File size: 52,150 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 |
# mypy: allow-untyped-defs
from __future__ import annotations
import collections
import copy
import functools
import io
import threading
import warnings
from typing import Any, cast, Optional as _Optional, TYPE_CHECKING, TypeVar, Union
from typing_extensions import Self
import torch
from torch._utils import _to, _type
from torch.types import _bool, _int, Storage
if TYPE_CHECKING:
from torch._prims_common import DeviceLikeType
__all__ = ["TypedStorage", "UntypedStorage"]
try:
import numpy as np
HAS_NUMPY = True
except ModuleNotFoundError:
HAS_NUMPY = False
np = None # type: ignore[assignment]
_share_memory_lock = threading.Lock()
_share_memory_map: dict[int, threading.RLock] = {}
T = TypeVar("T", bound="Union[_StorageBase, TypedStorage]")
class _StorageBase:
_cdata: Any
is_sparse: _bool = False
is_sparse_csr: _bool = False
device: torch.device
# Used when
# (1) stashing FakeTensor device onto storage in torch.serialization.skip_data
# (2) stashing device onto storage to propagate to FakeTensor when torch.load under FakeTensorMode
_fake_device: _Optional[torch.device] = None
# Used when loading with FakeTensorMode to give information about offset of storage in torch.saved-file
_checkpoint_offset: _Optional[int] = None
def __init__(self, *args, **kwargs):
pass
def __len__(self) -> _int:
raise NotImplementedError
def __getitem__(self, idx):
raise NotImplementedError
def __setitem__(self, *args, **kwargs):
raise NotImplementedError
def copy_(self, source: T, non_blocking: _Optional[_bool] = None) -> T:
raise NotImplementedError
def new(self) -> Union[_StorageBase, TypedStorage]:
raise NotImplementedError
def nbytes(self) -> _int:
raise NotImplementedError
def size(self) -> _int:
return self.nbytes()
def type(
self, dtype: _Optional[str] = None, non_blocking: _bool = False
) -> Union[_StorageBase, TypedStorage]:
return _type(self, dtype, non_blocking)
def cuda(
self, device=None, non_blocking=False
) -> Union[_StorageBase, TypedStorage]:
"""Returns a copy of this object in CUDA memory.
If this object is already in CUDA memory and on the correct device, then
no copy is performed and the original object is returned.
Args:
device (int): The destination GPU id. Defaults to the current device.
non_blocking (bool): If ``True`` and the source is in pinned memory,
the copy will be asynchronous with respect to the host. Otherwise,
the argument has no effect.
"""
device2 = torch.device("cuda", device) if device else torch.device("cuda")
return self.to(device=device2, non_blocking=non_blocking)
def hpu(self, device=None, non_blocking=False) -> Union[_StorageBase, TypedStorage]:
"""Returns a copy of this object in HPU memory.
If this object is already in HPU memory and on the correct device, then
no copy is performed and the original object is returned.
Args:
device (int): The destination HPU id. Defaults to the current device.
non_blocking (bool): If ``True`` and the source is in pinned memory,
the copy will be asynchronous with respect to the host. Otherwise,
the argument has no effect.
"""
device2 = torch.device("hpu", device) if device else torch.device("hpu")
return self.to(device=device2, non_blocking=non_blocking)
def element_size(self) -> _int:
raise NotImplementedError
def get_device(self) -> _int:
return self.device.index
def data_ptr(self) -> _int:
raise NotImplementedError
def resizable(self) -> _bool:
raise NotImplementedError
# Defined in torch/csrc/generic/StorageSharing.cpp
def _share_filename_cpu_(self, *args, **kwargs):
raise NotImplementedError
def _share_fd_cpu_(self, *args, **kwargs):
raise NotImplementedError
@classmethod
def _new_using_filename_cpu(cls, size: _int) -> Self:
raise NotImplementedError
@classmethod
def _new_using_fd_cpu(cls, size: _int) -> Self:
raise NotImplementedError
@classmethod
def from_buffer(cls, *args, **kwargs) -> Self:
raise NotImplementedError
@classmethod
def _new_shared_filename_cpu(
cls,
manager,
obj,
size,
*,
device=None,
dtype=None,
) -> Self:
raise NotImplementedError
@classmethod
def _release_ipc_counter_cuda(cls, *args, **kwargs) -> Self:
raise NotImplementedError
@classmethod
def _new_with_weak_ptr(cls, *args, **kwargs) -> Self:
raise NotImplementedError
def _shared_decref(self) -> Union[_StorageBase, TypedStorage]:
raise NotImplementedError
def _write_file(self, *args, **kwargs):
raise NotImplementedError
def resize_(self, size: _int):
raise NotImplementedError
def _weak_ref(self, *args, **kwargs) -> Union[_StorageBase, TypedStorage]:
raise NotImplementedError
def _set_from_file(self, *args, **kwargs):
raise NotImplementedError
def _set_cdata(self, *args, **kwargs):
raise NotImplementedError
def _share_cuda_(self, *args, **kwargs):
raise NotImplementedError
def is_shared(self) -> _bool:
raise NotImplementedError
@classmethod
def _new_shared_cuda(cls, *args, **kwargs) -> Self:
raise NotImplementedError
def _shared_incref(self, *args, **kwargs):
raise NotImplementedError
@classmethod
def _free_weak_ref(cls, *args, **kwargs):
raise NotImplementedError
@property
def is_cuda(self):
raise NotImplementedError
@property
def is_hpu(self):
raise NotImplementedError
@classmethod
def from_file(cls, filename, shared, nbytes) -> Union[_StorageBase, TypedStorage]:
raise NotImplementedError
@classmethod
def _expired(cls, *args, **kwargs) -> Union[_StorageBase, TypedStorage]:
raise NotImplementedError
def _byteswap(self, *args, **kwargs):
raise NotImplementedError
def _get_filename(self, *args, **kwargs) -> _Optional[str]:
raise NotImplementedError
def __repr__(self):
info_str = f"[{torch.typename(self)}(device={self.device}) of size {len(self)}]"
if self.device.type == "meta":
return "...\n" + info_str
data_str = " " + "\n ".join(str(self[i]) for i in range(self.size()))
return data_str + "\n" + info_str
def __iter__(self):
return iter(self[i] for i in range(self.size()))
def __copy__(self):
return self.clone()
def __deepcopy__(self, memo):
memo = memo.setdefault("torch", {})
if self._cdata in memo:
return memo[self._cdata]
new_storage = self.clone()
memo[self._cdata] = new_storage
return new_storage
def __reduce__(self):
b = io.BytesIO()
torch.save(self, b, _use_new_zipfile_serialization=False)
return (_load_from_bytes, (b.getvalue(),))
def __sizeof__(self):
return super().__sizeof__() + self.size()
def clone(self):
"""Return a copy of this storage."""
return type(self)(self.nbytes(), device=self.device).copy_(self)
def tolist(self):
"""Return a list containing the elements of this storage."""
return list(self)
def cpu(self):
"""Return a CPU copy of this storage if it's not already on the CPU."""
if self.device.type != "cpu":
return torch.UntypedStorage(self.size()).copy_(self, False)
return self
def mps(self):
"""Return a MPS copy of this storage if it's not already on the MPS."""
if self.device.type != "mps":
return torch.UntypedStorage(self.size(), device="mps").copy_(self, False)
return self
def _to(self, dtype):
if not isinstance(dtype, torch.dtype):
raise TypeError(f"Argument 'dtype' must be torch.dtype, not {type(dtype)}")
storage = (
torch.tensor([], dtype=torch.uint8, device=self.device)
.set_(cast(Storage, self))
.to(dtype)
._typed_storage()
)
if storage.data_ptr() == self.data_ptr():
storage = storage.clone()
return storage
def to(self, *, device: DeviceLikeType, non_blocking: _bool = False):
if not isinstance(device, torch.device):
device = torch.device(device)
return _to(self, device, non_blocking)
def double(self):
"""Casts this storage to double type."""
return self._to(torch.double)
def float(self):
"""Casts this storage to float type."""
return self._to(torch.float)
def half(self):
"""Casts this storage to half type."""
return self._to(torch.half)
def long(self):
"""Casts this storage to long type."""
return self._to(torch.long)
def int(self):
"""Casts this storage to int type."""
return self._to(torch.int)
def short(self):
"""Casts this storage to short type."""
return self._to(torch.short)
def char(self):
"""Casts this storage to char type."""
return self._to(torch.int8)
def byte(self):
"""Casts this storage to byte type."""
return self._to(torch.uint8)
def bool(self):
"""Casts this storage to bool type."""
return self._to(torch.bool)
def bfloat16(self):
"""Casts this storage to bfloat16 type."""
return self._to(torch.bfloat16)
def complex_double(self):
"""Casts this storage to complex double type."""
return self._to(torch.cdouble)
def complex_float(self):
"""Casts this storage to complex float type."""
return self._to(torch.cfloat)
def float8_e5m2(self):
"""Casts this storage to float8_e5m2 type"""
return self._to(torch.float8_e5m2)
def float8_e4m3fn(self):
"""Casts this storage to float8_e4m3fn type"""
return self._to(torch.float8_e4m3fn)
def float8_e5m2fnuz(self):
"""Casts this storage to float8_e5m2fnuz type"""
return self._to(torch.float8_e5m2fnuz)
def float8_e4m3fnuz(self):
"""Casts this storage to float8_e4m3fnuz type"""
return self._to(torch.float8_e4m3fnuz)
def is_pinned(self, device: Union[str, torch.device] = "cuda"):
r"""Determine whether the CPU storage is already pinned on device.
Args:
device (str or torch.device): The device to pin memory on (default: ``'cuda'``).
This argument is discouraged and subject to deprecated.
Returns:
A boolean variable.
"""
return (
torch.tensor([], dtype=torch.uint8, device=self.device)
.set_(cast(Storage, self))
.is_pinned(device)
)
def pin_memory(self, device: Union[str, torch.device] = "cuda"):
r"""Copy the CPU storage to pinned memory, if it's not already pinned.
Args:
device (str or torch.device): The device to pin memory on (default: ``'cuda'``).
This argument is discouraged and subject to deprecated.
Returns:
A pinned CPU storage.
"""
if self.device.type != "cpu":
raise TypeError(f"cannot pin '{self.type()}' only CPU memory can be pinned")
pinned_tensor = (
torch.tensor([], dtype=torch.uint8, device=self.device)
.set_(cast(Storage, self))
.pin_memory(device)
)
return pinned_tensor.untyped_storage()
def share_memory_(self):
"""See :meth:`torch.UntypedStorage.share_memory_`"""
from torch.multiprocessing import get_sharing_strategy
if self.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]:
pass # CUDA or PrivateUse1 doesn't use POSIX shared memory
elif get_sharing_strategy() == "file_system":
self._share_filename_cpu_()
else:
self._share_fd_cpu_()
return self
@classmethod
def _new_shared(cls, size, *, device="cpu"):
"""Create a new storage in shared memory with the same data type."""
from torch.multiprocessing import get_sharing_strategy
device = torch.device(device)
if device.type in ["cuda", torch._C._get_privateuse1_backend_name(), "hpu"]:
return cls(size, device=device)
elif get_sharing_strategy() == "file_system":
return cls._new_using_filename_cpu(size)
else:
return cls._new_using_fd_cpu(size)
def untyped(self):
return self
def byteswap(self, dtype):
"""Swap bytes in underlying data."""
elem_size = torch._utils._element_size(dtype)
# for complex types, don't swap first and second numbers
if dtype.is_complex:
elem_size = max(int(elem_size / 2), 1)
self._byteswap(elem_size)
def _share_memory_lock_protected(fn):
@functools.wraps(fn)
def wrapper(self, *args, **kwargs):
to_free = None
to_wait = None
with _share_memory_lock:
key = self._cdata
if key in _share_memory_map:
to_wait = _share_memory_map[key]
else:
_share_memory_map[key] = threading.RLock()
_share_memory_map[key].acquire()
to_free = key
# If we're already in the process of sharing the storage, wait
# for it to be done.
if to_wait is not None:
with to_wait:
pass
try:
return fn(self, *args, **kwargs)
finally:
# If we acquired the storage lock here and we're done working on it
# we can now release it and free the entry.
if to_free is not None:
# Ensure that the cdata from the storage didn't change and only
# the data_ptr did.
assert self._cdata == to_free
with _share_memory_lock:
_share_memory_map[to_free].release()
del _share_memory_map[to_free]
return wrapper
class UntypedStorage(torch._C.StorageBase, _StorageBase):
def __getitem__(self, *args, **kwargs):
if self.device.type == "meta":
raise NotImplementedError("Not available for 'meta' device type")
return super().__getitem__(*args, **kwargs)
@property
def is_cuda(self):
return self.device.type == "cuda"
@property
def is_hpu(self):
return self.device.type == "hpu"
@property
def filename(self) -> _Optional[str]:
"""Returns the file name associated with this storage.
The file name will be a string if the storage is on CPU and was created via
:meth:`~torch.from_file()` with ``shared`` as ``True``. This attribute is ``None`` otherwise.
"""
return self._get_filename()
@_share_memory_lock_protected
def share_memory_(self, *args, **kwargs):
"""
Moves the storage to shared memory.
This is a no-op for storages already in shared memory and for CUDA
storages, which do not need to be moved for sharing across processes.
Storages in shared memory cannot be resized.
Note that to mitigate issues like `this <https://github.com/pytorch/pytorch/issues/95606>`_
it is thread safe to call this function from multiple threads on the same object.
It is NOT thread safe though to call any other function on self without proper
synchronization. Please see :doc:`/notes/multiprocessing` for more details.
.. note::
When all references to a storage in shared memory are deleted, the associated shared memory
object will also be deleted. PyTorch has a special cleanup process to ensure that this happens
even if the current process exits unexpectedly.
It is worth noting the difference between :meth:`share_memory_` and :meth:`from_file` with ``shared = True``
#. ``share_memory_`` uses `shm_open(3) <https://man7.org/linux/man-pages/man3/shm_open.3.html>`_ to create a
POSIX shared memory object while :meth:`from_file` uses
`open(2) <https://man7.org/linux/man-pages/man2/open.2.html>`_ to open the filename passed by the user.
#. Both use an `mmap(2) call <https://man7.org/linux/man-pages/man2/mmap.2.html>`_ with ``MAP_SHARED``
to map the file/object into the current virtual address space
#. ``share_memory_`` will call ``shm_unlink(3)`` on the object after mapping it to make sure the shared memory
object is freed when no process has the object open. ``torch.from_file(shared=True)`` does not unlink the
file. This file is persistent and will remain until it is deleted by the user.
Returns:
``self``
"""
return super().share_memory_(*args, **kwargs)
@_share_memory_lock_protected
def _share_fd_cpu_(self, *args, **kwargs):
return super()._share_fd_cpu_(*args, **kwargs)
@_share_memory_lock_protected
def _share_filename_cpu_(self, *args, **kwargs):
return super()._share_filename_cpu_(*args, **kwargs)
def _load_from_bytes(b):
return torch.load(io.BytesIO(b), weights_only=False)
@functools.cache
def _new_dtypes():
# These are dtypes serialized as UntypedStorage unlike those in
# _dtype_to_storage_type_map
return {
torch.float8_e5m2,
torch.float8_e4m3fn,
torch.float8_e5m2fnuz,
torch.float8_e4m3fnuz,
torch.float8_e8m0fnu,
torch.bits8,
torch.bits16,
torch.bits1x8,
torch.bits2x4,
torch.bits4x2,
torch.complex32,
torch.uint16,
torch.uint32,
torch.uint64,
}
@functools.cache
def _dtype_to_storage_type_map():
# NOTE: We should no longer add dtypes to this map. This map
# is only used for BC/FC with older PyTorch versions. Going forward,
# new dtypes of TypedStorage should not translate to a legacy
# <type>Storage class. Instead, new dtypes of TypedStorage should
# be serialized as an UntypedStorage paired with a torch.dtype
return {
torch.double: "DoubleStorage",
torch.float: "FloatStorage",
torch.half: "HalfStorage",
torch.long: "LongStorage",
torch.int: "IntStorage",
torch.int16: "ShortStorage",
torch.int8: "CharStorage",
torch.uint8: "ByteStorage",
torch.bool: "BoolStorage",
torch.bfloat16: "BFloat16Storage",
torch.cdouble: "ComplexDoubleStorage",
torch.cfloat: "ComplexFloatStorage",
torch.qint8: "QInt8Storage",
torch.qint32: "QInt32Storage",
torch.quint8: "QUInt8Storage",
torch.quint4x2: "QUInt4x2Storage",
torch.quint2x4: "QUInt2x4Storage",
}
@functools.cache
def _storage_type_to_dtype_map():
dtype_map = {val: key for key, val in _dtype_to_storage_type_map().items()}
return dtype_map
def _get_storage_from_sequence(sequence, dtype, device):
if dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
interpret_dtypes = {
torch.quint8: torch.uint8,
torch.quint4x2: torch.uint8,
torch.quint2x4: torch.uint8,
torch.qint32: torch.int32,
torch.qint8: torch.int8,
}
tmp_tensor = torch.tensor(
sequence, dtype=interpret_dtypes[dtype], device=device
)
else:
tmp_tensor = torch.tensor(sequence, dtype=dtype, device=device)
return tmp_tensor._typed_storage()._untyped_storage
def _isint(x):
if HAS_NUMPY:
return isinstance(x, (int, np.integer))
else:
return isinstance(x, int)
_always_warn_typed_storage_removal = False
def _get_always_warn_typed_storage_removal():
return _always_warn_typed_storage_removal
def _set_always_warn_typed_storage_removal(always_warn):
global _always_warn_typed_storage_removal
assert isinstance(always_warn, bool)
_always_warn_typed_storage_removal = always_warn
def _warn_typed_storage_removal(stacklevel=2):
global _always_warn_typed_storage_removal
def is_first_time():
if not hasattr(_warn_typed_storage_removal, "has_warned"):
return True
else:
return not _warn_typed_storage_removal.__dict__["has_warned"]
if _get_always_warn_typed_storage_removal() or is_first_time():
message = (
"TypedStorage is deprecated. It will be removed in the future and "
"UntypedStorage will be the only storage class. This should only matter "
"to you if you are using storages directly. To access UntypedStorage "
"directly, use tensor.untyped_storage() instead of tensor.storage()"
)
warnings.warn(message, UserWarning, stacklevel=stacklevel + 1)
_warn_typed_storage_removal.__dict__["has_warned"] = True
def _reset_warn_typed_storage_removal():
_warn_typed_storage_removal.__dict__["has_warned"] = False
def _get_device_from_module(module: str):
last_part = module.rsplit(".", 1)[-1]
if last_part in ["cuda", torch._C._get_privateuse1_backend_name(), "hpu"]:
return last_part
else:
return "cpu"
class TypedStorage:
is_sparse: _bool = False
# Used when stashing FakeTensor device onto storage in torch.save(metadata_only=True)
_fake_device: _Optional[torch.device] = None
dtype: torch.dtype
@property
def _dtype(self):
return self.dtype
@property
def filename(self) -> _Optional[str]:
"""Returns the file name associated with this storage if the storage was memory mapped from a file.
or ``None`` if the storage was not created by memory mapping a file."""
return self._untyped_storage.filename
def fill_(self, value):
_warn_typed_storage_removal()
self._setitem(slice(0, self._size()), value)
return self
def __new__(
cls,
*args,
wrap_storage=None,
dtype=None,
device=None,
_internal=False,
):
if not _internal:
_warn_typed_storage_removal()
if cls == torch.storage._LegacyStorage:
raise RuntimeError(
"Only child classes of _LegacyStorage can be instantiated"
)
if cls == TypedStorage:
return super().__new__(cls)
else:
arg_error_msg = (
f"{cls}.__new__ received an invalid combination "
f"of arguments. Expected one of:\n"
" * no arguments\n"
" * (int size)\n"
" * (Sequence data)\n"
" * (*, UntypedStorage wrap_storage)"
)
if device is not None:
raise RuntimeError(
arg_error_msg + "\nKeyword argument 'device' cannot be specified"
)
if dtype is not None:
raise RuntimeError(
arg_error_msg + "\nKeyword argument 'dtype' cannot be specified"
)
if wrap_storage is None:
if len(args) > 1:
raise RuntimeError(
arg_error_msg + "\nToo many positional arguments"
)
if (
len(args) == 1
and not _isint(args[0])
and not isinstance(args[0], collections.abc.Sequence)
):
raise TypeError(
arg_error_msg
+ f"\nArgument type not recognized: {type(args[0])}"
)
return TypedStorage(
*args,
dtype=cls._dtype,
device=_get_device_from_module(cls.__module__),
_internal=True,
)
else:
if len(args) != 0:
raise RuntimeError(
arg_error_msg
+ "\nNo positional arguments should be given when using "
"'wrap_storage'"
)
if not isinstance(wrap_storage, torch.UntypedStorage):
raise TypeError(
arg_error_msg
+ f"\nArgument 'wrap_storage' must be UntypedStorage, but got {type(wrap_storage)}"
)
cls_device = _get_device_from_module(cls.__module__)
if wrap_storage.device.type != cls_device:
raise RuntimeError(
arg_error_msg
+ f"\nDevice of 'wrap_storage' must be {cls_device}"
f", but got {wrap_storage.device.type}"
)
return TypedStorage(
*args,
wrap_storage=wrap_storage,
dtype=cls.dtype,
_internal=True,
)
def __init__(
self,
*args,
device=None,
dtype=None,
wrap_storage=None,
_internal=False,
):
if not _internal:
_warn_typed_storage_removal()
arg_error_msg = (
"TypedStorage.__init__ received an invalid combination "
"of arguments. Expected one of:\n"
" * (*, torch.device device, torch.dtype dtype)\n"
" * (int size, *, torch.device device, torch.dtype dtype)\n"
" * (Sequence data, *, torch.device device, torch.dtype dtype)\n"
" * (*, UntypedStorage wrap_storage, torch.dtype dtype)"
)
if wrap_storage is not None:
if len(args) != 0:
raise RuntimeError(
arg_error_msg
+ "\nNo positional arguments should be given when using "
"'wrap_storage'"
)
if dtype is None:
raise RuntimeError(
arg_error_msg + "\nArgument 'dtype' must be specified"
)
if not isinstance(dtype, torch.dtype):
raise TypeError(
arg_error_msg
+ f"\nArgument 'dtype' must be torch.dtype, not {type(dtype)}"
)
if device is not None:
raise RuntimeError(
arg_error_msg
+ "\nArgument 'device' should not be specified when 'wrap_storage' is given"
)
self.dtype = dtype
if not isinstance(wrap_storage, torch.UntypedStorage):
raise TypeError(
arg_error_msg
+ f"\nArgument 'wrap_storage' must be UntypedStorage, but got {type(wrap_storage)}"
)
self._untyped_storage = wrap_storage
else:
self.dtype = torch.get_default_dtype() if dtype is None else dtype
device = torch.device("cpu" if device is None else device)
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
if device.type == "cuda":
raise RuntimeError(
"Cannot create CUDA storage with quantized dtype"
)
if len(args) == 0:
self._untyped_storage = torch.UntypedStorage(device=device)
elif len(args) == 1:
if _isint(args[0]):
self._untyped_storage = torch.UntypedStorage(
int(args[0]) * self._element_size(), device=device
)
elif isinstance(args[0], collections.abc.Sequence):
self._untyped_storage = _get_storage_from_sequence(
args[0], self.dtype, device
)
else:
raise TypeError(
arg_error_msg
+ f"\nArgument type not recognized: {type(args[0])}"
)
else:
raise RuntimeError(arg_error_msg + "\nToo many positional arguments")
@property
def is_cuda(self):
_warn_typed_storage_removal()
return self._untyped_storage.device.type == "cuda"
@property
def is_hpu(self):
_warn_typed_storage_removal()
return self._untyped_storage.device.type == "hpu"
def untyped(self):
"""Return the internal :class:`torch.UntypedStorage`."""
_warn_typed_storage_removal()
return self._untyped_storage
def _new_wrapped_storage(self, untyped_storage) -> Self:
assert type(untyped_storage) == torch.UntypedStorage
if type(self) == TypedStorage:
return cast(
Self,
TypedStorage(
wrap_storage=untyped_storage, dtype=self.dtype, _internal=True
),
)
else:
return type(self)(wrap_storage=untyped_storage)
def __len__(self):
_warn_typed_storage_removal()
return self._size()
def _maybe_wrap_index(self, idx, is_stop=False):
if idx is None:
if is_stop:
return self._size()
else:
return 0
else:
if type(idx) != int:
raise TypeError(f"can't index a {type(self)} with {type(idx)}")
if is_stop:
if (idx > self._size()) or (idx < -self._size()):
raise IndexError(
f"index {idx} out of range for storage of size {self.size()}"
)
if idx > 0:
return idx
else:
return idx % self._size()
else:
if (idx >= self._size()) or (idx < -self._size()):
raise IndexError(
f"index {idx} out of range for storage of size {self.size()}"
)
return idx % self._size()
def __setitem__(self, idx, value):
_warn_typed_storage_removal()
return self._setitem(idx, value)
def _setitem(self, idx, value):
if not isinstance(idx, (int, slice)):
raise RuntimeError(f"can't index a {type(self)} with {type(idx)}")
if torch.is_storage(value):
raise RuntimeError(f"cannot set item with value type {type(value)}")
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
interpret_dtypes = {
torch.quint8: torch.uint8,
torch.quint4x2: torch.uint8,
torch.quint2x4: torch.uint8,
torch.qint32: torch.int32,
torch.qint8: torch.int8,
}
tmp_dtype = interpret_dtypes[self.dtype]
tmp_tensor = torch.tensor(
[], dtype=tmp_dtype, device=self._untyped_storage.device
)
tmp_tensor.set_(
TypedStorage(
wrap_storage=self._untyped_storage, dtype=tmp_dtype, _internal=True
)
)
else:
tmp_tensor = torch.tensor(
[], dtype=self.dtype, device=self._untyped_storage.device
).set_(self)
tmp_tensor[idx] = value
def __getitem__(self, idx):
_warn_typed_storage_removal()
return self._getitem(idx)
def _getitem(self, idx):
if self._untyped_storage.device.type == "meta":
raise NotImplementedError("Not available for 'meta' device type")
# NOTE: Before TypedStorage existed, indexing with a slice used to be
# possible for <type>Storage objects. However, it would return
# a storage view, which would be a hassle to implement in TypedStorage,
# so it was disabled
if isinstance(idx, slice):
raise RuntimeError(
"slices are only supported in UntypedStorage.__getitem__"
)
elif not isinstance(idx, int):
raise RuntimeError(f"can't index a {type(self)} with {type(idx)}")
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
interpret_dtypes = {
torch.quint8: torch.uint8,
torch.quint4x2: torch.uint8,
torch.quint2x4: torch.uint8,
torch.qint32: torch.int32,
torch.qint8: torch.int8,
}
return TypedStorage(
wrap_storage=self._untyped_storage,
dtype=interpret_dtypes[self.dtype],
_internal=True,
)._getitem(idx)
idx_wrapped = self._maybe_wrap_index(idx)
from torch._subclasses.fake_tensor import unset_fake_temporarily
with unset_fake_temporarily():
tmp_tensor = torch.tensor(
[], dtype=self.dtype, device=self._untyped_storage.device
).set_(self)
return tmp_tensor[idx_wrapped].item()
def copy_(self, source: T, non_blocking: _Optional[bool] = None):
_warn_typed_storage_removal()
if isinstance(source, TypedStorage):
self._untyped_storage.copy_(source._untyped_storage, non_blocking)
else:
self._untyped_storage.copy_(source, non_blocking)
return self
def nbytes(self):
_warn_typed_storage_removal()
return self._nbytes()
# For internal use only, to avoid deprecation warning
def _nbytes(self):
return self._untyped_storage.nbytes()
def type(
self,
dtype: _Optional[str] = None,
non_blocking: bool = False,
) -> Union[_StorageBase, TypedStorage, str]:
_warn_typed_storage_removal()
if dtype is None:
legacy_class = self._get_legacy_storage_class()
if legacy_class is not None:
return legacy_class.__module__ + "." + legacy_class.__name__
return ".".join([self.__module__, type(self).__name__])
else:
return self._untyped_storage.type(dtype, non_blocking)
def cuda(self, device=None, non_blocking=False) -> Self:
_warn_typed_storage_removal()
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
raise RuntimeError("Cannot create CUDA storage with quantized dtype")
cuda_storage = self._untyped_storage.cuda(device, non_blocking)
return self._new_wrapped_storage(cuda_storage)
def hpu(self, device=None, non_blocking=False) -> Self:
_warn_typed_storage_removal()
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
raise RuntimeError("Cannot create HPU storage with quantized dtype")
hpu_storage = self._untyped_storage.hpu(device, non_blocking)
return self._new_wrapped_storage(hpu_storage)
def to(self, *, device: DeviceLikeType, non_blocking: bool = False) -> Self:
_warn_typed_storage_removal()
if not isinstance(device, torch.device):
device = torch.device(device)
if self.dtype in [
torch.quint8,
torch.quint4x2,
torch.quint2x4,
torch.qint32,
torch.qint8,
]:
raise RuntimeError(
f"Cannot create {device.type.upper()} storage with quantized dtype"
)
to_storage = self._untyped_storage.to(device=device, non_blocking=non_blocking)
return self._new_wrapped_storage(to_storage)
def element_size(self):
_warn_typed_storage_removal()
return self._element_size()
# For internal use only, to avoid deprecation warning
def _element_size(self):
return torch._utils._element_size(self.dtype)
def get_device(self) -> _int:
_warn_typed_storage_removal()
return self._untyped_storage.get_device()
def __str__(self):
_warn_typed_storage_removal()
info_str = (
f"[{torch.typename(self)}(dtype={self.dtype}, "
f"device={self.device}) of size {len(self)}]"
)
if self.device.type == "meta":
return "...\n" + info_str
else:
data_str = " " + "\n ".join(str(self[i]) for i in range(self.size()))
return data_str + "\n" + info_str
def __repr__(self):
_warn_typed_storage_removal()
return str(self)
def __iter__(self):
_warn_typed_storage_removal()
return iter(self[i] for i in range(self.size()))
def __copy__(self):
_warn_typed_storage_removal()
return self._new_wrapped_storage(copy.copy(self._untyped_storage))
def __deepcopy__(self, memo):
_warn_typed_storage_removal()
return self._deepcopy(memo)
# For internal use only, to avoid deprecation warning
def _deepcopy(self, memo):
return self._new_wrapped_storage(copy.deepcopy(self._untyped_storage, memo))
def __sizeof__(self):
_warn_typed_storage_removal()
return super().__sizeof__() + self.nbytes()
def clone(self):
"""Return a copy of this storage."""
_warn_typed_storage_removal()
return self._new_wrapped_storage(self._untyped_storage.clone())
def tolist(self):
"""Return a list containing the elements of this storage."""
_warn_typed_storage_removal()
return list(self)
def cpu(self):
"""Return a CPU copy of this storage if it's not already on the CPU."""
_warn_typed_storage_removal()
return self._new_wrapped_storage(self._untyped_storage.cpu())
def is_pinned(self, device: Union[str, torch.device] = "cuda"):
r"""Determine whether the CPU TypedStorage is already pinned on device.
Args:
device (str or torch.device): The device to pin memory on (default: ``'cuda'``).
This argument is discouraged and subject to deprecated.
Returns:
A boolean variable.
"""
_warn_typed_storage_removal()
return self._untyped_storage.is_pinned(device)
def pin_memory(self, device: Union[str, torch.device] = "cuda"):
r"""Copy the CPU TypedStorage to pinned memory, if it's not already pinned.
Args:
device (str or torch.device): The device to pin memory on (default: ``'cuda'``).
This argument is discouraged and subject to deprecated.
Returns:
A pinned CPU storage.
"""
_warn_typed_storage_removal()
return self._new_wrapped_storage(
self._untyped_storage.pin_memory(device=device)
)
def share_memory_(self):
"""See :meth:`torch.UntypedStorage.share_memory_`"""
_warn_typed_storage_removal()
return self._share_memory_()
# For internal use only, to avoid deprecation warning
def _share_memory_(self):
self._untyped_storage.share_memory_()
return self
def _new_shared(self, size, *, device=None):
"""Create a new storage in shared memory with the same data type."""
if device is None:
device = "cpu"
device = torch.device(device)
untyped_storage = torch.UntypedStorage._new_shared(
size * self._element_size(), device=device
)
return TypedStorage(
wrap_storage=untyped_storage, dtype=self.dtype, _internal=True
)
@property
def _cdata(self):
return self._untyped_storage._cdata
@property
def device(self):
_warn_typed_storage_removal()
return self._untyped_storage.device
def size(self):
_warn_typed_storage_removal()
return self._size()
# For internal use only, to avoid deprecation warning
def _size(self):
# NB: don't indirect through __len__, as that requires
# an int to be returned
return self._untyped_storage.nbytes() // self._element_size()
def pickle_storage_type(self):
_warn_typed_storage_removal()
return self._pickle_storage_type()
# For internal use only, to avoid deprecation warning
def _pickle_storage_type(self):
try:
return _dtype_to_storage_type_map()[self.dtype]
except KeyError as e:
raise KeyError(f"dtype {self.dtype} is not recognized") from e
def __reduce__(self):
b = io.BytesIO()
torch.save(self, b, _use_new_zipfile_serialization=False)
return (_load_from_bytes, (b.getvalue(),))
def data_ptr(self):
_warn_typed_storage_removal()
return self._data_ptr()
# For internal use only, to avoid deprecation warning
def _data_ptr(self):
return self._untyped_storage.data_ptr()
def resizable(self):
_warn_typed_storage_removal()
return self._untyped_storage.resizable()
def resize_(self, size):
_warn_typed_storage_removal()
self._resize_(size)
# For internal use only, to avoid deprecation warning
def _resize_(self, size):
self._untyped_storage.resize_(size * self._element_size())
@classmethod
def _free_weak_ref(cls, *args, **kwargs):
return UntypedStorage._free_weak_ref(*args, **kwargs)
def _weak_ref(self, *args, **kwargs):
return self._untyped_storage._weak_ref(*args, **kwargs)
@classmethod
def from_buffer(cls, *args, **kwargs):
_warn_typed_storage_removal()
return cls._from_buffer(*args, **kwargs)
@classmethod
def _from_buffer(cls, *args, dtype=None, device=None, **kwargs):
if cls == TypedStorage:
dtype = torch.get_default_dtype() if dtype is None else dtype
device = torch.device("cpu" if device is None else device)
if device.type != "cpu":
raise RuntimeError(
f"TypedStorage.from_buffer: Not available for device {device.type}"
)
untyped_storage: torch.UntypedStorage = torch.UntypedStorage.from_buffer(
*args, dtype=dtype, **kwargs
)
else:
if dtype is not None or len(args) == 5:
raise RuntimeError(
"from_buffer: 'dtype' can only be specified in "
"UntypedStorage.from_buffer and TypedStorage.from_buffer"
)
if device is not None:
raise RuntimeError(
"from_buffer: 'device' can only be specified in "
"UntypedStorage.from_buffer and TypedStorage.from_buffer"
)
dtype = cls._dtype
untyped_storage = torch.UntypedStorage.from_buffer(
*args, dtype=dtype, **kwargs
)
return TypedStorage(wrap_storage=untyped_storage, dtype=dtype, _internal=True)
def _to(self, dtype):
if not isinstance(dtype, torch.dtype):
raise TypeError(f"Argument 'dtype' must be torch.dtype, not {type(dtype)}")
storage = (
torch.tensor([], dtype=self.dtype, device=self.device)
.set_(self)
.to(dtype)
._typed_storage()
)
if storage.data_ptr() == self.data_ptr():
storage = storage.clone()
return storage
def double(self):
"""Casts this storage to double type."""
_warn_typed_storage_removal()
return self._to(torch.double)
def float(self):
"""Casts this storage to float type."""
_warn_typed_storage_removal()
return self._to(torch.float)
def half(self):
"""Casts this storage to half type."""
_warn_typed_storage_removal()
return self._to(torch.half)
def long(self):
"""Casts this storage to long type."""
_warn_typed_storage_removal()
return self._to(torch.long)
def int(self):
"""Casts this storage to int type."""
_warn_typed_storage_removal()
return self._to(torch.int)
def short(self):
"""Casts this storage to short type."""
_warn_typed_storage_removal()
return self._to(torch.short)
def char(self):
"""Casts this storage to char type."""
_warn_typed_storage_removal()
return self._to(torch.int8)
def byte(self):
"""Casts this storage to byte type."""
_warn_typed_storage_removal()
return self._to(torch.uint8)
def bool(self):
"""Casts this storage to bool type."""
_warn_typed_storage_removal()
return self._to(torch.bool)
def bfloat16(self):
"""Casts this storage to bfloat16 type."""
_warn_typed_storage_removal()
return self._to(torch.bfloat16)
def complex_double(self):
"""Casts this storage to complex double type."""
_warn_typed_storage_removal()
return self._to(torch.cdouble)
def complex_float(self):
"""Casts this storage to complex float type."""
_warn_typed_storage_removal()
return self._to(torch.cfloat)
def float8_e5m2(self):
"""Casts this storage to float8_e5m2 type"""
_warn_typed_storage_removal()
return self._to(torch.float8_e5m2)
def float8_e4m3fn(self):
"""Casts this storage to float8_e4m3fn type"""
_warn_typed_storage_removal()
return self._to(torch.float8_e4m3fn)
def float8_e5m2fnuz(self):
"""Casts this storage to float8_e5m2fnuz type"""
_warn_typed_storage_removal()
return self._to(torch.float8_e5m2fnuz)
def float8_e4m3fnuz(self):
"""Casts this storage to float8_e4m3fnuz type"""
_warn_typed_storage_removal()
return self._to(torch.float8_e4m3fnuz)
@classmethod
def from_file(cls, filename, shared, size):
"""from_file(filename, shared=False, size=0) -> Storage
Creates a CPU storage backed by a memory-mapped file.
If ``shared`` is ``True``, then memory is shared between all processes.
All changes are written to the file. If ``shared`` is ``False``, then the changes on
the storage do not affect the file.
``size`` is the number of elements in the storage. If ``shared`` is ``False``,
then the file must contain at least ``size * sizeof(Type)`` bytes
(``Type`` is the type of storage). If ``shared`` is ``True`` the file will be created if needed.
Args:
filename (str): file name to map
shared (bool): whether to share memory (whether ``MAP_SHARED`` or ``MAP_PRIVATE`` is passed to the
underlying `mmap(2) call <https://man7.org/linux/man-pages/man2/mmap.2.html>`_)
size (int): number of elements in the storage
"""
_warn_typed_storage_removal()
if cls == TypedStorage:
raise RuntimeError("from_file can only be called on derived classes")
untyped_storage = UntypedStorage.from_file(
filename, shared, size * torch._utils._element_size(cls.dtype)
)
storage = cls(wrap_storage=untyped_storage)
return storage
@classmethod
def _expired(cls, *args, **kwargs):
return UntypedStorage._expired(*args, **kwargs)
def _write_file(self, *args, **kwargs):
return self._untyped_storage._write_file(*args, **kwargs)
def _set_from_file(self, *args, **kwargs):
return self._untyped_storage._set_from_file(*args, **kwargs)
def _set_cdata(self, *args, **kwargs):
return self._untyped_storage._set_cdata(*args, **kwargs)
def _share_cuda_(self, *args, **kwargs):
return self._untyped_storage._share_cuda_(*args, **kwargs)
def is_shared(self):
_warn_typed_storage_removal()
return self._is_shared()
# For internal use only, to avoid deprecation warning
def _is_shared(self):
return self._untyped_storage.is_shared()
@classmethod
def _new_shared_cuda(cls, *args, **kwargs):
return torch.UntypedStorage._new_shared_cuda(*args, **kwargs)
def _share_filename_cpu_(self, *args, **kwargs):
(
manager_handle,
storage_handle,
size,
) = self._untyped_storage._share_filename_cpu_(*args, **kwargs)
return manager_handle, storage_handle, size // self._element_size()
def _shared_decref(self):
self._untyped_storage._shared_decref()
return self
@classmethod
def _release_ipc_counter(cls, *args, device=None, **kwargs):
return torch.UntypedStorage._release_ipc_counter_cuda(*args, **kwargs)
def _shared_incref(self, *args, **kwargs):
return self._untyped_storage._shared_incref(*args, **kwargs)
def _share_fd_cpu_(self, *args, **kwargs):
fd, size = self._untyped_storage._share_fd_cpu_(*args, **kwargs)
return fd, size // self._element_size()
def _get_legacy_storage_class(self):
if self.dtype not in _dtype_to_storage_type_map():
return None
storage_name = _dtype_to_storage_type_map()[self.dtype]
if self.device.type not in [
"cpu",
"cuda",
"hpu",
torch._C._get_privateuse1_backend_name(),
]:
return None
module = (
torch if self.device.type == "cpu" else getattr(torch, self.device.type)
)
try:
return getattr(module, storage_name)
except AttributeError:
return None
TypedStorage.type.__doc__ = _type.__doc__
TypedStorage.cuda.__doc__ = _StorageBase.cuda.__doc__
TypedStorage.hpu.__doc__ = _StorageBase.hpu.__doc__
TypedStorage.to.__doc__ = _to.__doc__
class _LegacyStorageMeta(type):
dtype: torch.dtype
def __instancecheck__(cls, instance):
if type(instance) == TypedStorage:
cls_device = _get_device_from_module(cls.__module__)
return (cls_device == instance.device.type) and (
cls.dtype == instance.dtype
)
return False
class _LegacyStorage(TypedStorage, metaclass=_LegacyStorageMeta):
@classmethod
def _new_shared(cls, size):
"""Create a new storage in shared memory with the same data type."""
untyped_storage = torch.UntypedStorage._new_shared(size * cls()._element_size())
return cls(wrap_storage=untyped_storage)
@classmethod
def _release_ipc_counter(cls, *args, **kwargs):
return torch.UntypedStorage._release_ipc_counter_cuda(*args, **kwargs)
@classmethod
def _new_shared_filename(cls, manager, obj, size):
bytes_size = size * torch._utils._element_size(cls.dtype)
return cls(
wrap_storage=torch.UntypedStorage._new_shared_filename_cpu(
manager, obj, bytes_size
)
)
def _get_dtype_from_pickle_storage_type(pickle_storage_type: str):
try:
return _storage_type_to_dtype_map()[pickle_storage_type]
except KeyError as e:
raise KeyError(
f'pickle storage type "{pickle_storage_type}" is not recognized'
) from e
|