File size: 84,598 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 |
# mypy: allow-untyped-defs
import copyreg
import difflib
import functools
import io
import os
import pickle
import re
import shutil
import struct
import sys
import tarfile
import tempfile
import threading
import warnings
from contextlib import closing, contextmanager
from enum import Enum
from typing import Any, Callable, cast, Generic, IO, Optional, TypeVar, Union
from typing_extensions import TypeAlias, TypeIs
import torch
import torch._weights_only_unpickler as _weights_only_unpickler
from torch._sources import get_source_lines_and_file
from torch._utils import _import_dotted_name
from torch.storage import _get_dtype_from_pickle_storage_type
from torch.types import FileLike, Storage
__all__ = [
"SourceChangeWarning",
"mkdtemp",
"register_package",
"check_module_version_greater_or_equal",
"validate_cuda_device",
"validate_hpu_device",
"location_tag",
"default_restore_location",
"normalize_storage_type",
"storage_to_tensor_type",
"save",
"load",
"StorageType",
"LoadEndianness",
"get_crc32_options",
"set_crc32_options",
"get_default_load_endianness",
"set_default_load_endianness",
"get_default_mmap_options",
"set_default_mmap_options",
"clear_safe_globals",
"get_safe_globals",
"add_safe_globals",
"safe_globals",
"get_unsafe_globals_in_checkpoint",
"skip_data",
]
DEFAULT_PROTOCOL = 2
LONG_SIZE = struct.Struct("=l").size
INT_SIZE = struct.Struct("=i").size
SHORT_SIZE = struct.Struct("=h").size
MAGIC_NUMBER = 0x1950A86A20F9469CFC6C
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ","
MAP_LOCATION: TypeAlias = Optional[
Union[Callable[[Storage, str], Storage], torch.device, str, dict[str, str]]
]
STORAGE: TypeAlias = Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]
IS_WINDOWS = sys.platform == "win32"
UNSAFE_MESSAGE = (
"In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` "
"from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, "
"but it can result in arbitrary code execution. Do it only if you got the file from a "
"trusted source."
)
if not IS_WINDOWS:
from mmap import MAP_PRIVATE, MAP_SHARED
else:
MAP_SHARED, MAP_PRIVATE = None, None # type: ignore[assignment]
def _default_to_weights_only(pickle_module):
is_fbcode = not hasattr(torch.version, "git_version")
return pickle_module is None and not is_fbcode
# _serialization_tls is used to store thread local state specific to serialization
# that needs to be propagated to other files, in particular we use this for
# (1) map_location (needed for wrapper subclasses/third party devices to torch._utils)
# (2) skip_data (needed for torch.Tensor.__reduce_ex__ for skip_data ctx)
# (3) materialize_fake_tensors (needed for torch.Tensor.__reduce_ex__ for skip_data ctx)
class _SerializationLocal(threading.local):
def __init__(self):
super().__init__()
self.map_location: Optional[MAP_LOCATION] = None
self.skip_data: bool = False
self.materialize_fake_tensors: bool = False
_serialization_tls = _SerializationLocal()
class SourceChangeWarning(Warning):
pass
@contextmanager
def mkdtemp():
path = tempfile.mkdtemp()
try:
yield path
finally:
shutil.rmtree(path)
_package_registry: list[
tuple[
int,
Callable[[STORAGE], Optional[str]],
Callable[[STORAGE, str], Optional[STORAGE]],
]
] = []
class LoadEndianness(Enum):
NATIVE = 1
LITTLE = 2
BIG = 3
def get_default_load_endianness() -> Optional[LoadEndianness]:
"""
Get fallback byte order for loading files
If byteorder mark is not present in saved checkpoint,
this byte order is used as fallback.
By default, it's "native" byte order.
Returns:
default_load_endian: Optional[LoadEndianness]
"""
from torch.utils.serialization import config
return config.load.endianness
def set_default_load_endianness(endianness):
"""
Set fallback byte order for loading files
If byteorder mark is not present in saved checkpoint,
this byte order is used as fallback.
By default, it's "native" byte order.
Args:
endianness: the new fallback byte order
"""
if not isinstance(endianness, LoadEndianness) and endianness is not None:
raise TypeError("Invalid argument type in function set_default_load_endianness")
from torch.utils.serialization import config
config.load.endianness = endianness
def get_crc32_options() -> bool:
"""
Get whether :func:`torch.save` computes and writes crc32 for each record.
Defaults to ``True``.
"""
from torch.utils.serialization import config
return config.save.compute_crc32
def set_crc32_options(compute_crc32: bool):
"""
Set whether :func:`torch.save` computes and writes crc32 for each record.
.. note::
Setting this to ``False`` may make unzipping of the ``torch.save`` output
fail or warn due to corrupted CRC32. However ``torch.load`` will be
able to load the file.
Args:
compute_crc32 (bool): set crc32 compuation flag
"""
from torch.utils.serialization import config
config.save.compute_crc32 = compute_crc32
def get_default_mmap_options() -> Optional[int]:
"""
Get default mmap options for :func:`torch.load` with ``mmap=True``.
Defaults to ``mmap.MAP_PRIVATE``.
Returns:
default_mmap_options: int
"""
from torch.utils.serialization import config
return config.load.mmap_flags
def _get_storage_alignment() -> int:
"""
Gets alignment for storages in torch.save files/
Defaults to 64.
Returns:
storage_alginment: int
"""
from torch.utils.serialization import config
return config.save.storage_alignment
class set_default_mmap_options:
"""
Context manager or function to set default mmap options for :func:`torch.load` with ``mmap=True`` to flags.
For now, only either ``mmap.MAP_PRIVATE`` or ``mmap.MAP_SHARED`` are supported.
Please open an issue if you need any other option to be added here.
.. note::
This feature is currently not supported for Windows.
Args:
flags: ``mmap.MAP_PRIVATE`` or ``mmap.MAP_SHARED``
"""
def __init__(self, flags: int) -> None:
if IS_WINDOWS:
raise RuntimeError(
"Changing the default mmap options is currently not supported for Windows"
)
if flags != MAP_PRIVATE and flags != MAP_SHARED:
raise ValueError(
"Invalid argument in function set_default_mmap_options, "
f"expected mmap.MAP_PRIVATE or mmap.MAP_SHARED, but got {flags}"
)
# global config
from torch.utils.serialization import config
self.prev = config.load.mmap_flags
config.load.mmap_flags = flags
def __enter__(self) -> None:
pass
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
from torch.utils.serialization import config
config.load.mmap_flags = self.prev
def clear_safe_globals() -> None:
"""
Clears the list of globals that are safe for ``weights_only`` load.
"""
_weights_only_unpickler._clear_safe_globals()
def get_safe_globals() -> list[Union[Callable, tuple[Callable, str]]]:
"""
Returns the list of user-added globals that are safe for ``weights_only`` load.
"""
return _weights_only_unpickler._get_safe_globals()
def add_safe_globals(safe_globals: list[Union[Callable, tuple[Callable, str]]]) -> None:
"""
Marks the given globals as safe for ``weights_only`` load. For example, functions
added to this list can be called during unpickling, classes could be instantiated
and have state set.
Each item in the list can either be a function/class or a tuple of the form
(function/class, string) where string is the full path of the function/class.
Within the serialized format, each function is identified with its full
path as ``{__module__}.{__qualname__}``. When calling this API, you can provide this
full path that should match the one in the checkpoint otherwise the default
``{fn.__module__}.{fn.__qualname__}`` will be used.
Args:
safe_globals (List[Union[Callable, Tuple[Callable, str]]]): list of globals to mark as safe
Example:
>>> # xdoctest: +SKIP("Can't torch.save(t, ...) as doctest thinks MyTensor is defined on torch.serialization")
>>> import tempfile
>>> class MyTensor(torch.Tensor):
... pass
>>> t = MyTensor(torch.randn(2, 3))
>>> with tempfile.NamedTemporaryFile() as f:
... torch.save(t, f.name)
# Running `torch.load(f.name, weights_only=True)` will fail with
# Unsupported global: GLOBAL __main__.MyTensor was not an allowed global by default.
# Check the code and make sure MyTensor is safe to be used when loaded from an arbitrary checkpoint.
... torch.serialization.add_safe_globals([MyTensor])
... torch.load(f.name, weights_only=True)
# MyTensor([[-0.5024, -1.8152, -0.5455],
# [-0.8234, 2.0500, -0.3657]])
"""
_weights_only_unpickler._add_safe_globals(safe_globals)
class safe_globals(_weights_only_unpickler._safe_globals):
r"""Context-manager that adds certain globals as safe for ``weights_only`` load.
Args:
safe_globals: List of globals for weights_only load.
Example:
>>> # xdoctest: +SKIP("Can't torch.save(t, ...) as doctest thinks MyTensor is defined on torch.serialization")
>>> import tempfile
>>> class MyTensor(torch.Tensor):
... pass
>>> t = MyTensor(torch.randn(2, 3))
>>> with tempfile.NamedTemporaryFile() as f:
... torch.save(t, f.name)
# Running `torch.load(f.name, weights_only=True)` will fail with
# Unsupported global: GLOBAL __main__.MyTensor was not an allowed global by default.
# Check the code and make sure MyTensor is safe to be used when loaded from an arbitrary checkpoint.
... with torch.serialization.safe_globals([MyTensor]):
... torch.load(f.name, weights_only=True)
# MyTensor([[-0.5024, -1.8152, -0.5455],
# [-0.8234, 2.0500, -0.3657]])
>>> assert torch.serialization.get_safe_globals() == []
"""
def get_unsafe_globals_in_checkpoint(f: FileLike) -> list[str]:
"""Returns a list of strings of functions/classes in a ``torch.save`` object that are not safe for ``weights_only``.
For a given function or class ``f``, the corresponding string will be of the form
``{f.__module__}.{f.__name__}``.
This function will return any GLOBALs in the checkpoint that are not in the set marked safe
for ``weights_only`` (either via :func:`add_safe_globals` or :class:`safe_globals` context or
allowlisted by ``torch`` by default).
.. note::
This function will statically disassemble the pickle file in the checkpoint.
The implication is any classes dynamically pushed onto the stack during unpickling
will not be included in the output.
Args:
f: File-like object or string containing the checkpoint object saved via ``torch.save``
Returns:
A list of strings of pickle GLOBALs in the checkpoint that are not allowlisted for ``weights_only``.
"""
default_safe_globals_strings = set(
_weights_only_unpickler._get_allowed_globals().keys()
)
user_safe_global_strings = set(
_weights_only_unpickler._get_user_allowed_globals().keys()
)
safe_global_strings = default_safe_globals_strings.union(user_safe_global_strings)
with _open_file_like(f, "rb") as opened_file:
if not _is_zipfile(opened_file):
raise ValueError("Expected input to be a checkpoint returned by torch.save")
with _open_zipfile_reader(opened_file) as zip_file:
if _is_torchscript_zip(zip_file):
raise ValueError(
"Expected input to be a checkpoint returned by torch.save but got a torchscript checkpoint"
)
data_file = io.BytesIO(zip_file.get_record("data.pkl"))
all_globals = _weights_only_unpickler.get_globals_in_pkl(data_file)
return list(all_globals.difference(safe_global_strings))
class skip_data:
"""
Context-manager that skips writing/reading storage bytes for ``torch.save`` / ``torch.load`` calls.
For the save path, storages will still be saved, but the space that their bytes would usually be written to
will be empty space. The storage bytes can then be populated in a separate pass.
For the load path, tensors will be loaded per the checkpoint but their storages will not be populated with data.
.. warning::
The ``skip_data`` context manager is an early prototype and is subject to change.
Args:
materialize_fake_tensors: Whether to materialize FakeTensors during save. This is a no-op for the load path.
Example:
>>> # xdoctest: +SKIP("NamedTemporaryFile on Windows")
>>> import tempfile
>>> t = torch.randn(2, 3)
>>> with tempfile.NamedTemporaryFile() as f:
... with torch.serialization.skip_data():
... torch.save(t, f.name)
... torch.load(f.name, weights_only=True)
tensor([[0., 0., 0.],
[0., 0., 0.]])
"""
def __init__(self, materialize_fake_tensors: bool = False):
self.materialize_fake_tensors = materialize_fake_tensors
def __enter__(self):
global _serialization_tls
self._old_skip_data = _serialization_tls.skip_data
self._old_materialize_fake_tensors = _serialization_tls.materialize_fake_tensors
_serialization_tls.skip_data = True
_serialization_tls.materialize_fake_tensors = self.materialize_fake_tensors
def __exit__(self, type, value, tb):
global _serialization_tls
_serialization_tls.skip_data = self._old_skip_data
_serialization_tls.materialize_fake_tensors = self._old_materialize_fake_tensors
def _is_zipfile(f) -> bool:
# This is a stricter implementation than zipfile.is_zipfile().
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
# binary. Since we expect the files here to be generated by torch.save or
# torch.jit.save, it's safe to only check the start bytes and avoid
# collisions and assume the zip has only 1 file.
# See bugs.python.org/issue28494.
start = f.tell()
# Read the first few bytes and match against the ZIP file signature
local_header_magic_number = b"PK\x03\x04"
read_bytes = f.read(len(local_header_magic_number))
f.seek(start)
return read_bytes == local_header_magic_number
def register_package(
priority: int,
tagger: Callable[[STORAGE], Optional[str]],
deserializer: Callable[[STORAGE, str], Optional[STORAGE]],
):
"""
Registers callables for tagging and deserializing storage objects with an associated priority.
Tagging associates a device with a storage object at save time while deserializing moves a
storage object to an appropriate device at load time. :attr:`tagger` and :attr:`deserializer`
are run in the order given by their :attr:`priority` until a tagger/deserializer returns a
value that is not `None`.
To override the deserialization behavior for a device in the global registry, one can register a
tagger with a higher priority than the existing tagger.
This function can also be used to register a tagger and deserializer for new devices.
Args:
priority: Indicates the priority associated with the tagger and deserializer, where a lower
value indicates higher priority.
tagger: Callable that takes in a storage object and returns its tagged device as a string
or None.
deserializer: Callable that takes in storage object and a device string and returns a storage
object on the appropriate device or None.
Returns:
`None`
Example:
>>> def ipu_tag(obj):
>>> if obj.device.type == 'ipu':
>>> return 'ipu'
>>> def ipu_deserialize(obj, location):
>>> if location.startswith('ipu'):
>>> ipu = getattr(torch, "ipu", None)
>>> assert ipu is not None, "IPU device module is not loaded"
>>> assert torch.ipu.is_available(), "ipu is not available"
>>> return obj.ipu(location)
>>> torch.serialization.register_package(11, ipu_tag, ipu_deserialize)
"""
queue_elem = (priority, tagger, deserializer)
_package_registry.append(queue_elem)
_package_registry.sort()
def check_module_version_greater_or_equal(
module,
req_version_tuple,
error_if_malformed=True,
):
"""
Check if a module's version satisfies requirements
Usually, a module's version string will be like 'x.y.z', which would be represented
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
string does not match the given tuple's format up to the length of the tuple, then
error and exit or emit a warning.
Args:
module: the module to check the version of
req_version_tuple: tuple (usually of ints) representing the required version
error_if_malformed: whether we should exit if module version string is malformed
Returns:
requirement_is_met: bool
"""
try:
version_strs = module.__version__.split(".")
# Cast module version fields to match the types of the required version
module_version = tuple(
type(req_field)(version_strs[idx])
for idx, req_field in enumerate(req_version_tuple)
)
requirement_is_met = module_version >= req_version_tuple
except Exception as e:
message = (
f"'{module.__name__}' module version string is malformed '{module.__version__}' and cannot be compared"
f" with tuple {str(req_version_tuple)}"
)
if error_if_malformed:
raise RuntimeError(message) from e
else:
warnings.warn(message + ", but continuing assuming that requirement is met")
requirement_is_met = True
return requirement_is_met
def _cpu_tag(obj):
if obj.device.type == "cpu":
return "cpu"
def _mps_tag(obj):
if obj.device.type == "mps":
return "mps"
def _meta_tag(obj):
if obj.device.type == "meta":
return "meta"
def _backend_tag(backend_name, obj):
if backend_name == "privateuse1":
backend_name = torch._C._get_privateuse1_backend_name()
if obj.device.type == backend_name:
if obj.device.index is None:
return backend_name
else:
return backend_name + ":" + str(obj.device.index)
def _cpu_deserialize(obj, location):
if location == "cpu":
return obj
def _mps_deserialize(obj, location):
if location.startswith("mps"):
return obj.mps()
def _meta_deserialize(obj, location):
if location == "meta":
return torch.UntypedStorage(obj.nbytes(), device="meta")
def _validate_device(location, backend_name):
"""
Check whether the device index of specified backend is valid
In case of privateuse1 backend, your must first register a device_module for
privateuse1 using torch._register_device_module. Implement the following
methods in device_module like cuda: device_module._utils._get_device_index(location, True),
device_module.device_count().
Args:
location: string of device
backend_name: the backend name or the name of privateuse1, which can be renamed
Returns:
device_index: int
"""
if not hasattr(torch, backend_name):
raise RuntimeError(
f"The {backend_name.upper()} device module is not registered. "
"If you are running on a CPU-only machine, "
"please use torch.load with map_location=torch.device('cpu') "
"to map your storages to the CPU."
)
device_module = getattr(torch, backend_name)
if hasattr(device_module, "_utils") and hasattr(
device_module._utils, "_get_device_index"
):
device_index = device_module._utils._get_device_index(location, True)
device = torch.device(backend_name, device_index)
else:
device = torch.device(location)
device_index = device.index if device.index else 0
if hasattr(device_module, "is_available") and not device_module.is_available():
raise RuntimeError(
f"Attempting to deserialize object on a {backend_name.upper()} "
f"device but torch.{backend_name}.is_available() is False. "
"If you are running on a CPU-only machine, "
"please use torch.load with map_location=torch.device('cpu') "
"to map your storages to the CPU."
)
if hasattr(device_module, "device_count"):
device_count = device_module.device_count()
if device_index >= device_count:
raise RuntimeError(
f"Attempting to deserialize object on {backend_name.upper()} device "
f"{device_index} but torch.{backend_name}.device_count() is {device_count}. "
"Please use torch.load with map_location to map your storages "
"to an existing device."
)
return device
def validate_cuda_device(location):
return _validate_device(location, "cuda").index
def validate_hpu_device(location):
return _validate_device(location, "hpu").index
def _deserialize(backend_name, obj, location):
if backend_name == "privateuse1":
backend_name = torch._C._get_privateuse1_backend_name()
if location.startswith(backend_name):
device = _validate_device(location, backend_name)
return obj.to(device=device)
register_package(10, _cpu_tag, _cpu_deserialize)
register_package(
20,
functools.partial(_backend_tag, "cuda"),
functools.partial(_deserialize, "cuda"),
)
register_package(21, _mps_tag, _mps_deserialize)
register_package(22, _meta_tag, _meta_deserialize)
register_package(
23,
functools.partial(_backend_tag, "privateuse1"),
functools.partial(_deserialize, "privateuse1"),
)
register_package(
24,
functools.partial(_backend_tag, "hpu"),
functools.partial(_deserialize, "hpu"),
)
register_package(
25,
functools.partial(_backend_tag, "xpu"),
functools.partial(_deserialize, "xpu"),
)
def location_tag(
storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage],
):
for _, tagger, _ in _package_registry:
location = tagger(storage)
if location:
return location
raise RuntimeError(
"don't know how to determine data location of " + torch.typename(storage)
)
def default_restore_location(storage, location):
"""
Restores `storage` using a deserializer function registered for the `location`.
This function looks in the registry for deserializer functions that match the `location`.
If found, it attempts to use them, in priority order, to restore `storage` until one
returns a not `None` result. If no deserializer can be found in the registry, or all found fail
to bear a result, it raises a `RuntimeError`.
Args:
storage (STORAGE): the storage object to restore
location (str): the location tag associated with the storage object
Returns:
storage: Optional[STORAGE]
Raises:
RuntimeError: If no deserializer matching `location` is found in the registry or if
all matching ones return `None`.
"""
for _, _, fn in _package_registry:
result = fn(storage, location)
if result is not None:
return result
raise RuntimeError(
"don't know how to restore data location of "
+ torch.typename(storage)
+ " (tagged with "
+ location
+ ")"
)
def normalize_storage_type(storage_type):
return getattr(torch, storage_type.__name__)
def storage_to_tensor_type(storage):
storage_type = type(storage)
module = _import_dotted_name(storage_type.__module__)
return getattr(module, storage_type.__name__.replace("Storage", "Tensor"))
def _is_path(name_or_buffer: object) -> TypeIs[Union[str, os.PathLike]]:
return isinstance(name_or_buffer, (str, os.PathLike))
T = TypeVar("T")
class _opener(Generic[T]):
def __init__(self, file_like: T) -> None:
self.file_like: T = file_like
def __enter__(self):
return self.file_like
def __exit__(self, *args):
pass
class _open_file(_opener[IO[bytes]]):
def __init__(self, name: Union[str, os.PathLike[str]], mode: str) -> None:
super().__init__(open(name, mode))
def __exit__(self, *args):
self.file_like.close()
class _open_buffer_reader(_opener[IO[bytes]]):
def __init__(self, buffer: IO[bytes]) -> None:
super().__init__(buffer)
_check_seekable(buffer)
class _open_buffer_writer(_opener[IO[bytes]]):
def __exit__(self, *args):
self.file_like.flush()
def _open_file_like(name_or_buffer: FileLike, mode: str) -> _opener[IO[bytes]]:
if _is_path(name_or_buffer):
return _open_file(name_or_buffer, mode)
else:
if "w" in mode:
return _open_buffer_writer(name_or_buffer)
elif "r" in mode:
return _open_buffer_reader(name_or_buffer)
else:
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
class _open_zipfile_reader(_opener[torch._C.PyTorchFileReader]):
def __init__(self, name_or_buffer: Union[str, IO[bytes]]) -> None:
super().__init__(torch._C.PyTorchFileReader(name_or_buffer))
class _open_zipfile_writer_file(_opener[torch._C.PyTorchFileWriter]):
def __init__(self, name: str) -> None:
self.file_stream = None
self.name = name
try:
self.name.encode("ascii")
except UnicodeEncodeError:
# PyTorchFileWriter only supports ascii filename.
# For filenames with non-ascii characters, we rely on Python
# for writing out the file.
self.file_stream = io.FileIO(self.name, mode="w")
super().__init__(
torch._C.PyTorchFileWriter(
self.file_stream, get_crc32_options(), _get_storage_alignment()
)
)
else:
super().__init__(
torch._C.PyTorchFileWriter(
self.name, get_crc32_options(), _get_storage_alignment()
)
)
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
if self.file_stream is not None:
self.file_stream.close()
class _open_zipfile_writer_buffer(_opener[torch._C.PyTorchFileWriter]):
def __init__(self, buffer: IO[bytes]) -> None:
if not callable(getattr(buffer, "write", None)):
msg = f"Buffer of {str(type(buffer)).strip('<>')} has no callable attribute 'write'"
if not hasattr(buffer, "write"):
raise AttributeError(msg)
raise TypeError(msg)
self.buffer = buffer
super().__init__(
torch._C.PyTorchFileWriter(
buffer, get_crc32_options(), _get_storage_alignment()
)
)
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
self.buffer.flush()
def _open_zipfile_writer(name_or_buffer: Union[str, IO[bytes]]) -> _opener:
container: type[_opener]
if _is_path(name_or_buffer):
container = _open_zipfile_writer_file
else:
container = _open_zipfile_writer_buffer
return container(name_or_buffer)
def _is_compressed_file(f) -> bool:
compress_modules = ["gzip"]
try:
return f.__module__ in compress_modules
except AttributeError:
return False
def _should_read_directly(f):
"""
Checks if f is a file that should be read directly. It should be read
directly if it is backed by a real file (has a fileno) and is not a
a compressed file (e.g. gzip)
"""
if _is_compressed_file(f):
return False
try:
return f.fileno() >= 0
except io.UnsupportedOperation:
return False
except AttributeError:
return False
def _check_seekable(f) -> bool:
def raise_err_msg(patterns, e):
for p in patterns:
if p in str(e):
msg = (
str(e)
+ ". You can only torch.load from a file that is seekable."
+ " Please pre-load the data into a buffer like io.BytesIO and"
+ " try to load from it instead."
)
raise type(e)(msg)
raise e
try:
f.seek(f.tell())
return True
except (io.UnsupportedOperation, AttributeError) as e:
raise_err_msg(["seek", "tell"], e)
return False
def _check_dill_version(pickle_module) -> None:
"""Checks if using dill as the pickle module, and if so, checks if it is the correct version.
If dill version is lower than 0.3.1, a ValueError is raised.
Args:
pickle_module: module used for pickling metadata and objects
"""
if pickle_module is not None and pickle_module.__name__ == "dill":
required_dill_version = (0, 3, 1)
if not check_module_version_greater_or_equal(
pickle_module, required_dill_version, False
):
raise ValueError(
(
"'torch' supports dill >= {}, but you have dill {}."
" Please upgrade dill or switch to 'pickle'"
).format(
".".join([str(num) for num in required_dill_version]),
pickle_module.__version__,
)
)
def _check_save_filelike(f):
if not _is_path(f) and not hasattr(f, "write"):
raise AttributeError(
"expected 'f' to be string, path, or a file-like object with "
"a 'write' attribute"
)
def save(
obj: object,
f: FileLike,
pickle_module: Any = pickle,
pickle_protocol: int = DEFAULT_PROTOCOL,
_use_new_zipfile_serialization: bool = True,
_disable_byteorder_record: bool = False,
) -> None:
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""save(obj, f, pickle_module=pickle, pickle_protocol=2, _use_new_zipfile_serialization=True)
Saves an object to a disk file.
See also: :ref:`saving-loading-tensors`
Args:
obj: saved object
f: a file-like object (has to implement write and flush) or a string or
os.PathLike object containing a file name
pickle_module: module used for pickling metadata and objects
pickle_protocol: can be specified to override the default protocol
.. note::
A common PyTorch convention is to save tensors using .pt file extension.
.. note::
PyTorch preserves storage sharing across serialization. See
:ref:`preserve-storage-sharing` for more details.
.. note::
The 1.6 release of PyTorch switched ``torch.save`` to use a new
zipfile-based file format. ``torch.load`` still retains the ability to
load files in the old format. If for any reason you want ``torch.save``
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
Example:
>>> # xdoctest: +SKIP("makes cwd dirty")
>>> # Save to file
>>> x = torch.tensor([0, 1, 2, 3, 4])
>>> torch.save(x, "tensor.pt")
>>> # Save to io.BytesIO buffer
>>> buffer = io.BytesIO()
>>> torch.save(x, buffer)
"""
torch._C._log_api_usage_once("torch.save")
_check_dill_version(pickle_module)
_check_save_filelike(f)
if isinstance(f, (str, os.PathLike)):
f = os.fspath(f)
if _use_new_zipfile_serialization:
with _open_zipfile_writer(f) as opened_zipfile:
_save(
obj,
opened_zipfile,
pickle_module,
pickle_protocol,
_disable_byteorder_record,
)
return
else:
global _serialization_tls
if _serialization_tls.skip_data:
raise RuntimeError(
"Cannot use skip_data=True with _use_new_zipfile_serialization=False"
)
with _open_file_like(f, "wb") as opened_file:
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
import torch.nn as nn
serialized_container_types = {}
serialized_storages: dict[str, tuple[torch.UntypedStorage, torch.dtype]] = {}
# Since loading storages that view the same data with different dtypes is
# not supported, we need to keep track of the dtype associated with each
# storage data_ptr and throw an error if the dtype is ever different.
# TODO: This feature could be added in the future
storage_dtypes: dict[int, torch.dtype] = {}
def persistent_id(obj: Any) -> Optional[tuple]:
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, type) and issubclass(obj, nn.Module):
if obj in serialized_container_types:
return None
serialized_container_types[obj] = True
source_file = source = None
try:
source_lines, _, source_file = get_source_lines_and_file(obj)
source = "".join(source_lines)
except (
Exception
): # saving the source is optional, so we can ignore any errors
warnings.warn(
"Couldn't retrieve source code for container of "
"type " + obj.__name__ + ". It won't be checked "
"for correctness upon loading."
)
return ("module", obj, source_file, source)
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
storage: torch.UntypedStorage
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._untyped_storage
storage_dtype = obj.dtype
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
dtype = obj.dtype
storage_numel = obj._size()
elif isinstance(obj, torch.UntypedStorage):
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
dtype = torch.uint8
storage_numel = storage.nbytes()
else:
raise TypeError(f"type not recognized: {type(obj)}")
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if storage.data_ptr() != 0:
if storage.data_ptr() in storage_dtypes:
if storage_dtype != storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
"Cannot save multiple tensors or storages that "
"view the same data as different types"
)
else:
storage_dtypes[storage.data_ptr()] = storage_dtype
view_metadata: Optional[tuple[str, int, int]]
# Offset is always 0, but we keep it for backwards compatibility
# with the old serialization format (which supported storage views)
offset = 0
storage_key = str(storage._cdata)
location = location_tag(storage)
# TODO: There's an issue here with FC. It might be impossible to
# solve, but it's worth noting. Imagine we save a list `[storage,
# tensor]`, where `tensor.storage()` is the same as `storage`, and
# `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
# torch.float`. The storage will be serialized with element size
# of 1, since we're choosing to serialize the first occurance of
# a duplicate storage. Since this legacy serialization format saves
# the numel of the storage, rather than nbytes directly, we'll be
# effectively saving nbytes in this case. We'll be able to load it
# and the tensor back up with no problems in _this_ and future
# versions of pytorch, but in older versions, here's the problem:
# the storage will be loaded up as a UntypedStorage, and then the
# FloatTensor will loaded and the UntypedStorage will be assigned to
# it. Since the storage dtype does not match the tensor dtype, this
# will cause an error. If we reverse the list, like `[tensor,
# storage]`, then we will save the `tensor.storage()` as a faked
# `FloatStorage`, and the saved size will be the correct
# dtype-specific numel count that old versions expect. `tensor`
# will be able to load up properly in old versions, pointing to
# a FloatStorage. However, `storage` is still being translated to
# a UntypedStorage, and it will try to resolve to the same
# FloatStorage that `tensor` contains. This will also cause an
# error. It doesn't seem like there's any way around this.
# Probably, we just cannot maintain FC for the legacy format if the
# saved list contains both a tensor and a storage that point to the
# same data. We should still be able to maintain FC for lists of
# just tensors, as long as all views share the same dtype as the
# tensor they are viewing.
if storage_key not in serialized_storages:
serialized_storages[storage_key] = (storage, dtype)
is_view = storage._cdata != storage._cdata
if is_view:
view_metadata = (str(storage._cdata), offset, storage.nbytes())
else:
view_metadata = None
res = (
"storage",
storage_type,
storage_key,
location,
storage_numel,
view_metadata,
)
return res
return None
sys_info = dict(
protocol_version=PROTOCOL_VERSION,
little_endian=sys.byteorder == "little",
type_sizes=dict(
short=SHORT_SIZE,
int=INT_SIZE,
long=LONG_SIZE,
),
)
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
class PyTorchLegacyPickler(pickle_module.Pickler):
def persistent_id(self, obj):
return persistent_id(obj)
pickler = PyTorchLegacyPickler(f, protocol=pickle_protocol)
pickler.dump(obj)
serialized_storage_keys = sorted(serialized_storages.keys())
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
f.flush()
for key in serialized_storage_keys:
storage, dtype = serialized_storages[key]
storage._write_file(
f, _should_read_directly(f), True, torch._utils._element_size(dtype)
)
def _save(
obj,
zip_file,
pickle_module,
pickle_protocol,
_disable_byteorder_record,
):
serialized_storages = {}
id_map: dict[int, str] = {}
# Since loading storages that view the same data with different dtypes is
# not supported, we need to keep track of the dtype associated with each
# storage data_ptr and throw an error if the dtype is ever different.
# TODO: This feature could be added in the future
storage_dtypes: dict[int, torch.dtype] = {}
def persistent_id(obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._untyped_storage
storage_dtype = obj.dtype
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj._size()
else:
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if str(storage.device) != "meta" and storage.data_ptr() != 0:
if storage.data_ptr() in storage_dtypes:
if storage_dtype != storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
"Cannot save multiple tensors or storages that "
"view the same data as different types"
)
else:
storage_dtypes[storage.data_ptr()] = storage_dtype
storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
if hasattr(obj, "_fake_device") and obj._fake_device is not None:
location = str(obj._fake_device)
else:
location = location_tag(storage)
serialized_storages[storage_key] = storage
return ("storage", storage_type, storage_key, location, storage_numel)
return None
# Write the pickle data for `obj`
data_buf = io.BytesIO()
class PyTorchPickler(pickle_module.Pickler): # type: ignore[name-defined]
def persistent_id(self, obj):
return persistent_id(obj)
pickler = PyTorchPickler(data_buf, protocol=pickle_protocol)
pickler.dump(obj)
data_value = data_buf.getvalue()
zip_file.write_record("data.pkl", data_value, len(data_value))
# .format_version is used to track
# 1. version 1 represents the order of storages being changed from
# lexicographical based on keys to numerically ordered based on keys
# 2. version 2 represents including storage_alignment as a record
# within the zipfile
zip_file.write_record(".format_version", "1", len("1"))
storage_alignment = str(_get_storage_alignment())
zip_file.write_record(
".storage_alignment", storage_alignment, len(storage_alignment)
)
# Write byte order marker
if not _disable_byteorder_record:
if sys.byteorder not in ["little", "big"]:
raise ValueError("Unknown endianness type: " + sys.byteorder)
zip_file.write_record("byteorder", sys.byteorder, len(sys.byteorder))
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
for key in serialized_storages.keys():
name = f"data/{key}"
storage = serialized_storages[key]
num_bytes = storage.nbytes()
global _serialization_tls
if _serialization_tls.skip_data:
zip_file.write_record_metadata(name, num_bytes)
else:
# given that we copy things around anyway, we might use storage.cpu()
# this means to that to get tensors serialized, you need to implement
# .cpu() on the underlying Storage
if storage.device.type != "cpu":
from torch.utils.serialization import config
if (
config.save.use_pinned_memory_for_d2h
and (
acc := torch.accelerator.current_accelerator(
check_available=True
)
)
is not None
and acc.type == storage.device.type
):
new_storage = torch.empty(
num_bytes, dtype=torch.uint8, device="cpu", pin_memory=True
).untyped_storage()
new_storage.copy_(storage)
torch.accelerator.current_stream(storage.device.index).synchronize()
storage = new_storage
else:
storage = storage.cpu()
# Now that it is on the CPU we can directly copy it into the zip file
zip_file.write_record(name, storage, num_bytes)
def load(
f: FileLike,
map_location: MAP_LOCATION = None,
pickle_module: Any = None,
*,
weights_only: Optional[bool] = None,
mmap: Optional[bool] = None,
**pickle_load_args: Any,
) -> Any:
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""load(f, map_location=None, pickle_module=pickle, *, weights_only=True, mmap=None, **pickle_load_args)
Loads an object saved with :func:`torch.save` from a file.
:func:`torch.load` uses Python's unpickling facilities but treats storages,
which underlie tensors, specially. They are first deserialized on the
CPU and are then moved to the device they were saved from. If this fails
(e.g. because the run time system doesn't have certain devices), an exception
is raised. However, storages can be dynamically remapped to an alternative
set of devices using the :attr:`map_location` argument.
If :attr:`map_location` is a callable, it will be called once for each serialized
storage with two arguments: storage and location. The storage argument
will be the initial deserialization of the storage, residing on the CPU.
Each serialized storage has a location tag associated with it which
identifies the device it was saved from, and this tag is the second
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
:attr:`map_location` should return either ``None`` or a storage. If
:attr:`map_location` returns a storage, it will be used as the final deserialized
object, already moved to the right device. Otherwise, :func:`torch.load` will
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
If :attr:`map_location` is a :class:`torch.device` object or a string containing
a device tag, it indicates the location where all tensors should be loaded.
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
appearing in the file (keys), to ones that specify where to put the
storages (values).
User extensions can register their own location tags and tagging and
deserialization methods using :func:`torch.serialization.register_package`.
Args:
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
or a string or os.PathLike object containing a file name
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
locations
pickle_module: module used for unpickling metadata and objects (has to
match the :attr:`pickle_module` used to serialize file)
weights_only: Indicates whether unpickler should be restricted to
loading only tensors, primitive types, dictionaries
and any types added via :func:`torch.serialization.add_safe_globals`.
See :ref:`weights-only` for more details.
mmap: Indicates whether the file should be mmaped rather than loading all the storages into memory.
Typically, tensor storages in the file will first be moved from disk to CPU memory, after which they
are moved to the location that they were tagged with when saving, or specified by ``map_location``. This
second step is a no-op if the final location is CPU. When the ``mmap`` flag is set, instead of copying the
tensor storages from disk to CPU memory in the first step, ``f`` is mmaped.
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
:attr:`errors=...`.
.. warning::
:func:`torch.load()` unless `weights_only` parameter is set to `True`,
uses ``pickle`` module implicitly, which is known to be insecure.
It is possible to construct malicious pickle data which will execute arbitrary code
during unpickling. Never load data that could have come from an untrusted
source in an unsafe mode, or that could have been tampered with. **Only load data you trust**.
.. note::
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
.. note::
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
when loading files saved by Python 2 in Python 3. If this default
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
Example:
>>> # xdoctest: +SKIP("undefined filepaths")
>>> torch.load("tensors.pt", weights_only=True)
# Load all tensors onto the CPU
>>> torch.load(
... "tensors.pt",
... map_location=torch.device("cpu"),
... weights_only=True,
... )
# Load all tensors onto the CPU, using a function
>>> torch.load(
... "tensors.pt",
... map_location=lambda storage, loc: storage,
... weights_only=True,
... )
# Load all tensors onto GPU 1
>>> torch.load(
... "tensors.pt",
... map_location=lambda storage, loc: storage.cuda(1),
... weights_only=True,
... ) # type: ignore[attr-defined]
# Map tensors from GPU 1 to GPU 0
>>> torch.load(
... "tensors.pt",
... map_location={"cuda:1": "cuda:0"},
... weights_only=True,
... )
# Load tensor from io.BytesIO object
# Loading from a buffer setting weights_only=False, warning this can be unsafe
>>> with open("tensor.pt", "rb") as f:
... buffer = io.BytesIO(f.read())
>>> torch.load(buffer, weights_only=False)
# Load a module with 'ascii' encoding for unpickling
# Loading from a module setting weights_only=False, warning this can be unsafe
>>> torch.load("module.pt", encoding="ascii", weights_only=False)
"""
torch._C._log_api_usage_once("torch.load")
DOCS_MESSAGE = (
"\n\nCheck the documentation of torch.load to learn more about types accepted by default with "
"weights_only https://pytorch.org/docs/stable/generated/torch.load.html."
)
def _get_wo_message(message: str) -> str:
unsafe_global_pattern = r"GLOBAL (\S+) was not an allowed global by default."
has_unsafe_global = re.search(unsafe_global_pattern, message) is not None
blocklist_pattern = r"whose module (\S+) is blocked"
has_blocklist = re.search(blocklist_pattern, message) is not None
import_pattern = r"(\S+) must be (\S+) to load"
has_import = re.search(import_pattern, message) is not None
if has_unsafe_global:
updated_message = (
"Weights only load failed. This file can still be loaded, to do so you have two options, "
"\033[1mdo those steps only if you trust the source of the checkpoint\033[0m. "
f"\n\t(1) {UNSAFE_MESSAGE}\n\t(2) Alternatively, to load with `weights_only=True` please check "
"the recommended steps in the following error message.\n\tWeightsUnpickler error: "
+ message
)
else:
if has_import:
return f"Weights only load failed. {message}\n {UNSAFE_MESSAGE}\n"
else:
updated_message = f"Weights only load failed. {UNSAFE_MESSAGE}\n"
if not has_blocklist:
updated_message += (
"Please file an issue with the following so that we can make "
"`weights_only=True` compatible with your use case: WeightsUnpickler error: "
)
updated_message += message
return updated_message + DOCS_MESSAGE
weights_only_not_set = weights_only is None
if weights_only_not_set:
weights_only = _default_to_weights_only(pickle_module)
true_values = ["1", "y", "yes", "true"]
# Add ability to force safe only or non-safe weight loads via environment variables
force_weights_only_load = (
os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0") in true_values
)
force_no_weights_only_load = (
os.getenv("TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD", "0") in true_values
)
if force_weights_only_load and force_no_weights_only_load:
raise RuntimeError(
"Only one of `TORCH_FORCE_WEIGHTS_ONLY_LOAD` or `TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD` "
"should be set, but both were set."
)
elif force_weights_only_load:
weights_only = True
elif force_no_weights_only_load:
# TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD can only override if callsite did not explicitly set weights_only
if weights_only_not_set:
warnings.warn(
"Environment variable TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD detected, since the"
"`weights_only` argument was not explicitly passed to `torch.load`, forcing weights_only=False.",
UserWarning,
stacklevel=2,
)
weights_only = False
if weights_only:
if pickle_module is not None:
raise RuntimeError(
"Can not safely load weights when explicit pickle_module is specified"
)
else:
if pickle_module is None:
pickle_module = pickle
# make flipping default BC-compatible
if mmap is None:
from torch.utils.serialization import config
mmap = config.load.mmap
_check_dill_version(pickle_module)
if "encoding" not in pickle_load_args.keys():
pickle_load_args["encoding"] = "utf-8"
with _open_file_like(f, "rb") as opened_file:
if _is_zipfile(opened_file):
# The zipfile reader is going to advance the current file position.
# If we want to actually tail call to torch.jit.load, we need to
# reset back to the original position.
orig_position = opened_file.tell()
overall_storage = None
with _open_zipfile_reader(opened_file) as opened_zipfile:
if _is_torchscript_zip(opened_zipfile):
warnings.warn(
"'torch.load' received a zip file that looks like a TorchScript archive"
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
" silence this warning)",
UserWarning,
)
if weights_only:
raise RuntimeError(
"Cannot use ``weights_only=True`` with TorchScript archives passed to "
"``torch.load``. " + UNSAFE_MESSAGE
)
opened_file.seek(orig_position)
return torch.jit.load(opened_file, map_location=map_location)
if mmap:
if not _is_path(f):
raise ValueError(
"f must be a file path in order to use the mmap argument"
)
size = os.path.getsize(f)
if not IS_WINDOWS:
shared = get_default_mmap_options() == MAP_SHARED
else:
shared = False
overall_storage = torch.UntypedStorage.from_file(
os.fspath(f), shared, size
)
if weights_only:
try:
return _load(
opened_zipfile,
map_location,
_weights_only_unpickler,
overall_storage=overall_storage,
**pickle_load_args,
)
except pickle.UnpicklingError as e:
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
return _load(
opened_zipfile,
map_location,
pickle_module,
overall_storage=overall_storage,
**pickle_load_args,
)
if mmap:
f_name = "" if not isinstance(f, str) else f"{f}, "
raise RuntimeError(
"mmap can only be used with files saved with "
f"`torch.save({f_name}_use_new_zipfile_serialization=True), "
"please torch.save your checkpoint with this option in order to use mmap."
)
if weights_only:
try:
return _legacy_load(
opened_file,
map_location,
_weights_only_unpickler,
**pickle_load_args,
)
except pickle.UnpicklingError as e:
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
return _legacy_load(
opened_file, map_location, pickle_module, **pickle_load_args
)
# Register pickling support for layout instances such as
# torch.sparse_coo, etc
def _get_layout(name):
"""Get layout extension object from its string representation."""
cache = _get_layout.cache # type: ignore[attr-defined]
if not cache:
for v in torch.__dict__.values():
if isinstance(v, torch.layout):
cache[str(v)] = v
return cache[name]
# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
_get_layout.cache = {} # type: ignore[attr-defined]
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
deserialized_objects: dict[int, Any] = {}
restore_location = _get_restore_location(map_location)
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
def find_class(self, mod_name, name):
if type(name) is str and "Storage" in name:
try:
return StorageType(name)
except KeyError:
pass
return super().find_class(mod_name, name)
def _check_container_source(container_type, source_file, original_source):
try:
current_source = "".join(get_source_lines_and_file(container_type)[0])
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn(
"Couldn't retrieve source code for container of "
"type " + container_type.__name__ + ". It won't be checked "
"for correctness upon loading."
)
return
if original_source != current_source:
if container_type.dump_patches:
file_name = container_type.__name__ + ".patch"
diff = difflib.unified_diff(
current_source.split("\n"),
original_source.split("\n"),
source_file,
source_file,
lineterm="",
)
lines = "\n".join(diff)
try:
with open(file_name, "a+") as f:
file_size = f.seek(0, 2)
f.seek(0)
if file_size == 0:
f.write(lines)
elif file_size != len(lines) or f.read() != lines:
raise OSError
msg = (
"Saved a reverse patch to " + file_name + ". "
"Run `patch -p0 < " + file_name + "` to revert your "
"changes."
)
except OSError:
msg = (
"Tried to save a patch, but couldn't create a "
"writable file " + file_name + ". Make sure it "
"doesn't exist and your working directory is "
"writable."
)
else:
msg = (
"you can retrieve the original source code by "
"accessing the object's source attribute or set "
"`torch.nn.Module.dump_patches = True` and use the "
"patch tool to revert the changes."
)
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
warnings.warn(msg, SourceChangeWarning)
def legacy_load(f):
deserialized_objects: dict[int, Any] = {}
def persistent_load(saved_id):
if isinstance(saved_id, tuple):
# Ignore containers that don't have any sources saved
if all(saved_id[1:]):
_check_container_source(*saved_id)
return saved_id[0]
return deserialized_objects[int(saved_id)]
with (
closing(
tarfile.open(fileobj=f, mode="r:", format=tarfile.PAX_FORMAT)
) as tar,
mkdtemp() as tmpdir,
):
if pickle_module is _weights_only_unpickler:
raise RuntimeError(
"Cannot use ``weights_only=True`` with files saved in the "
"legacy .tar format. " + UNSAFE_MESSAGE
)
tar.extract("storages", path=tmpdir)
with open(os.path.join(tmpdir, "storages"), "rb", 0) as f:
num_storages = pickle_module.load(f, **pickle_load_args)
for _ in range(num_storages):
args = pickle_module.load(f, **pickle_load_args)
key, location, storage_type = args
dtype = storage_type._dtype
obj = cast(Storage, torch.UntypedStorage)._new_with_file(
f, torch._utils._element_size(dtype)
)
obj = restore_location(obj, location)
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[key] = torch.storage.TypedStorage(
wrap_storage=obj, dtype=dtype, _internal=True
)
storage_views = pickle_module.load(f, **pickle_load_args)
for target_cdata, root_cdata, offset, numel in storage_views:
root = deserialized_objects[root_cdata]
element_size = torch._utils._element_size(root.dtype)
offset_bytes = offset * element_size
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[target_cdata] = torch.storage.TypedStorage(
wrap_storage=root._untyped_storage[
offset_bytes : offset_bytes + numel * element_size
],
dtype=root.dtype,
_internal=True,
)
tar.extract("tensors", path=tmpdir)
with open(os.path.join(tmpdir, "tensors"), "rb", 0) as f:
num_tensors = pickle_module.load(f, **pickle_load_args)
for _ in range(num_tensors):
args = pickle_module.load(f, **pickle_load_args)
key, storage_id, _original_tensor_type = args
storage = deserialized_objects[storage_id]
(ndim,) = struct.unpack("<i", f.read(4))
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
f.read(4)
numel = struct.unpack(f"<{ndim}q", f.read(8 * ndim))
stride = struct.unpack(f"<{ndim}q", f.read(8 * ndim))
(storage_offset,) = struct.unpack("<q", f.read(8))
tensor = torch.empty((0,), dtype=storage.dtype).set_(
storage._untyped_storage, storage_offset, numel, stride
)
deserialized_objects[key] = tensor
pickle_file = tar.extractfile("pickle")
unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
return result
deserialized_objects = {}
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
if typename == "module":
# Ignore containers that don't have any sources saved
if all(data[1:]):
_check_container_source(*data)
return data[0]
elif typename == "storage":
storage_type, root_key, location, numel, view_metadata = data
location = _maybe_decode_ascii(location)
dtype = storage_type.dtype
nbytes = numel * torch._utils._element_size(dtype)
if root_key not in deserialized_objects:
if torch._guards.active_fake_mode() is not None:
obj = cast(Storage, torch.UntypedStorage(nbytes, device="meta"))
elif _serialization_tls.skip_data:
obj = cast(Storage, torch.UntypedStorage(nbytes))
obj = restore_location(obj, location)
else:
obj = cast(Storage, torch.UntypedStorage(nbytes))
obj._torch_load_uninitialized = True
obj = restore_location(obj, location)
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
typed_storage = torch.storage.TypedStorage(
wrap_storage=obj, dtype=dtype, _internal=True
)
deserialized_objects[root_key] = typed_storage
else:
typed_storage = deserialized_objects[root_key]
if typed_storage._data_ptr() == 0:
typed_storage = torch.storage.TypedStorage(
device=typed_storage._untyped_storage.device,
dtype=dtype,
_internal=True,
)
if view_metadata is not None:
view_key, offset, view_size = view_metadata
offset_bytes = offset * torch._utils._element_size(dtype)
view_size_bytes = view_size * torch._utils._element_size(dtype)
if view_key not in deserialized_objects:
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[view_key] = torch.storage.TypedStorage(
wrap_storage=typed_storage._untyped_storage[
offset_bytes : offset_bytes + view_size_bytes
],
dtype=dtype,
_internal=True,
)
res = deserialized_objects[view_key]
else:
res = typed_storage
return res
else:
raise RuntimeError(f"Unknown saved id type: {saved_id[0]}")
_check_seekable(f)
f_should_read_directly = _should_read_directly(f)
if f_should_read_directly and f.tell() == 0:
# legacy_load requires that f has fileno()
# only if offset is zero we can attempt the legacy tar file loader
try:
return legacy_load(f)
except tarfile.TarError:
if _is_zipfile(f):
# .zip is used for torch.jit.save and will throw an un-pickling error here
raise RuntimeError(
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)"
) from None
# if not a tarfile, reset file offset and proceed
f.seek(0)
magic_number = pickle_module.load(f, **pickle_load_args)
if magic_number != MAGIC_NUMBER:
raise RuntimeError("Invalid magic number; corrupt file?")
protocol_version = pickle_module.load(f, **pickle_load_args)
if protocol_version != PROTOCOL_VERSION:
raise RuntimeError(f"Invalid protocol version: {protocol_version}")
_sys_info = pickle_module.load(f, **pickle_load_args)
unpickler = UnpicklerWrapper(f, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
if torch._guards.active_fake_mode() is None and not _serialization_tls.skip_data:
offset = f.tell() if f_should_read_directly else None
for key in deserialized_storage_keys:
assert key in deserialized_objects
typed_storage = deserialized_objects[key]
typed_storage._untyped_storage._set_from_file(
f,
offset,
f_should_read_directly,
torch._utils._element_size(typed_storage.dtype),
)
if offset is not None:
offset = f.tell()
torch._utils._validate_loaded_sparse_tensors()
return result
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
# When using encoding='bytes' in Py3, some **internal** keys stored as
# strings in Py2 are loaded as bytes. This function decodes them with
# ascii encoding, one that Py3 uses by default.
#
# NOTE: This should only be used on internal keys (e.g., `typename` and
# `location` in `persistent_load` below!
if isinstance(bytes_str, bytes):
return bytes_str.decode("ascii")
return bytes_str
def _get_restore_location(map_location):
if map_location is None:
restore_location = default_restore_location
elif isinstance(map_location, dict):
def restore_location(storage, location):
location = map_location.get(location, location)
return default_restore_location(storage, location)
elif isinstance(map_location, (str, bytes)):
def restore_location(storage, location):
return default_restore_location(storage, map_location)
elif isinstance(map_location, torch.device):
def restore_location(storage, location):
return default_restore_location(storage, str(map_location))
else:
def restore_location(storage, location):
result = map_location(storage, location)
if result is None:
result = default_restore_location(storage, location)
return result
return restore_location
class StorageType:
def __init__(self, name):
self._dtype = _get_dtype_from_pickle_storage_type(name)
@property
def dtype(self):
return self._dtype
def __str__(self):
return f"StorageType(dtype={self.dtype})"
def _load(
zip_file,
map_location,
pickle_module,
pickle_file="data.pkl",
overall_storage=None,
**pickle_load_args,
):
restore_location = _get_restore_location(map_location)
loaded_storages = {}
can_calculate_storage_offsets = False
if zip_file.has_record(".format_version"):
version = zip_file.get_record(".format_version")
can_calculate_storage_offsets = version >= b"1"
# check if byteswapping is needed
byteordername = "byteorder"
byteorderdata = None
if zip_file.has_record(byteordername):
byteorderdata = zip_file.get_record(byteordername)
if byteorderdata not in [b"little", b"big"]:
raise ValueError("Unknown endianness type: " + byteorderdata.decode())
elif (
get_default_load_endianness() == LoadEndianness.LITTLE
or get_default_load_endianness() is None
):
byteorderdata = b"little"
elif get_default_load_endianness() == LoadEndianness.BIG:
byteorderdata = b"big"
elif get_default_load_endianness() == LoadEndianness.NATIVE:
pass
else:
raise ValueError("Invalid load endianness type")
storage_alignment = 64
if zip_file.has_record(".storage_alignment"):
storage_alignment = int(zip_file.get_record(".storage_alignment"))
if (
not zip_file.has_record(byteordername)
and get_default_load_endianness() is None
and sys.byteorder == "big"
):
# Default behaviour was changed
# See https://github.com/pytorch/pytorch/issues/101688
warnings.warn(
"The default load endianness for checkpoints without a byteorder mark "
"on big endian machines was changed from 'native' to 'little' endian, "
"to avoid this behavior please use "
"torch.serialization.set_default_load_endianness to set "
"the desired default load endianness",
UserWarning,
)
from torch.utils.serialization import config
calculate_storage_offsets = config.load.calculate_storage_offsets
run_debug_asserts = os.environ.get("TORCH_SERIALIZATION_DEBUG", "0") == "1"
current_offset = None
# constants from miniz.h/miniz.c
data_descripter_size64 = 24
data_descripter_size32 = 16
mz_uint32_max = 0xFFFFFFFF
offsets: dict[str, int] = dict()
def _get_offset(key, name, numel):
"""
Return the offset of the storage associated with key with record name `name` and size numel.
It is expected that the zipfile header of this storage starts at current_offset.
WARNING: This function relies on the behavior of the zipwriter in miniz.c. In particular,
the behavior of `mz_zip_writer_add_mem_ex_v2`. The behavior of this function must be kept
in sync with that of miniz!
After reading a storage of size numel that starts at storage_offset
if it is the first time that storage was read, update nonlocal variable
current_offset to the start of the next zipfile header by incrementing
it by numel and the data descriptor size.
"""
nonlocal current_offset, offsets
if name in offsets:
storage_offset = offsets[name]
return storage_offset
if current_offset is None:
assert key == "0"
current_offset = zip_file.get_record_offset(name)
local_header_offset = zip_file.get_record_header_offset(name)
storage_offset = current_offset
else:
storage_offset = zip_file.get_record_offset_no_read(
current_offset, name, numel, storage_alignment
)
local_header_offset = current_offset
# This is only actually needed for storages that have typed_storage._data_ptr() == 0
# after being read. Otherwise persistent_load would never "re-call" load_tensor
# for a given key.
offsets[name] = storage_offset
# Increment current_offset of offset where next zipfile header starts
current_offset = storage_offset + numel
# add size of data descriptor after payload
if numel > 0:
if local_header_offset >= mz_uint32_max or numel >= mz_uint32_max:
current_offset += data_descripter_size64
else:
current_offset += data_descripter_size32
return storage_offset
def load_tensor(dtype, numel, key, location):
name = f"data/{key}"
if torch._guards.detect_fake_mode(None) is not None:
nbytes = numel * torch._utils._element_size(dtype)
storage = torch.UntypedStorage(nbytes, device="meta")
storage._checkpoint_offset = zip_file.get_record_offset(name)
elif _serialization_tls.skip_data:
nbytes = numel * torch._utils._element_size(dtype)
storage = torch.UntypedStorage(nbytes)
elif overall_storage is not None:
if can_calculate_storage_offsets and calculate_storage_offsets:
storage_offset = _get_offset(key, name, numel)
if run_debug_asserts:
if storage_offset != zip_file.get_record_offset(name):
raise RuntimeError(
"This is a debug assert that was run as the `TORCH_SERIALIZATION_DEBUG` environment "
f"variable was set: Incorrect offset for {name}, got {storage_offset} expected "
f"{zip_file.get_record_offset(name)}"
)
else:
storage_offset = zip_file.get_record_offset(name)
storage = overall_storage[storage_offset : storage_offset + numel]
else:
if can_calculate_storage_offsets and run_debug_asserts:
# This is debug code that we use to test the validity of
# torch.utils.serialization.config.load.calculate_storage_offsets throughout CI
storage_offset = _get_offset(key, name, numel)
if storage_offset != zip_file.get_record_offset(name):
raise RuntimeError(
"This is a debug assert that was run as the `TORCH_SERIALIZATION_DEBUG` environment "
f"variable was set: Incorrect offset for {name}, got {storage_offset} expected "
f"{zip_file.get_record_offset(name)}"
)
storage = (
zip_file.get_storage_from_record(name, numel, torch.UntypedStorage)
._typed_storage()
._untyped_storage
)
# swap here if byteswapping is needed
if byteorderdata is not None:
if byteorderdata.decode() != sys.byteorder:
storage.byteswap(dtype)
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
if torch._guards.detect_fake_mode(None) is None:
wrap_storage = restore_location(storage, location)
else:
storage._fake_device = location
wrap_storage = storage
typed_storage = torch.storage.TypedStorage(
wrap_storage=wrap_storage,
dtype=dtype,
_internal=True,
)
if typed_storage._data_ptr() != 0:
loaded_storages[key] = typed_storage
return typed_storage
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
assert typename == "storage", (
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
)
storage_type, key, location, numel = data
if storage_type is torch.UntypedStorage:
dtype = torch.uint8
else:
dtype = storage_type.dtype
if key in loaded_storages:
typed_storage = loaded_storages[key]
else:
nbytes = numel * torch._utils._element_size(dtype)
typed_storage = load_tensor(
dtype, nbytes, key, _maybe_decode_ascii(location)
)
return typed_storage
load_module_mapping: dict[str, str] = {
# See https://github.com/pytorch/pytorch/pull/51633
"torch.tensor": "torch._tensor"
}
# Need to subclass Unpickler instead of directly monkey-patching the find_class method
# because it's marked readonly in pickle.
# The type: ignore is because mypy can't statically determine the type of this class.
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
# from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
# Lets us override the imports that pickle uses when unpickling an object.
# This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
def find_class(self, mod_name, name):
if type(name) is str and "Storage" in name:
try:
return StorageType(name)
except KeyError:
pass
mod_name = load_module_mapping.get(mod_name, mod_name)
return super().find_class(mod_name, name)
# Load the data (which may in turn use `persistent_load` to load tensors)
data_file = io.BytesIO(zip_file.get_record(pickle_file))
unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
# Needed for tensors where storage device and rebuild tensor device are
# not connected (wrapper subclasses and tensors rebuilt using numpy)
global _serialization_tls
_serialization_tls.map_location = map_location
result = unpickler.load()
_serialization_tls.map_location = None
torch._utils._validate_loaded_sparse_tensors()
torch._C._log_api_usage_metadata(
"torch.load.metadata", {"serialization_id": zip_file.serialization_id()}
)
return result
def _is_torchscript_zip(zip_file):
return "constants.pkl" in zip_file.get_all_records()
|