tests from test_torch.py can be found in
# https://github.com/pytorch/pytorch/pull/32538.
# {dtype: (rtol, atol)}
_DTYPE_PRECISIONS = {
torch.float16: (0.001, 1e-5),
torch.bfloat16: (0.016, 1e-5),
torch.float32: (1.3e-6, 1e-5),
torch.float64: (1e-7, 1e-7),
torch.complex32: (0.001, 1e-5),
torch.complex64: (1.3e-6, 1e-5),
torch.complex128: (1e-7, 1e-7),
}
# The default tolerances of torch.float32 are used for quantized dtypes, because quantized tensors are compared in
# their dequantized and floating point representation. For more details see `TensorLikePair._compare_quantized_values`
_DTYPE_PRECISIONS.update(
dict.fromkeys(
(torch.quint8, torch.quint2x4, torch.quint4x2, torch.qint8, torch.qint32),
_DTYPE_PRECISIONS[torch.float32],
)
)
def default_tolerances(
*inputs: Union[torch.Tensor, torch.dtype],
dtype_precisions: Optional[dict[torch.dtype, tuple[float, float]]] = None,
) -> tuple[float, float]:
"""Returns the default absolute and relative testing tolerances for a set of inputs based on the dtype.
See :func:`assert_close` for a table of the default tolerance for each dtype.
Returns:
(Tuple[float, float]): Loosest tolerances of all input dtypes.
"""
dtypes = []
for input in inputs:
if isinstance(input, torch.Tensor):
dtypes.append(input.dtype)
elif isinstance(input, torch.dtype):
dtypes.append(input)
else:
raise TypeError(
f"Expected a torch.Tensor or a torch.dtype, but got {type(input)} instead."
)
dtype_precisions = dtype_precisions or _DTYPE_PRECISIONS
rtols, atols = zip(*[dtype_precisions.get(dtype, (0.0, 0.0)) for dtype in dtypes])
return max(rtols), max(atols)
def get_tolerances(
*inputs: Union[torch.Tensor, torch.dtype],
rtol: Optional[float],
atol: Optional[float],
id: tuple[Any, ...] = (),
) -> tuple[float, float]:
"""Gets absolute and relative to be used for numeric comparisons.
If both ``rtol`` and ``atol`` are specified, this is a no-op. If both are not specified, the return value of
:func:`default_tolerances` is used.
Raises:
ErrorMeta: With :class:`ValueError`, if only ``rtol`` or ``atol`` is specified.
Returns:
(Tuple[float, float]): Valid absolute and relative tolerances.
"""
if (rtol is None) ^ (atol is None):
# We require both tolerance to be omitted or specified, because specifying only one might lead to surprising
# results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0.
raise ErrorMeta(
ValueError,
f"Both 'rtol' and 'atol' must be either specified or omitted, "
f"but got no {'rtol' if rtol is None else 'atol'}.",
id=id,
)
elif rtol is not None and atol is not None:
return rtol, atol
else:
return default_tolerances(*inputs)
def _make_mismatch_msg(
*,
default_identifier: str,
identifier: Optional[Union[str, Callable[[str], str]]] = None,
extra: Optional[str] = None,
abs_diff: float,
abs_diff_idx: Optional[Union[int, tuple[int, ...]]] = None,
atol: float,
rel_diff: float,
rel_diff_idx: Optional[Union[int, tuple[int, ...]]] = None,
rtol: float,
) -> str:
"""Makes a mismatch error message for numeric values.
Args:
default_identifier (str): Default description of the compared values, e.g. "Tensor-likes".
identifier (Optional[Union[str, Callable[[str], str]]]): Optional identifier that overrides
``default_identifier``. Can be passed as callable in which case it will be called with
``default_identifier`` to create the description at runtime.
extra (Optional[str]): Extra information to be placed after the message header and the mismatch statistics.
abs_diff (float): Absolute difference.
abs_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the absolute difference.
atol (float): Allowed absolute tolerance. Will only be added to mismatch statistics if it or ``rtol`` are
``> 0``.
rel_diff (float): Relative difference.
rel_diff_idx (Optional[Union[int, Tuple[int, ...]]]): Optional index of the relative difference.
rtol (float): Allowed relative tolerance. Will only be added to mismatch statistics if it or ``atol`` are
``> 0``.
"""
equality = rtol == 0 and atol == 0
def make_diff_msg(
*,
type: str,
diff: float,
idx: Optional[Union[int, tuple[int, ...]]],
tol: float,
) -> str:
if idx is None:
msg = f"{type.title()} difference: {diff}"
else:
msg = f"Greatest {type} difference: {diff} at index {idx}"
if not equality:
msg += f" (up to {tol} allowed)"
return msg + "\n"
if identifier is None:
identifier = default_identifier
elif callable(identifier):
identifier = identifier(default_identifier)
msg = f"{identifier} are not {'equal' if equality else 'close'}!\n\n"
if extra:
msg += f"{extra.strip()}\n"
msg += make_diff_msg(type="absolute", diff=abs_diff, idx=abs_diff_idx, tol=atol)
msg += make_diff_msg(type="relative", diff=rel_diff, idx=rel_diff_idx, tol=rtol)
return msg.strip()
def make_scalar_mismatch_msg(
actual: Union[bool, int, float, complex],
expected: Union[bool, int, float, complex],
*,
rtol: float,
atol: float,
identifier: Optional[Union[str, Callable[[str], str]]] = None,
) -> str:
"""Makes a mismatch error message for scalars.
Args:
actual (Union[bool, int, float, complex]): Actual scalar.
expected (Union[bool, int, float, complex]): Expected scalar.
rtol (float): Relative tolerance.
atol (float): Absolute tolerance.
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the scalars. Can be passed
as callable in which case it will be called by the default value to create the description at runtime.
Defaults to "Scalars".
"""
abs_diff = abs(actual - expected)
rel_diff = float("inf") if expected == 0 else abs_diff / abs(expected)
return _make_mismatch_msg(
default_identifier="Scalars",
identifier=identifier,
extra=f"Expected {expected} but got {actual}.",
abs_diff=abs_diff,
atol=atol,
rel_diff=rel_diff,
rtol=rtol,
)
def make_tensor_mismatch_msg(
actual: torch.Tensor,
expected: torch.Tensor,
matches: torch.Tensor,
*,
rtol: float,
atol: float,
identifier: Optional[Union[str, Callable[[str], str]]] = None,
):
"""Makes a mismatch error message for tensors.
Args:
actual (torch.Tensor): Actual tensor.
expected (torch.Tensor): Expected tensor.
matches (torch.Tensor): Boolean mask of the same shape as ``actual`` and ``expected`` that indicates the
location of matches.
rtol (float): Relative tolerance.
atol (float): Absolute tolerance.
identifier (Optional[Union[str, Callable[[str], str]]]): Optional description for the tensors. Can be passed
as callable in which case it will be called by the default value to create the description at runtime.
Defaults to "Tensor-likes".
"""
def unravel_flat_index(flat_index: int) -> tuple[int, ...]:
if not matches.shape:
return ()
inverse_index = []
for size in matches.shape[::-1]:
div, mod = divmod(flat_index, size)
flat_index = div
inverse_index.append(mod)
return tuple(inverse_index[::-1])
number_of_elements = matches.numel()
total_mismatches = number_of_elements - int(torch.sum(matches))
extra = (
f"Mismatched elements: {total_mismatches} / {number_of_elements} "
f"({total_mismatches / number_of_elements:.1%})"
)
actual_flat = actual.flatten()
expected_flat = expected.flatten()
matches_flat = matches.flatten()
if not actual.dtype.is_floating_point and not actual.dtype.is_complex:
# TODO: Instead of always upcasting to int64, it would be sufficient to cast to the next higher dtype to avoid
# overflow
actual_flat = actual_flat.to(torch.int64)
expected_flat = expected_flat.to(torch.int64)
abs_diff = torch.abs(actual_flat - expected_flat)
# Ensure that only mismatches are used for the max_abs_diff computation
abs_diff[matches_flat] = 0
max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0)
rel_diff = abs_diff / torch.abs(expected_flat)
# Ensure that only mismatches are used for the max_rel_diff computation
rel_diff[matches_flat] = 0
max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0)
return _make_mismatch_msg(
default_identifier="Tensor-likes",
identifier=identifier,
extra=extra,
abs_diff=max_abs_diff.item(),
abs_diff_idx=unravel_flat_index(int(max_abs_diff_flat_idx)),
atol=atol,
rel_diff=max_rel_diff.item(),
rel_diff_idx=unravel_flat_index(int(max_rel_diff_flat_idx)),
rtol=rtol,
)
class UnsupportedInputs(Exception): # noqa: B903
"""Exception to be raised during the construction of a :class:`Pair` in case it doesn't support the inputs."""
class Pair(abc.ABC):
"""ABC for all comparison pairs to be used in conjunction with :func:`assert_equal`.
Each subclass needs to overwrite :meth:`Pair.compare` that performs the actual comparison.
Each pair receives **all** options, so select the ones applicable for the subclass and forward the rest to the
super class. Raising an :class:`UnsupportedInputs` during constructions indicates that the pair is not able to
handle the inputs and the next pair type will be tried.
All other errors should be raised as :class:`ErrorMeta`. After the instantiation, :meth:`Pair._make_error_meta` can
be used to automatically handle overwriting the message with a user supplied one and id handling.
"""
def __init__(
self,
actual: Any,
expected: Any,
*,
id: tuple[Any, ...] = (),
**unknown_parameters: Any,
) -> None:
self.actual = actual
self.expected = expected
self.id = id
self._unknown_parameters = unknown_parameters
@staticmethod
def _inputs_not_supported() -> NoReturn:
raise UnsupportedInputs
@staticmethod
def _check_inputs_isinstance(*inputs: Any, cls: Union[type, tuple[type, ...]]):
"""Checks if all inputs are instances of a given class and raise :class:`UnsupportedInputs` otherwise."""
if not all(isinstance(input, cls) for input in inputs):
Pair._inputs_not_supported()
def _fail(
self, type: type[Exception], msg: str, *, id: tuple[Any, ...] = ()
) -> NoReturn:
"""Raises an :class:`ErrorMeta` from a given exception type and message and the stored id.
.. warning::
If you use this before the ``super().__init__(...)`` call in the constructor, you have to pass the ``id``
explicitly.
"""
raise ErrorMeta(type, msg, id=self.id if not id and hasattr(self, "id") else id)
@abc.abstractmethod
def compare(self) -> None:
"""Compares the inputs and raises an :class`ErrorMeta` in case they mismatch."""
def extra_repr(self) -> Sequence[Union[str, tuple[str, Any]]]:
"""Returns extra information that will be included in the representation.
Should be overwritten by all subclasses that use additional options. The representation of the object will only
be surfaced in case we encounter an unexpected error and thus should help debug the issue. Can be a sequence of
key-value-pairs or attribute names.
"""
return []
def __repr__(self) -> str:
head = f"{type(self).__name__}("
tail = ")"
body = [
f" {name}={value!s},"
for name, value in [
("id", self.id),
("actual", self.actual),
("expected", self.expected),
*[
(extra, getattr(self, extra)) if isinstance(extra, str) else extra
for extra in self.extra_repr()
],
]
]
return "\n".join((head, *body, *tail))
class ObjectPair(Pair):
"""Pair for any type of inputs that will be compared with the `==` operator.
.. note::
Since this will instantiate for any kind of inputs, it should only be used as fallback after all other pairs
couldn't handle the inputs.
"""
def compare(self) -> None:
try:
equal = self.actual == self.expected
except Exception as error:
# We are not using `self._raise_error_meta` here since we need the exception chaining
raise ErrorMeta(
ValueError,
f"{self.actual} == {self.expected} failed with:\n{error}.",
id=self.id,
) from error
if not equal:
self._fail(AssertionError, f"{self.actual} != {self.expected}")
class NonePair(Pair):
"""Pair for ``None`` inputs."""
def __init__(self, actual: Any, expected: Any, **other_parameters: Any) -> None:
if not (actual is None or expected is None):
self._inputs_not_supported()
super().__init__(actual, expected, **other_parameters)
def compare(self) -> None:
if not (self.actual is None and self.expected is None):
self._fail(
AssertionError, f"None mismatch: {self.actual} is not {self.expected}"
)
class BooleanPair(Pair):
"""Pair for :class:`bool` inputs.
.. note::
If ``numpy`` is available, also handles :class:`numpy.bool_` inputs.
"""
def __init__(
self,
actual: Any,
expected: Any,
*,
id: tuple[Any, ...],
**other_parameters: Any,
) -> None:
actual, expected = self._process_inputs(actual, expected, id=id)
super().__init__(actual, expected, **other_parameters)
@property
def _supported_types(self) -> tuple[type, ...]:
cls: list[type] = [bool]
if HAS_NUMPY:
cls.append(np.bool_)
return tuple(cls)
def _process_inputs(
self, actual: Any, expected: Any, *, id: tuple[Any, ...]
) -> tuple[bool, bool]:
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
actual, expected = (
self._to_bool(bool_like, id=id) for bool_like in (actual, expected)
)
return actual, expected
def _to_bool(self, bool_like: Any, *, id: tuple[Any, ...]) -> bool:
if isinstance(bool_like, bool):
return bool_like
elif isinstance(bool_like, np.bool_):
return bool_like.item()
else:
raise ErrorMeta(
TypeError, f"Unknown boolean type {type(bool_like)}.", id=id
)
def compare(self) -> None:
if self.actual is not self.expected:
self._fail(
AssertionError,
f"Booleans mismatch: {self.actual} is not {self.expected}",
)
class NumberPair(Pair):
"""Pair for Python number (:class:`int`, :class:`float`, and :class:`complex`) inputs.
.. note::
If ``numpy`` is available, also handles :class:`numpy.number` inputs.
Kwargs:
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
values based on the type are selected with the below table.
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
values based on the type are selected with the below table.
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
check_dtype (bool): If ``True``, the type of the inputs will be checked for equality. Defaults to ``False``.
The following table displays correspondence between Python number type and the ``torch.dtype``'s. See
:func:`assert_close` for the corresponding tolerances.
+------------------+-------------------------------+
| ``type`` | corresponding ``torch.dtype`` |
+==================+===============================+
| :class:`int` | :attr:`~torch.int64` |
+------------------+-------------------------------+
| :class:`float` | :attr:`~torch.float64` |
+------------------+-------------------------------+
| :class:`complex` | :attr:`~torch.complex64` |
+------------------+-------------------------------+
"""
_TYPE_TO_DTYPE = {
int: torch.int64,
float: torch.float64,
complex: torch.complex128,
}
_NUMBER_TYPES = tuple(_TYPE_TO_DTYPE.keys())
def __init__(
self,
actual: Any,
expected: Any,
*,
id: tuple[Any, ...] = (),
rtol: Optional[float] = None,
atol: Optional[float] = None,
equal_nan: bool = False,
check_dtype: bool = False,
**other_parameters: Any,
) -> None:
actual, expected = self._process_inputs(actual, expected, id=id)
super().__init__(actual, expected, id=id, **other_parameters)
self.rtol, self.atol = get_tolerances(
*[self._TYPE_TO_DTYPE[type(input)] for input in (actual, expected)],
rtol=rtol,
atol=atol,
id=id,
)
self.equal_nan = equal_nan
self.check_dtype = check_dtype
@property
def _supported_types(self) -> tuple[type, ...]:
cls = list(self._NUMBER_TYPES)
if HAS_NUMPY:
cls.append(np.number)
return tuple(cls)
def _process_inputs(
self, actual: Any, expected: Any, *, id: tuple[Any, ...]
) -> tuple[Union[int, float, complex], Union[int, float, complex]]:
self._check_inputs_isinstance(actual, expected, cls=self._supported_types)
actual, expected = (
self._to_number(number_like, id=id) for number_like in (actual, expected)
)
return actual, expected
def _to_number(
self, number_like: Any, *, id: tuple[Any, ...]
) -> Union[int, float, complex]:
if HAS_NUMPY and isinstance(number_like, np.number):
return number_like.item()
elif isinstance(number_like, self._NUMBER_TYPES):
return number_like # type: ignore[return-value]
else:
raise ErrorMeta(
TypeError, f"Unknown number type {type(number_like)}.", id=id
)
def compare(self) -> None:
if self.check_dtype and type(self.actual) is not type(self.expected):
self._fail(
AssertionError,
f"The (d)types do not match: {type(self.actual)} != {type(self.expected)}.",
)
if self.actual == self.expected:
return
if self.equal_nan and cmath.isnan(self.actual) and cmath.isnan(self.expected):
return
abs_diff = abs(self.actual - self.expected)
tolerance = self.atol + self.rtol * abs(self.expected)
if cmath.isfinite(abs_diff) and abs_diff <= tolerance:
return
self._fail(
AssertionError,
make_scalar_mismatch_msg(
self.actual, self.expected, rtol=self.rtol, atol=self.atol
),
)
def extra_repr(self) -> Sequence[str]:
return (
"rtol",
"atol",
"equal_nan",
"check_dtype",
)
class TensorLikePair(Pair):
"""Pair for :class:`torch.Tensor`-like inputs.
Kwargs:
allow_subclasses (bool):
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
values based on the type are selected. See :func:assert_close: for details.
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
values based on the type are selected. See :func:assert_close: for details.
equal_nan (bool): If ``True``, two ``NaN`` values are considered equal. Defaults to ``False``.
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
:func:`torch.promote_types`) before being compared.
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
compared.
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
"""
def __init__(
self,
actual: Any,
expected: Any,
*,
id: tuple[Any, ...] = (),
allow_subclasses: bool = True,
rtol: Optional[float] = None,
atol: Optional[float] = None,
equal_nan: bool = False,
check_device: bool = True,
check_dtype: bool = True,
check_layout: bool = True,
check_stride: bool = False,
**other_parameters: Any,
):
actual, expected = self._process_inputs(
actual, expected, id=id, allow_subclasses=allow_subclasses
)
super().__init__(actual, expected, id=id, **other_parameters)
self.rtol, self.atol = get_tolerances(
actual, expected, rtol=rtol, atol=atol, id=self.id
)
self.equal_nan = equal_nan
self.check_device = check_device
self.check_dtype = check_dtype
self.check_layout = check_layout
self.check_stride = check_stride
def _process_inputs(
self, actual: Any, expected: Any, *, id: tuple[Any, ...], allow_subclasses: bool
) -> tuple[torch.Tensor, torch.Tensor]:
directly_related = isinstance(actual, type(expected)) or isinstance(
expected, type(actual)
)
if not directly_related:
self._inputs_not_supported()
if not allow_subclasses and type(actual) is not type(expected):
self._inputs_not_supported()
actual, expected = (self._to_tensor(input) for input in (actual, expected))
for tensor in (actual, expected):
self._check_supported(tensor, id=id)
return actual, expected
def _to_tensor(self, tensor_like: Any) -> torch.Tensor:
if isinstance(tensor_like, torch.Tensor):
return tensor_like
try:
return torch.as_tensor(tensor_like)
except Exception:
self._inputs_not_supported()
def _check_supported(self, tensor: torch.Tensor, *, id: tuple[Any, ...]) -> None:
if tensor.layout not in {
torch.strided,
torch.jagged,
torch.sparse_coo,
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
raise ErrorMeta(
ValueError, f"Unsupported tensor layout {tensor.layout}", id=id
)
def compare(self) -> None:
actual, expected = self.actual, self.expected
self._compare_attributes(actual, expected)
if any(input.device.type == "meta" for input in (actual, expected)):
return
actual, expected = self._equalize_attributes(actual, expected)
self._compare_values(actual, expected)
def _compare_attributes(
self,
actual: torch.Tensor,
expected: torch.Tensor,
) -> None:
"""Checks if the attributes of two tensors match.
Always checks
- the :attr:`~torch.Tensor.shape`,
- whether both inputs are quantized or not,
- and if they use the same quantization scheme.
Checks for
- :attr:`~torch.Tensor.layout`,
- :meth:`~torch.Tensor.stride`,
- :attr:`~torch.Tensor.device`, and
- :attr:`~torch.Tensor.dtype`
are optional and can be disabled through the corresponding ``check_*`` flag during construction of the pair.
"""
def raise_mismatch_error(
attribute_name: str, actual_value: Any, expected_value: Any
) -> NoReturn:
self._fail(
AssertionError,
f"The values for attribute '{attribute_name}' do not match: {actual_value} != {expected_value}.",
)
if actual.shape != expected.shape:
raise_mismatch_error("shape", actual.shape, expected.shape)
if actual.is_quantized != expected.is_quantized:
raise_mismatch_error(
"is_quantized", actual.is_quantized, expected.is_quantized
)
elif actual.is_quantized and actual.qscheme() != expected.qscheme():
raise_mismatch_error("qscheme()", actual.qscheme(), expected.qscheme())
if actual.layout != expected.layout:
if self.check_layout:
raise_mismatch_error("layout", actual.layout, expected.layout)
elif (
actual.layout == torch.strided
and self.check_stride
and actual.stride() != expected.stride()
):
raise_mismatch_error("stride()", actual.stride(), expected.stride())
if self.check_device and actual.device != expected.device:
raise_mismatch_error("device", actual.device, expected.device)
if self.check_dtype and actual.dtype != expected.dtype:
raise_mismatch_error("dtype", actual.dtype, expected.dtype)
def _equalize_attributes(
self, actual: torch.Tensor, expected: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""Equalizes some attributes of two tensors for value comparison.
If ``actual`` and ``expected`` are ...
- ... not on the same :attr:`~torch.Tensor.device`, they are moved CPU memory.
- ... not of the same ``dtype``, they are promoted to a common ``dtype`` (according to
:func:`torch.promote_types`).
- ... not of the same ``layout``, they are converted to strided tensors.
Args:
actual (Tensor): Actual tensor.
expected (Tensor): Expected tensor.
Returns:
(Tuple[Tensor, Tensor]): Equalized tensors.
"""
# The comparison logic uses operators currently not supported by the MPS backends.
# See https://github.com/pytorch/pytorch/issues/77144 for details.
# TODO: Remove this conversion as soon as all operations are supported natively by the MPS backend
if actual.is_mps or expected.is_mps: # type: ignore[attr-defined]
actual = actual.cpu()
expected = expected.cpu()
if actual.device != expected.device:
actual = actual.cpu()
expected = expected.cpu()
if actual.dtype != expected.dtype:
actual_dtype = actual.dtype
expected_dtype = expected.dtype
# For uint64, this is not sound in general, which is why promote_types doesn't
# allow it, but for easy testing, we're unlikely to get confused
# by large uint64 overflowing into negative int64
if actual_dtype in [torch.uint64, torch.uint32, torch.uint16]:
actual_dtype = torch.int64
if expected_dtype in [torch.uint64, torch.uint32, torch.uint16]:
expected_dtype = torch.int64
dtype = torch.promote_types(actual_dtype, expected_dtype)
actual = actual.to(dtype)
expected = expected.to(dtype)
if actual.layout != expected.layout:
# These checks are needed, since Tensor.to_dense() fails on tensors that are already strided
actual = actual.to_dense() if actual.layout != torch.strided else actual
expected = (
expected.to_dense() if expected.layout != torch.strided else expected
)
return actual, expected
def _compare_values(self, actual: torch.Tensor, expected: torch.Tensor) -> None:
if actual.is_quantized:
compare_fn = self._compare_quantized_values
elif actual.is_sparse:
compare_fn = self._compare_sparse_coo_values
elif actual.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
compare_fn = self._compare_sparse_compressed_values
elif actual.layout == torch.jagged:
actual, expected = actual.values(), expected.values()
compare_fn = self._compare_regular_values_close
else:
compare_fn = self._compare_regular_values_close
compare_fn(
actual, expected, rtol=self.rtol, atol=self.atol, equal_nan=self.equal_nan
)
def _compare_quantized_values(
self,
actual: torch.Tensor,
expected: torch.Tensor,
*,
rtol: float,
atol: float,
equal_nan: bool,
) -> None:
"""Compares quantized tensors by comparing the :meth:`~torch.Tensor.dequantize`'d variants for closeness.
.. note::
A detailed discussion about why only the dequantized variant is checked for closeness rather than checking
the individual quantization parameters for closeness and the integer representation for equality can be
found in https://github.com/pytorch/pytorch/issues/68548.
"""
return self._compare_regular_values_close(
actual.dequantize(),
expected.dequantize(),
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
identifier=lambda default_identifier: f"Quantized {default_identifier.lower()}",
)
def _compare_sparse_coo_values(
self,
actual: torch.Tensor,
expected: torch.Tensor,
*,
rtol: float,
atol: float,
equal_nan: bool,
) -> None:
"""Compares sparse COO tensors by comparing
- the number of sparse dimensions,
- the number of non-zero elements (nnz) for equality,
- the indices for equality, and
- the values for closeness.
"""
if actual.sparse_dim() != expected.sparse_dim():
self._fail(
AssertionError,
(
f"The number of sparse dimensions in sparse COO tensors does not match: "
f"{actual.sparse_dim()} != {expected.sparse_dim()}"
),
)
if actual._nnz() != expected._nnz():
self._fail(
AssertionError,
(
f"The number of specified values in sparse COO tensors does not match: "
f"{actual._nnz()} != {expected._nnz()}"
),
)
self._compare_regular_values_equal(
actual._indices(),
expected._indices(),
identifier="Sparse COO indices",
)
self._compare_regular_values_close(
actual._values(),
expected._values(),
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
identifier="Sparse COO values",
)
def _compare_sparse_compressed_values(
self,
actual: torch.Tensor,
expected: torch.Tensor,
*,
rtol: float,
atol: float,
equal_nan: bool,
) -> None:
"""Compares sparse compressed tensors by comparing
- the number of non-zero elements (nnz) for equality,
- the plain indices for equality,
- the compressed indices for equality, and
- the values for closeness.
"""
format_name, compressed_indices_method, plain_indices_method = {
torch.sparse_csr: (
"CSR",
torch.Tensor.crow_indices,
torch.Tensor.col_indices,
),
torch.sparse_csc: (
"CSC",
torch.Tensor.ccol_indices,
torch.Tensor.row_indices,
),
torch.sparse_bsr: (
"BSR",
torch.Tensor.crow_indices,
torch.Tensor.col_indices,
),
torch.sparse_bsc: (
"BSC",
torch.Tensor.ccol_indices,
torch.Tensor.row_indices,
),
}[actual.layout]
if actual._nnz() != expected._nnz():
self._fail(
AssertionError,
(
f"The number of specified values in sparse {format_name} tensors does not match: "
f"{actual._nnz()} != {expected._nnz()}"
),
)
# Compressed and plain indices in the CSR / CSC / BSR / BSC sparse formats can be `torch.int32` _or_
# `torch.int64`. While the same dtype is enforced for the compressed and plain indices of a single tensor, it
# can be different between two tensors. Thus, we need to convert them to the same dtype, or the comparison will
# fail.
actual_compressed_indices = compressed_indices_method(actual)
expected_compressed_indices = compressed_indices_method(expected)
indices_dtype = torch.promote_types(
actual_compressed_indices.dtype, expected_compressed_indices.dtype
)
self._compare_regular_values_equal(
actual_compressed_indices.to(indices_dtype),
expected_compressed_indices.to(indices_dtype),
identifier=f"Sparse {format_name} {compressed_indices_method.__name__}",
)
self._compare_regular_values_equal(
plain_indices_method(actual).to(indices_dtype),
plain_indices_method(expected).to(indices_dtype),
identifier=f"Sparse {format_name} {plain_indices_method.__name__}",
)
self._compare_regular_values_close(
actual.values(),
expected.values(),
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
identifier=f"Sparse {format_name} values",
)
def _compare_regular_values_equal(
self,
actual: torch.Tensor,
expected: torch.Tensor,
*,
equal_nan: bool = False,
identifier: Optional[Union[str, Callable[[str], str]]] = None,
) -> None:
"""Checks if the values of two tensors are equal."""
self._compare_regular_values_close(
actual, expected, rtol=0, atol=0, equal_nan=equal_nan, identifier=identifier
)
def _compare_regular_values_close(
self,
actual: torch.Tensor,
expected: torch.Tensor,
*,
rtol: float,
atol: float,
equal_nan: bool,
identifier: Optional[Union[str, Callable[[str], str]]] = None,
) -> None:
"""Checks if the values of two tensors are close up to a desired tolerance."""
matches = torch.isclose(
actual, expected, rtol=rtol, atol=atol, equal_nan=equal_nan
)
if torch.all(matches):
return
if actual.shape == torch.Size([]):
msg = make_scalar_mismatch_msg(
actual.item(),
expected.item(),
rtol=rtol,
atol=atol,
identifier=identifier,
)
else:
msg = make_tensor_mismatch_msg(
actual, expected, matches, rtol=rtol, atol=atol, identifier=identifier
)
self._fail(AssertionError, msg)
def extra_repr(self) -> Sequence[str]:
return (
"rtol",
"atol",
"equal_nan",
"check_device",
"check_dtype",
"check_layout",
"check_stride",
)
def originate_pairs(
actual: Any,
expected: Any,
*,
pair_types: Sequence[type[Pair]],
sequence_types: tuple[type, ...] = (collections.abc.Sequence,),
mapping_types: tuple[type, ...] = (collections.abc.Mapping,),
id: tuple[Any, ...] = (),
**options: Any,
) -> list[Pair]:
"""Originates pairs from the individual inputs.
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
:class:`~collections.abc.Mapping`'s. In this case the pairs are originated by recursing through them.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
pair_types (Sequence[Type[Pair]]): Sequence of pair types that will be tried to construct with the inputs.
First successful pair will be used.
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
id (Tuple[Any, ...]): Optional id of a pair that will be included in an error message.
**options (Any): Options passed to each pair during construction.
Raises:
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Sequence`'s, but their
length does not match.
ErrorMeta: With :class`AssertionError`, if the inputs are :class:`~collections.abc.Mapping`'s, but their set of
keys do not match.
ErrorMeta: With :class`TypeError`, if no pair is able to handle the inputs.
ErrorMeta: With any expected exception that happens during the construction of a pair.
Returns:
(List[Pair]): Originated pairs.
"""
# We explicitly exclude str's here since they are self-referential and would cause an infinite recursion loop:
# "a" == "a"[0][0]...
if (
isinstance(actual, sequence_types)
and not isinstance(actual, str)
and isinstance(expected, sequence_types)
and not isinstance(expected, str)
):
actual_len = len(actual) # type: ignore[arg-type]
expected_len = len(expected) # type: ignore[arg-type]
if actual_len != expected_len:
raise ErrorMeta(
AssertionError,
f"The length of the sequences mismatch: {actual_len} != {expected_len}",
id=id,
)
pairs = []
for idx in range(actual_len):
pairs.extend(
originate_pairs(
actual[idx], # type: ignore[index]
expected[idx], # type: ignore[index]
pair_types=pair_types,
sequence_types=sequence_types,
mapping_types=mapping_types,
id=(*id, idx),
**options,
)
)
return pairs
elif isinstance(actual, mapping_types) and isinstance(expected, mapping_types):
actual_keys = set(actual.keys()) # type: ignore[attr-defined]
expected_keys = set(expected.keys()) # type: ignore[attr-defined]
if actual_keys != expected_keys:
missing_keys = expected_keys - actual_keys
additional_keys = actual_keys - expected_keys
raise ErrorMeta(
AssertionError,
(
f"The keys of the mappings do not match:\n"
f"Missing keys in the actual mapping: {sorted(missing_keys)}\n"
f"Additional keys in the actual mapping: {sorted(additional_keys)}"
),
id=id,
)
keys: Collection = actual_keys
# Since the origination aborts after the first failure, we try to be deterministic
with contextlib.suppress(Exception):
keys = sorted(keys)
pairs = []
for key in keys:
pairs.extend(
originate_pairs(
actual[key], # type: ignore[index]
expected[key], # type: ignore[index]
pair_types=pair_types,
sequence_types=sequence_types,
mapping_types=mapping_types,
id=(*id, key),
**options,
)
)
return pairs
else:
for pair_type in pair_types:
try:
return [pair_type(actual, expected, id=id, **options)]
# Raising an `UnsupportedInputs` during origination indicates that the pair type is not able to handle the
# inputs. Thus, we try the next pair type.
except UnsupportedInputs:
continue
# Raising an `ErrorMeta` during origination is the orderly way to abort and so we simply re-raise it. This
# is only in a separate branch, because the one below would also except it.
except ErrorMeta:
raise
# Raising any other exception during origination is unexpected and will give some extra information about
# what happened. If applicable, the exception should be expected in the future.
except Exception as error:
raise RuntimeError(
f"Originating a {pair_type.__name__}() at item {''.join(str([item]) for item in id)} with\n\n"
f"{type(actual).__name__}(): {actual}\n\n"
f"and\n\n"
f"{type(expected).__name__}(): {expected}\n\n"
f"resulted in the unexpected exception above. "
f"If you are a user and see this message during normal operation "
"please file an issue at https://github.com/pytorch/pytorch/issues. "
"If you are a developer and working on the comparison functions, "
"please except the previous error and raise an expressive `ErrorMeta` instead."
) from error
else:
raise ErrorMeta(
TypeError,
f"No comparison pair was able to handle inputs of type {type(actual)} and {type(expected)}.",
id=id,
)
def not_close_error_metas(
actual: Any,
expected: Any,
*,
pair_types: Sequence[type[Pair]] = (ObjectPair,),
sequence_types: tuple[type, ...] = (collections.abc.Sequence,),
mapping_types: tuple[type, ...] = (collections.abc.Mapping,),
**options: Any,
) -> list[ErrorMeta]:
"""Asserts that inputs are equal.
``actual`` and ``expected`` can be possibly nested :class:`~collections.abc.Sequence`'s or
:class:`~collections.abc.Mapping`'s. In this case the comparison happens elementwise by recursing through them.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
pair_types (Sequence[Type[Pair]]): Sequence of :class:`Pair` types that will be tried to construct with the
inputs. First successful pair will be used. Defaults to only using :class:`ObjectPair`.
sequence_types (Tuple[Type, ...]): Optional types treated as sequences that will be checked elementwise.
mapping_types (Tuple[Type, ...]): Optional types treated as mappings that will be checked elementwise.
**options (Any): Options passed to each pair during construction.
"""
# Hide this function from `pytest`'s traceback
__tracebackhide__ = True
try:
pairs = originate_pairs(
actual,
expected,
pair_types=pair_types,
sequence_types=sequence_types,
mapping_types=mapping_types,
**options,
)
except ErrorMeta as error_meta:
# Explicitly raising from None to hide the internal traceback
raise error_meta.to_error() from None # noqa: RSE102
error_metas: list[ErrorMeta] = []
for pair in pairs:
try:
pair.compare()
except ErrorMeta as error_meta:
error_metas.append(error_meta)
# Raising any exception besides `ErrorMeta` while comparing is unexpected and will give some extra information
# about what happened. If applicable, the exception should be expected in the future.
except Exception as error:
raise RuntimeError(
f"Comparing\n\n"
f"{pair}\n\n"
f"resulted in the unexpected exception above. "
f"If you are a user and see this message during normal operation "
"please file an issue at https://github.com/pytorch/pytorch/issues. "
"If you are a developer and working on the comparison functions, "
"please except the previous error and raise an expressive `ErrorMeta` instead."
) from error
# [ErrorMeta Cycles]
# ErrorMeta objects in this list capture
# tracebacks that refer to the frame of this function.
# The local variable `error_metas` refers to the error meta
# objects, creating a reference cycle. Frames in the traceback
# would not get freed until cycle collection, leaking cuda memory in tests.
# We break the cycle by removing the reference to the error_meta objects
# from this frame as it returns.
error_metas = [error_metas]
return error_metas.pop()
def assert_close(
actual: Any,
expected: Any,
*,
allow_subclasses: bool = True,
rtol: Optional[float] = None,
atol: Optional[float] = None,
equal_nan: bool = False,
check_device: bool = True,
check_dtype: bool = True,
check_layout: bool = True,
check_stride: bool = False,
msg: Optional[Union[str, Callable[[str], str]]] = None,
):
r"""Asserts that ``actual`` and ``expected`` are close.
If ``actual`` and ``expected`` are strided, non-quantized, real-valued, and finite, they are considered close if
.. math::
\lvert \text{actual} - \text{expected} \rvert \le \texttt{atol} + \texttt{rtol} \cdot \lvert \text{expected} \rvert
Non-finite values (``-inf`` and ``inf``) are only considered close if and only if they are equal. ``NaN``'s are
only considered equal to each other if ``equal_nan`` is ``True``.
In addition, they are only considered close if they have the same
- :attr:`~torch.Tensor.device` (if ``check_device`` is ``True``),
- ``dtype`` (if ``check_dtype`` is ``True``),
- ``layout`` (if ``check_layout`` is ``True``), and
- stride (if ``check_stride`` is ``True``).
If either ``actual`` or ``expected`` is a meta tensor, only the attribute checks will be performed.
If ``actual`` and ``expected`` are sparse (either having COO, CSR, CSC, BSR, or BSC layout), their strided members are
checked individually. Indices, namely ``indices`` for COO, ``crow_indices`` and ``col_indices`` for CSR and BSR,
or ``ccol_indices`` and ``row_indices`` for CSC and BSC layouts, respectively,
are always checked for equality whereas the values are checked for closeness according to the definition above.
If ``actual`` and ``expected`` are quantized, they are considered close if they have the same
:meth:`~torch.Tensor.qscheme` and the result of :meth:`~torch.Tensor.dequantize` is close according to the
definition above.
``actual`` and ``expected`` can be :class:`~torch.Tensor`'s or any tensor-or-scalar-likes from which
:class:`torch.Tensor`'s can be constructed with :func:`torch.as_tensor`. Except for Python scalars the input types
have to be directly related. In addition, ``actual`` and ``expected`` can be :class:`~collections.abc.Sequence`'s
or :class:`~collections.abc.Mapping`'s in which case they are considered close if their structure matches and all
their elements are considered close according to the above definition.
.. note::
Python scalars are an exception to the type relation requirement, because their :func:`type`, i.e.
:class:`int`, :class:`float`, and :class:`complex`, is equivalent to the ``dtype`` of a tensor-like. Thus,
Python scalars of different types can be checked, but require ``check_dtype=False``.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
allow_subclasses (bool): If ``True`` (default) and except for Python scalars, inputs of directly related types
are allowed. Otherwise type equality is required.
rtol (Optional[float]): Relative tolerance. If specified ``atol`` must also be specified. If omitted, default
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
atol (Optional[float]): Absolute tolerance. If specified ``rtol`` must also be specified. If omitted, default
values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
equal_nan (Union[bool, str]): If ``True``, two ``NaN`` values will be considered equal.
check_device (bool): If ``True`` (default), asserts that corresponding tensors are on the same
:attr:`~torch.Tensor.device`. If this check is disabled, tensors on different
:attr:`~torch.Tensor.device`'s are moved to the CPU before being compared.
check_dtype (bool): If ``True`` (default), asserts that corresponding tensors have the same ``dtype``. If this
check is disabled, tensors with different ``dtype``'s are promoted to a common ``dtype`` (according to
:func:`torch.promote_types`) before being compared.
check_layout (bool): If ``True`` (default), asserts that corresponding tensors have the same ``layout``. If this
check is disabled, tensors with different ``layout``'s are converted to strided tensors before being
compared.
check_stride (bool): If ``True`` and corresponding tensors are strided, asserts that they have the same stride.
msg (Optional[Union[str, Callable[[str], str]]]): Optional error message to use in case a failure occurs during
the comparison. Can also passed as callable in which case it will be called with the generated message and
should return the new message.
Raises:
ValueError: If no :class:`torch.Tensor` can be constructed from an input.
ValueError: If only ``rtol`` or ``atol`` is specified.
AssertionError: If corresponding inputs are not Python scalars and are not directly related.
AssertionError: If ``allow_subclasses`` is ``False``, but corresponding inputs are not Python scalars and have
different types.
AssertionError: If the inputs are :class:`~collections.abc.Sequence`'s, but their length does not match.
AssertionError: If the inputs are :class:`~collections.abc.Mapping`'s, but their set of keys do not match.
AssertionError: If corresponding tensors do not have the same :attr:`~torch.Tensor.shape`.
AssertionError: If ``check_layout`` is ``True``, but corresponding tensors do not have the same
:attr:`~torch.Tensor.layout`.
AssertionError: If only one of corresponding tensors is quantized.
AssertionError: If corresponding tensors are quantized, but have different :meth:`~torch.Tensor.qscheme`'s.
AssertionError: If ``check_device`` is ``True``, but corresponding tensors are not on the same
:attr:`~torch.Tensor.device`.
AssertionError: If ``check_dtype`` is ``True``, but corresponding tensors do not have the same ``dtype``.
AssertionError: If ``check_stride`` is ``True``, but corresponding strided tensors do not have the same stride.
AssertionError: If the values of corresponding tensors are not close according to the definition above.
The following table displays the default ``rtol`` and ``atol`` for different ``dtype``'s. In case of mismatching
``dtype``'s, the maximum of both tolerances is used.
+---------------------------+------------+----------+
| ``dtype`` | ``rtol`` | ``atol`` |
+===========================+============+==========+
| :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` |
+---------------------------+------------+----------+
| :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` |
+---------------------------+------------+----------+
| :attr:`~torch.quint8` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.quint2x4` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.quint4x2` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.qint8` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| :attr:`~torch.qint32` | ``1.3e-6`` | ``1e-5`` |
+---------------------------+------------+----------+
| other | ``0.0`` | ``0.0`` |
+---------------------------+------------+----------+
.. note::
:func:`~torch.testing.assert_close` is highly configurable with strict default settings. Users are encouraged
to :func:`~functools.partial` it to fit their use case. For example, if an equality check is needed, one might
define an ``assert_equal`` that uses zero tolerances for every ``dtype`` by default:
>>> import functools
>>> assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=0)
>>> assert_equal(1e-9, 1e-10)
Traceback (most recent call last):
...
AssertionError: Scalars are not equal!
<BLANKLINE>
Expected 1e-10 but got 1e-09.
Absolute difference: 9.000000000000001e-10
Relative difference: 9.0
Examples:
>>> # tensor to tensor comparison
>>> expected = torch.tensor([1e0, 1e-1, 1e-2])
>>> actual = torch.acos(torch.cos(expected))
>>> torch.testing.assert_close(actual, expected)
>>> # scalar to scalar comparison
>>> import math
>>> expected = math.sqrt(2.0)
>>> actual = 2.0 / math.sqrt(2.0)
>>> torch.testing.assert_close(actual, expected)
>>> # numpy array to numpy array comparison
>>> import numpy as np
>>> expected = np.array([1e0, 1e-1, 1e-2])
>>> actual = np.arccos(np.cos(expected))
>>> torch.testing.assert_close(actual, expected)
>>> # sequence to sequence comparison
>>> import numpy as np
>>> # The types of the sequences do not have to match. They only have to have the same
>>> # length and their elements have to match.
>>> expected = [torch.tensor([1.0]), 2.0, np.array(3.0)]
>>> actual = tuple(expected)
>>> torch.testing.assert_close(actual, expected)
>>> # mapping to mapping comparison
>>> from collections import OrderedDict
>>> import numpy as np
>>> foo = torch.tensor(1.0)
>>> bar = 2.0
>>> baz = np.array(3.0)
>>> # The types and a possible ordering of mappings do not have to match. They only
>>> # have to have the same set of keys and their elements have to match.
>>> expected = OrderedDict([("foo", foo), ("bar", bar), ("baz", baz)])
>>> actual = {"baz": baz, "bar": bar, "foo": foo}
>>> torch.testing.assert_close(actual, expected)
>>> expected = torch.tensor([1.0, 2.0, 3.0])
>>> actual = expected.clone()
>>> # By default, directly related instances can be compared
>>> torch.testing.assert_close(torch.nn.Parameter(actual), expected)
>>> # This check can be made more strict with allow_subclasses=False
>>> torch.testing.assert_close(
... torch.nn.Parameter(actual), expected, allow_subclasses=False
... )
Traceback (most recent call last):
...
TypeError: No comparison pair was able to handle inputs of type
<class 'torch.nn.parameter.Parameter'> and <class 'torch.Tensor'>.
>>> # If the inputs are not directly related, they are never considered close
>>> torch.testing.assert_close(actual.numpy(), expected)
Traceback (most recent call last):
...
TypeError: No comparison pair was able to handle inputs of type <class 'numpy.ndarray'>
and <class 'torch.Tensor'>.
>>> # Exceptions to these rules are Python scalars. They can be checked regardless of
>>> # their type if check_dtype=False.
>>> torch.testing.assert_close(1.0, 1, check_dtype=False)
>>> # NaN != NaN by default.
>>> expected = torch.tensor(float("Nan"))
>>> actual = expected.clone()
>>> torch.testing.assert_close(actual, expected)
Traceback (most recent call last):
...
AssertionError: Scalars are not close!
<BLANKLINE>
Expected nan but got nan.
Absolute difference: nan (up to 1e-05 allowed)
Relative difference: nan (up to 1.3e-06 allowed)
>>> torch.testing.assert_close(actual, expected, equal_nan=True)
>>> expected = torch.tensor([1.0, 2.0, 3.0])
>>> actual = torch.tensor([1.0, 4.0, 5.0])
>>> # The default error message can be overwritten.
>>> torch.testing.assert_close(actual, expected, msg="Argh, the tensors are not close!")
Traceback (most recent call last):
...
AssertionError: Argh, the tensors are not close!
>>> # If msg is a callable, it can be used to augment the generated message with
>>> # extra information
>>> torch.testing.assert_close(
... actual, expected, msg=lambda msg: f"Header\n\n{msg}\n\nFooter"
... )
Traceback (most recent call last):
...
AssertionError: Header
<BLANKLINE>
Tensor-likes are not close!
<BLANKLINE>
Mismatched elements: 2 / 3 (66.7%)
Greatest absolute difference: 2.0 at index (1,) (up to 1e-05 allowed)
Greatest relative difference: 1.0 at index (1,) (up to 1.3e-06 allowed)
<BLANKLINE>
Footer
"""
# Hide this function from `pytest`'s traceback
__tracebackhide__ = True
error_metas = not_close_error_metas(
actual,
expected,
pair_types=(
NonePair,
BooleanPair,
NumberPair,
TensorLikePair,
),
allow_subclasses=allow_subclasses,
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
check_device=check_device,
check_dtype=check_dtype,
check_layout=check_layout,
check_stride=check_stride,
msg=msg,
)
if error_metas:
# TODO: compose all metas into one AssertionError
raise error_metas[0].to_error(msg)
@deprecated(
"`torch.testing.assert_allclose()` is deprecated since 1.12 and will be removed in a future release. "
"Please use `torch.testing.assert_close()` instead. "
"You can find detailed upgrade instructions in https://github.com/pytorch/pytorch/issues/61844.",
category=FutureWarning,
)
def assert_allclose(
actual: Any,
expected: Any,
rtol: Optional[float] = None,
atol: Optional[float] = None,
equal_nan: bool = True,
msg: str = "",
) -> None:
"""
.. warning::
:func:`torch.testing.assert_allclose` is deprecated since ``1.12`` and will be removed in a future release.
Please use :func:`torch.testing.assert_close` instead. You can find detailed upgrade instructions
`here <https://github.com/pytorch/pytorch/issues/61844>`_.
"""
if not isinstance(actual, torch.Tensor):
actual = torch.tensor(actual)
if not isinstance(expected, torch.Tensor):
expected = torch.tensor(expected, dtype=actual.dtype)
if rtol is None and atol is None:
rtol, atol = default_tolerances(
actual,
expected,
dtype_precisions={
torch.float16: (1e-3, 1e-3),
torch.float32: (1e-4, 1e-5),
torch.float64: (1e-5, 1e-8),
},
)
torch.testing.assert_close(
actual,
expected,
rtol=rtol,
atol=atol,
equal_nan=equal_nan,
check_device=True,
check_dtype=False,
check_stride=False,
msg=msg or None,
)
|