File size: 47,645 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 |
# mypy: allow-untyped-defs
"""Base optimizer."""
import functools
import warnings
from collections import defaultdict, OrderedDict
from collections.abc import Hashable, Iterable, Sequence
from copy import deepcopy
from itertools import chain
from typing import Any, Callable, cast, Optional, overload, TypeVar, Union
from typing_extensions import ParamSpec, Self, TypeAlias
import torch
import torch.utils.hooks as hooks
from torch.utils._foreach_utils import (
_get_foreach_kernels_supported_devices,
_get_fused_kernels_supported_devices,
_group_tensors_by_device_and_dtype,
Indices,
TensorListList,
)
from torch.utils.hooks import RemovableHandle
_T = TypeVar("_T")
_P = ParamSpec("_P")
Args: TypeAlias = tuple[Any, ...]
Kwargs: TypeAlias = dict[str, Any]
StateDict: TypeAlias = dict[str, Any]
DeviceDict = dict[Optional[torch.device], torch.Tensor]
DeviceDtypeDict = dict[Optional[tuple[torch.device, torch.dtype]], torch.Tensor]
GlobalOptimizerPreHook: TypeAlias = Callable[
["Optimizer", Args, Kwargs], Optional[tuple[Args, Kwargs]]
]
GlobalOptimizerPostHook: TypeAlias = Callable[["Optimizer", Args, Kwargs], None]
__all__ = [
"Optimizer",
"register_optimizer_step_pre_hook",
"register_optimizer_step_post_hook",
]
_global_optimizer_pre_hooks: dict[int, GlobalOptimizerPreHook] = OrderedDict()
_global_optimizer_post_hooks: dict[int, GlobalOptimizerPostHook] = OrderedDict()
_foreach_supported_types = [torch.Tensor, torch.nn.parameter.Parameter]
class _RequiredParameter:
"""Singleton class representing a required parameter for an Optimizer."""
def __repr__(self) -> str:
return "<required parameter>"
required = _RequiredParameter()
def _use_grad_for_differentiable(func):
def _use_grad(self, *args, **kwargs):
import torch._dynamo
prev_grad = torch.is_grad_enabled()
try:
# Note on graph break below:
# we need to graph break to ensure that aot respects the no_grad annotation.
# This is important for perf because without this, functionalization will generate an epilogue
# which updates the mutated parameters of the optimizer which is *not* visible to inductor, as a result,
# inductor will allocate for every parameter in the model, which is horrible.
# With this, aot correctly sees that this is an inference graph, and functionalization will generate
# an epilogue which is appended to the graph, which *is* visible to inductor, as a result, inductor sees that
# step is in place and is able to avoid the extra allocation.
# In the future, we will either 1) continue to graph break on backward, so this graph break does not matter
# or 2) have a fully fused forward and backward graph, which will have no_grad by default, and we can remove this
# graph break to allow the fully fused fwd-bwd-optimizer graph to be compiled.
# see https://github.com/pytorch/pytorch/issues/104053
torch.set_grad_enabled(self.defaults["differentiable"])
torch._dynamo.graph_break()
ret = func(self, *args, **kwargs)
finally:
torch._dynamo.graph_break()
torch.set_grad_enabled(prev_grad)
return ret
functools.update_wrapper(_use_grad, func)
return _use_grad
def _get_value(x):
# item is significantly faster than a cpu tensor in eager mode
if not torch.jit.is_scripting() and torch.compiler.is_compiling():
return x
else:
return x.item() if isinstance(x, torch.Tensor) else x
def _stack_if_compiling(x):
if not torch.jit.is_scripting() and torch.compiler.is_compiling():
return torch.stack(x)
else:
return x
def _disable_dynamo_if_unsupported(
single_tensor_fn: Optional[Callable[..., object]] = None
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
# workaround for torchscript BC
# it requires all called functions to be in the
# global environment at the site at which the
# maybe_fallback closure is created
if single_tensor_fn:
globals()[single_tensor_fn.__name__] = single_tensor_fn
def wrapper(func: Callable[_P, _T]) -> Callable[_P, _T]:
import inspect
disabled_func = torch._disable_dynamo(func)
ps = inspect.signature(func).parameters
has_state_steps = True
try:
state_steps_ind = list(ps.keys()).index("state_steps")
except ValueError:
has_state_steps = False
# Today, there are cases where we stack state steps
# and pass them as the value arg of foreach ops.
# Having state steps on cuda as the value arg is not supported in eager,
# but this only occurs in the rare case that the user explicitly deletes
# the capturable flag. If capturable=True, this is not a problem.
@functools.wraps(func)
def maybe_fallback(*args: _P.args, **kwargs: _P.kwargs):
if torch.compiler.is_compiling() and (
not kwargs.get("capturable", False)
and has_state_steps
and (arg := args[state_steps_ind])
and isinstance(arg, Sequence)
and arg[0].is_cuda
or (
"state_steps" in kwargs
and (kwarg := kwargs["state_steps"])
and isinstance(kwarg, Sequence)
and kwarg[0].is_cuda
)
):
return disabled_func(*args, **kwargs)
else:
return func(*args, **kwargs)
return maybe_fallback
return wrapper
# For any optimizer with a faster implementation, we attempt to default to the
# fastest + stablest whenever possible. For foreach, the requirements are to have
# native params all on CUDA. For fused, there's currently the additional requirement
# that the tensors' dtypes must be floating point. Neither alternative supports
# torch.jit.script nor differentiable, so we fall back to the single tensor
# implementation in those cases.
def _default_to_fused_or_foreach(
params: list[torch.Tensor], differentiable: bool, use_fused: bool = False
) -> tuple[bool, bool]:
if torch.jit.is_scripting() or differentiable:
return False, False
fused_supported_devices = _get_fused_kernels_supported_devices()
foreach_supported_devices = _get_foreach_kernels_supported_devices()
fused = use_fused and all(
p is None
or (
type(p) in _foreach_supported_types
and p.device.type in fused_supported_devices
and torch.is_floating_point(p)
)
for p in params
)
foreach = not fused and all(
p is None
or (
type(p) in _foreach_supported_types
and p.device.type in foreach_supported_devices
)
for p in params
)
return fused, foreach
def _device_dtype_check_for_fused(
p: torch.Tensor, cuda_unsupported: bool = False
) -> None:
fused_supported_devices = _get_fused_kernels_supported_devices()
if cuda_unsupported:
fused_supported_devices.remove("cuda")
if not (p.device.type in fused_supported_devices and torch.is_floating_point(p)):
raise RuntimeError(
"`fused=True` requires all the params to be floating point Tensors of "
f"supported devices: {fused_supported_devices} but {p.dtype} and {p.device.type}"
)
def _view_as_real(params, *state_and_grads):
for i, p in enumerate(params):
if torch.is_complex(p):
params[i] = torch.view_as_real(params[i])
for s in state_and_grads:
s[i] = torch.view_as_real(s[i])
def _get_scalar_dtype(is_fused=None):
if is_fused:
return torch.float32
return (
torch.float64 if torch.get_default_dtype() == torch.float64 else torch.float32
)
def _get_capturable_supported_devices(supports_xla: bool = True) -> list[str]:
r"""Return the device type list that supports capturable optimizer."""
capturable_supported_devices = ["cuda", "xpu", "hpu"]
if not torch.jit.is_scripting():
capturable_supported_devices.append(torch._C._get_privateuse1_backend_name())
if supports_xla:
capturable_supported_devices.append("xla")
return capturable_supported_devices
# Common doc strings among optimizers
_params_doc = r"""params (iterable): iterable of parameters or named_parameters to optimize
or iterable of dicts defining parameter groups. When using named_parameters,
all parameters in all groups should be named"""
_foreach_doc = r"""foreach (bool, optional): whether foreach implementation of optimizer
is used. If unspecified by the user (so foreach is None), we will try to use
foreach over the for-loop implementation on CUDA, since it is usually
significantly more performant. Note that the foreach implementation uses
~ sizeof(params) more peak memory than the for-loop version due to the intermediates
being a tensorlist vs just one tensor. If memory is prohibitive, batch fewer
parameters through the optimizer at a time or switch this flag to False (default: None)"""
_fused_doc = r"""fused (bool, optional): whether the fused implementation is used.
Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16`
are supported. (default: None)
.. note:: The foreach and fused implementations are typically faster than the for-loop,
single-tensor implementation, with fused being theoretically fastest with both
vertical and horizontal fusion. As such, if the user has not specified either
flag (i.e., when foreach = fused = None), we will attempt defaulting to the foreach
implementation when the tensors are all on CUDA. Why not fused? Since the fused
implementation is relatively new, we want to give it sufficient bake-in time.
To specify fused, pass True for fused. To force running the for-loop
implementation, pass False for either foreach or fused. """
_capturable_doc = r"""capturable (bool, optional): whether this instance is safe to
capture in a CUDA graph. Passing True can impair ungraphed performance,
so if you don't intend to graph capture this instance, leave it False
(default: False)"""
_differentiable_doc = r"""differentiable (bool, optional): whether autograd should
occur through the optimizer step in training. Otherwise, the step()
function runs in a torch.no_grad() context. Setting to True can impair
performance, so leave it False if you don't intend to run autograd
through this instance (default: False)"""
_maximize_doc = r"""maximize (bool, optional): maximize the objective with respect to the
params, instead of minimizing (default: False)"""
def register_optimizer_step_pre_hook(hook: GlobalOptimizerPreHook) -> RemovableHandle:
r"""Register a pre hook common to all optimizers.
The hook should have the following signature::
hook(optimizer, args, kwargs) -> None or modified args and kwargs
Args:
hook (Callable): A user defined hook which is registered on all optimizers.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(_global_optimizer_pre_hooks)
_global_optimizer_pre_hooks[handle.id] = hook
return handle
def register_optimizer_step_post_hook(hook: GlobalOptimizerPostHook) -> RemovableHandle:
r"""Register a post hook common to all optimizers.
The hook should have the following signature::
hook(optimizer, args, kwargs) -> None
Args:
hook (Callable): A user defined hook which is registered on all optimizers.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(_global_optimizer_post_hooks)
_global_optimizer_post_hooks[handle.id] = hook
return handle
ParamsT: TypeAlias = Union[
Iterable[torch.Tensor], Iterable[dict[str, Any]], Iterable[tuple[str, torch.Tensor]]
]
R = TypeVar("R")
T = TypeVar("T")
class Optimizer:
r"""Base class for all optimizers.
.. warning::
Parameters need to be specified as collections that have a deterministic
ordering that is consistent between runs. Examples of objects that don't
satisfy those properties are sets and iterators over values of dictionaries.
Args:
params (iterable): an iterable of :class:`torch.Tensor` s or
:class:`dict` s. Specifies what Tensors should be optimized.
defaults: (dict): a dict containing default values of optimization
options (used when a parameter group doesn't specify them).
"""
OptimizerPreHook: TypeAlias = Callable[[Self, Args, Kwargs], Optional[tuple[Args, Kwargs]]] # type: ignore[misc]
OptimizerPostHook: TypeAlias = Callable[[Self, Args, Kwargs], None] # type: ignore[misc]
_optimizer_step_pre_hooks: dict[int, OptimizerPreHook]
_optimizer_step_post_hooks: dict[int, OptimizerPostHook]
_optimizer_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
_optimizer_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_pre_hooks: 'OrderedDict[int, Callable[["Optimizer", StateDict], Optional[StateDict]]]'
_optimizer_load_state_dict_post_hooks: 'OrderedDict[int, Callable[["Optimizer"], None]]'
def __init__(self, params: ParamsT, defaults: dict[str, Any]) -> None: # noqa: D107
torch._C._log_api_usage_once("python.optimizer")
self.defaults = defaults
self._optimizer_step_pre_hooks = OrderedDict()
self._optimizer_step_post_hooks = OrderedDict()
self._optimizer_state_dict_pre_hooks = OrderedDict()
self._optimizer_state_dict_post_hooks = OrderedDict()
self._optimizer_load_state_dict_pre_hooks = OrderedDict()
self._optimizer_load_state_dict_post_hooks = OrderedDict()
self._patch_step_function()
if isinstance(params, torch.Tensor):
raise TypeError(
"params argument given to the optimizer should be "
"an iterable of Tensors or dicts, but got " + torch.typename(params)
)
self.state: defaultdict[torch.Tensor, Any] = defaultdict(dict)
self.param_groups: list[dict[str, Any]] = []
param_groups = list(params)
if len(param_groups) == 0:
raise ValueError("optimizer got an empty parameter list")
if not isinstance(param_groups[0], dict):
param_groups = [{"params": param_groups}]
for param_group in param_groups:
self.add_param_group(cast(dict, param_group))
# Allows _cuda_graph_capture_health_check to rig a poor man's TORCH_WARN_ONCE in python,
# which I don't think exists
# https://github.com/pytorch/pytorch/issues/72948
self._warned_capturable_if_run_uncaptured = True
def __getstate__(self) -> dict[str, Any]: # noqa: D105
return {
"defaults": self.defaults,
"state": self.state,
"param_groups": self.param_groups,
}
def __setstate__(self, state: dict[str, Any]) -> None: # noqa: D105
self.__dict__.update(state)
if "_optimizer_step_pre_hooks" not in self.__dict__:
self._optimizer_step_pre_hooks = OrderedDict()
if "_optimizer_step_post_hooks" not in self.__dict__:
self._optimizer_step_post_hooks = OrderedDict()
if "_optimizer_state_dict_pre_hooks" not in self.__dict__:
self._optimizer_state_dict_pre_hooks = OrderedDict()
if "_optimizer_state_dict_post_hooks" not in self.__dict__:
self._optimizer_state_dict_post_hooks = OrderedDict()
if "_optimizer_load_state_dict_pre_hooks" not in self.__dict__:
self._optimizer_load_state_dict_pre_hooks = OrderedDict()
if "_optimizer_load_state_dict_post_hooks" not in self.__dict__:
self._optimizer_load_state_dict_post_hooks = OrderedDict()
self._patch_step_function() # To support multiprocessing pickle/unpickle
self.defaults.setdefault("differentiable", False)
def __repr__(self) -> str: # noqa: D105
format_string = self.__class__.__name__ + " ("
for i, group in enumerate(self.param_groups):
format_string += "\n"
format_string += f"Parameter Group {i}\n"
for key in sorted(group.keys()):
if key != "params":
format_string += f" {key}: {group[key]}\n"
format_string += ")"
return format_string
# Currently needed by Adam and AdamW
def _cuda_graph_capture_health_check(self) -> None:
# Note [torch.compile x capturable]
# If we are compiling, we try to take the capturable path automatically by
# setting the flag to True during tracing. Due to this, we skip all the checks
# normally required for determining whether we can use CUDA graphs and
# shunt the responsibility to torch.inductor. This saves time during tracing
# since the checks are slow without sacrificing UX since inductor will warn
# later if CUDA graphs cannot be enabled, e.g.,
# https://github.com/pytorch/pytorch/blob/d3ba8901d8640eb16f88b2bfef9df7fa383d4b47/torch/_inductor/compile_fx.py#L390.
# Thus, when compiling, inductor will determine if cudagraphs
# can be enabled based on whether there is input mutation or CPU tensors.
if (
not torch.compiler.is_compiling()
and torch.backends.cuda.is_built()
and torch.cuda.is_available()
):
capturing = torch.cuda.is_current_stream_capturing()
if capturing and not all(
group["capturable"] for group in self.param_groups
):
raise RuntimeError(
"Attempting CUDA graph capture of step() for an instance of "
+ self.__class__.__name__
+ " but param_groups' capturable is False."
)
if (
(not getattr(self, "_warned_capturable_if_run_uncaptured", False))
and all(group["capturable"] for group in self.param_groups)
and (not capturing)
):
warnings.warn(
"This instance was constructed with capturable=True or some of all the param_groups came with capturable=True, "
"but step() is running without CUDA graph capture. If you never intend to graph-capture this "
"instance, capturable=True can impair performance, and you should set capturable=False."
)
self._warned_capturable_if_run_uncaptured = True
def _optimizer_step_code(self) -> None:
"""Entry point for `torch.profile.profiler`.
When python tracing is enabled the profiler will hook into this
function at the CPython level to inspect the optimizer's parameters and
param groups. It is called it after `step()` since many optimizers
lazily initialize state.
This is a workaround due to lack of a proper step hook on the optimizer,
and will be removed if it exists.
"""
@staticmethod
def profile_hook_step(func: Callable[_P, R]) -> Callable[_P, R]: # noqa: D102
@functools.wraps(func)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> R:
self, *_ = args
self = cast(Optimizer, self)
profile_name = f"Optimizer.step#{self.__class__.__name__}.step"
with torch.autograd.profiler.record_function(profile_name):
# call optimizer step pre hooks
for pre_hook in chain(
_global_optimizer_pre_hooks.values(),
self._optimizer_step_pre_hooks.values(),
):
result = pre_hook(self, args, kwargs)
if result is not None:
if isinstance(result, tuple) and len(result) == 2:
args, kwargs = result # type: ignore[assignment]
else:
raise RuntimeError(
f"{func} must return None or a tuple of (new_args, new_kwargs), but got {result}."
)
out = func(*args, **kwargs)
self._optimizer_step_code()
# call optimizer step post hooks
for post_hook in chain(
self._optimizer_step_post_hooks.values(),
_global_optimizer_post_hooks.values(),
):
post_hook(self, args, kwargs)
return out
return wrapper
@staticmethod
def _group_tensors_by_device_and_dtype(
tensorlistlist: TensorListList,
with_indices: bool = False,
) -> Union[
dict[tuple[None, None], tuple[TensorListList, Indices]],
dict[tuple[torch.device, torch.dtype], tuple[TensorListList, Indices]],
]:
"""Group a list of lists of tensors by device and dtype.
Skips this step if we are compiling since this will occur during inductor lowering.
"""
if torch.compiler.is_compiling():
return {(None, None): (tensorlistlist, list(range(len(tensorlistlist[0]))))}
else:
return _group_tensors_by_device_and_dtype(tensorlistlist, with_indices) # type: ignore[return-value, arg-type]
def _patch_step_function(self) -> None:
self._zero_grad_profile_name = (
f"Optimizer.zero_grad#{self.__class__.__name__}.zero_grad"
)
hooked = getattr(self.__class__.step, "hooked", None)
if not hooked:
self.__class__.step = self.profile_hook_step(self.__class__.step) # type: ignore[assignment]
self.__class__.step.hooked = True # type: ignore[attr-defined]
def register_step_pre_hook(self, hook: OptimizerPreHook) -> RemovableHandle:
r"""Register an optimizer step pre hook which will be called before optimizer step.
It should have the following signature::
hook(optimizer, args, kwargs) -> None or modified args and kwargs
The ``optimizer`` argument is the optimizer instance being used. If
args and kwargs are modified by the pre-hook, then the transformed
values are returned as a tuple containing the new_args and new_kwargs.
Args:
hook (Callable): The user defined hook to be registered.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_step_pre_hooks)
self._optimizer_step_pre_hooks[handle.id] = hook
return handle
def register_step_post_hook(self, hook: OptimizerPostHook) -> RemovableHandle:
r"""Register an optimizer step post hook which will be called after optimizer step.
It should have the following signature::
hook(optimizer, args, kwargs) -> None
The ``optimizer`` argument is the optimizer instance being used.
Args:
hook (Callable): The user defined hook to be registered.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_step_post_hooks)
self._optimizer_step_post_hooks[handle.id] = hook
return handle
def register_state_dict_pre_hook(
self, hook: Callable[["Optimizer"], None], prepend: bool = False
) -> RemovableHandle: # noqa: D101
r"""Register a state dict pre-hook which will be called before :meth:`~torch.optim.Optimizer.state_dict` is called.
It should have the following signature::
hook(optimizer) -> None
The ``optimizer`` argument is the optimizer instance being used.
The hook will be called with argument ``self`` before calling ``state_dict`` on ``self``.
The registered hook can be used to perform pre-processing before the ``state_dict``
call is made.
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If True, the provided pre ``hook`` will be fired before
all the already registered pre-hooks on ``state_dict``. Otherwise,
the provided ``hook`` will be fired after all the already registered
pre-hooks. (default: False)
Returns:
:class:`torch.utils.hooks.RemoveableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_state_dict_pre_hooks)
self._optimizer_state_dict_pre_hooks[handle.id] = hook
if prepend:
self._optimizer_state_dict_pre_hooks.move_to_end(handle.id, last=False)
return handle
def register_state_dict_post_hook(
self,
hook: Callable[["Optimizer", StateDict], Optional[StateDict]],
prepend: bool = False,
) -> RemovableHandle:
r"""Register a state dict post-hook which will be called after :meth:`~torch.optim.Optimizer.state_dict` is called.
It should have the following signature::
hook(optimizer, state_dict) -> state_dict or None
The hook will be called with arguments ``self`` and ``state_dict`` after generating
a ``state_dict`` on ``self``. The hook may modify the state_dict inplace or optionally
return a new one. The registered hook can be used to perform post-processing
on the ``state_dict`` before it is returned.
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If True, the provided post ``hook`` will be fired before
all the already registered post-hooks on ``state_dict``. Otherwise,
the provided ``hook`` will be fired after all the already registered
post-hooks. (default: False)
Returns:
:class:`torch.utils.hooks.RemoveableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_state_dict_post_hooks)
self._optimizer_state_dict_post_hooks[handle.id] = hook
if prepend:
self._optimizer_state_dict_post_hooks.move_to_end(handle.id, last=False)
return handle
@torch._disable_dynamo
def state_dict(self) -> StateDict:
r"""Return the state of the optimizer as a :class:`dict`.
It contains two entries:
* ``state``: a Dict holding current optimization state. Its content
differs between optimizer classes, but some common characteristics
hold. For example, state is saved per parameter, and the parameter
itself is NOT saved. ``state`` is a Dictionary mapping parameter ids
to a Dict with state corresponding to each parameter.
* ``param_groups``: a List containing all parameter groups where each
parameter group is a Dict. Each parameter group contains metadata
specific to the optimizer, such as learning rate and weight decay,
as well as a List of parameter IDs of the parameters in the group.
If a param group was initialized with ``named_parameters()`` the names
content will also be saved in the state dict.
NOTE: The parameter IDs may look like indices but they are just IDs
associating state with param_group. When loading from a state_dict,
the optimizer will zip the param_group ``params`` (int IDs) and the
optimizer ``param_groups`` (actual ``nn.Parameter`` s) in order to
match state WITHOUT additional verification.
A returned state dict might look something like:
.. code-block:: text
{
'state': {
0: {'momentum_buffer': tensor(...), ...},
1: {'momentum_buffer': tensor(...), ...},
2: {'momentum_buffer': tensor(...), ...},
3: {'momentum_buffer': tensor(...), ...}
},
'param_groups': [
{
'lr': 0.01,
'weight_decay': 0,
...
'params': [0]
'param_names' ['param0'] (optional)
},
{
'lr': 0.001,
'weight_decay': 0.5,
...
'params': [1, 2, 3]
'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional)
}
]
}
"""
for pre_hook in self._optimizer_state_dict_pre_hooks.values():
pre_hook(self)
# Save order indices instead of Tensors
param_mappings: dict[int, int] = {}
start_index = 0
def pack_group(group: dict[str, Any]) -> dict[str, Any]:
nonlocal start_index
packed = {k: v for k, v in group.items() if k != "params"}
param_mappings.update(
{
id(p): i
for i, p in enumerate(group["params"], start_index)
if id(p) not in param_mappings
}
)
packed["params"] = [param_mappings[id(p)] for p in group["params"]]
start_index += len(packed["params"])
return packed
param_groups = [pack_group(g) for g in self.param_groups]
# Remap state to use order indices as keys
packed_state = {
(param_mappings[id(k)] if isinstance(k, torch.Tensor) else k): v
for k, v in self.state.items()
}
state_dict = {
"state": packed_state,
"param_groups": param_groups,
}
for post_hook in self._optimizer_state_dict_post_hooks.values():
hook_result = post_hook(self, state_dict)
if hook_result is not None:
state_dict = hook_result
return state_dict
@staticmethod
def _process_value_according_to_param_policy(
param: torch.Tensor,
value: torch.Tensor,
param_id: int,
param_groups: list[dict[Any, Any]],
key: Hashable = None,
) -> torch.Tensor:
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
# Make sure state['step'] is not casted https://github.com/pytorch/pytorch/issues/74424
# UNLESS fused or capturable, see note [special device hosting for step]
fused = False
capturable = False
assert param_groups is not None
for pg in param_groups:
if param_id in pg["params"]:
fused = pg["fused"] if "fused" in pg else False
capturable = pg["capturable"] if "capturable" in pg else False
break
if key == "step":
if capturable or fused:
return value.to(dtype=torch.float32, device=param.device)
else:
return value
else:
if param.is_floating_point():
return value.to(dtype=param.dtype, device=param.device)
else:
return value.to(device=param.device)
def register_load_state_dict_pre_hook(
self,
hook: Callable[["Optimizer", StateDict], Optional[StateDict]],
prepend: bool = False,
) -> RemovableHandle: # noqa: D205 D400
r"""Register a load_state_dict pre-hook which will be called before
:meth:`~torch.optim.Optimizer.load_state_dict` is called. It should have the
following signature::
hook(optimizer, state_dict) -> state_dict or None
The ``optimizer`` argument is the optimizer instance being used and the
``state_dict`` argument is a shallow copy of the ``state_dict`` the user
passed in to ``load_state_dict``. The hook may modify the state_dict inplace
or optionally return a new one. If a state_dict is returned, it will be used
to be loaded into the optimizer.
The hook will be called with argument ``self`` and ``state_dict`` before
calling ``load_state_dict`` on ``self``. The registered hook can be used to
perform pre-processing before the ``load_state_dict`` call is made.
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If True, the provided pre ``hook`` will be fired before
all the already registered pre-hooks on ``load_state_dict``. Otherwise,
the provided ``hook`` will be fired after all the already registered
pre-hooks. (default: False)
Returns:
:class:`torch.utils.hooks.RemoveableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_load_state_dict_pre_hooks)
self._optimizer_load_state_dict_pre_hooks[handle.id] = hook
if prepend:
self._optimizer_load_state_dict_pre_hooks.move_to_end(handle.id, last=False)
return handle
def register_load_state_dict_post_hook(
self, hook: Callable[["Optimizer"], None], prepend: bool = False
) -> RemovableHandle: # noqa: D205 D400
r"""Register a load_state_dict post-hook which will be called after
:meth:`~torch.optim.Optimizer.load_state_dict` is called. It should have the
following signature::
hook(optimizer) -> None
The ``optimizer`` argument is the optimizer instance being used.
The hook will be called with argument ``self`` after calling
``load_state_dict`` on ``self``. The registered hook can be used to
perform post-processing after ``load_state_dict`` has loaded the
``state_dict``.
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If True, the provided post ``hook`` will be fired before
all the already registered post-hooks on ``load_state_dict``. Otherwise,
the provided ``hook`` will be fired after all the already registered
post-hooks. (default: False)
Returns:
:class:`torch.utils.hooks.RemoveableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = hooks.RemovableHandle(self._optimizer_load_state_dict_post_hooks)
self._optimizer_load_state_dict_post_hooks[handle.id] = hook
if prepend:
self._optimizer_load_state_dict_post_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
@torch._disable_dynamo
def load_state_dict(self, state_dict: StateDict) -> None:
r"""Load the optimizer state.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
.. note::
The names of the parameters (if they exist under the "param_names" key of each param group
in :meth:`state_dict`) will not affect the loading process.
To use the parameters' names for custom cases (such as when the parameters in the loaded state dict
differ from those initialized in the optimizer),
a custom ``register_load_state_dict_pre_hook`` should be implemented to adapt the loaded dict
accordingly.
If ``param_names`` exist in loaded state dict ``param_groups`` they will be saved and override
the current names, if present, in the optimizer state. If they do not exist in loaded state dict,
the optimizer ``param_names`` will remain unchanged.
"""
# shallow copy, to be consistent with module API
state_dict = state_dict.copy()
for pre_hook in self._optimizer_load_state_dict_pre_hooks.values():
hook_result = pre_hook(self, state_dict)
if hook_result is not None:
state_dict = hook_result
# Validate the state_dict
groups = self.param_groups
# Deepcopy as we write into saved_groups later to update state
saved_groups = deepcopy(state_dict["param_groups"])
if len(groups) != len(saved_groups):
raise ValueError(
"loaded state dict has a different number of parameter groups"
)
param_lens = (len(g["params"]) for g in groups)
saved_lens = (len(g["params"]) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError(
"loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group"
)
# Update the state
id_map = dict(
zip(
chain.from_iterable(g["params"] for g in saved_groups),
chain.from_iterable(g["params"] for g in groups),
)
)
def _cast(param, value, param_id=None, param_groups=None, key=None):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
return Optimizer._process_value_according_to_param_policy(
param, value, param_id, param_groups, key
)
elif isinstance(value, dict):
return {
k: _cast(
param, v, param_id=param_id, param_groups=param_groups, key=k
)
for k, v in value.items()
}
elif isinstance(value, Iterable):
return type(value)(_cast(param, v, param_id=param_id, param_groups=param_groups) for v in value) # type: ignore[call-arg]
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state: defaultdict[torch.Tensor, dict[Any, Any]] = defaultdict(dict)
for k, v in state_dict["state"].items():
if k in id_map:
param = id_map[k]
state[param] = _cast(
param, v, param_id=k, param_groups=state_dict["param_groups"]
)
else:
state[k] = v
# Update parameter groups, setting their 'params' value
def update_group(
group: dict[str, Any], new_group: dict[str, Any]
) -> dict[str, Any]:
new_group["params"] = group["params"]
if "param_names" in group and "param_names" not in new_group:
new_group["param_names"] = group["param_names"]
return new_group
param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({"state": state, "param_groups": param_groups})
for post_hook in self._optimizer_load_state_dict_post_hooks.values():
post_hook(self)
@torch._disable_dynamo
def zero_grad(self, set_to_none: bool = True) -> None:
r"""Reset the gradients of all optimized :class:`torch.Tensor` s.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
This will in general have lower memory footprint, and can modestly improve performance.
However, it changes certain behaviors. For example:
1. When the user tries to access a gradient and perform manual ops on it,
a None attribute or a Tensor full of 0s will behave differently.
2. If the user requests ``zero_grad(set_to_none=True)`` followed by a backward pass, ``.grad``\ s
are guaranteed to be None for params that did not receive a gradient.
3. ``torch.optim`` optimizers have a different behavior if the gradient is 0 or None
(in one case it does the step with a gradient of 0 and in the other it skips
the step altogether).
"""
foreach = self.defaults.get("foreach", False) or self.defaults.get(
"fused", False
)
if not hasattr(self, "_zero_grad_profile_name"):
self._patch_step_function()
per_device_and_dtype_grads: Optional[
defaultdict[torch.device, defaultdict[torch.dtype, list[torch.Tensor]]]
]
if foreach:
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list))
else:
per_device_and_dtype_grads = None
with torch.autograd.profiler.record_function(self._zero_grad_profile_name):
for group in self.param_groups:
for p in group["params"]:
if p.grad is not None:
if set_to_none:
p.grad = None
else:
if p.grad.grad_fn is not None:
p.grad.detach_()
else:
p.grad.requires_grad_(False)
if not foreach or p.grad.is_sparse:
p.grad.zero_()
else:
assert per_device_and_dtype_grads is not None
per_device_and_dtype_grads[p.grad.device][
p.grad.dtype
].append(p.grad)
if foreach:
assert per_device_and_dtype_grads is not None
for per_dtype_grads in per_device_and_dtype_grads.values():
for grads in per_dtype_grads.values():
torch._foreach_zero_(grads)
@overload
def step(self, closure: None = ...) -> None:
...
@overload
def step(self, closure: Callable[[], float]) -> float:
...
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
r"""Perform a single optimization step to update parameter.
Args:
closure (Callable): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
"""
raise NotImplementedError
@torch._disable_dynamo
def add_param_group(self, param_group: dict[str, Any]) -> None:
r"""Add a param group to the :class:`Optimizer` s `param_groups`.
This can be useful when fine tuning a pre-trained network as frozen layers can be made
trainable and added to the :class:`Optimizer` as training progresses.
Args:
param_group (dict): Specifies what Tensors should be optimized along with group
specific optimization options.
"""
if not isinstance(param_group, dict):
raise TypeError(f"param_group must be a dict, but got {type(param_group)}")
params = param_group["params"]
if isinstance(params, torch.Tensor):
param_group["params"] = [params]
elif isinstance(params, set):
raise TypeError(
"optimizer parameters need to be organized in ordered collections, but "
"the ordering of tensors in sets will change between runs. Please use a list instead."
)
else:
param_group["params"] = list(params)
extracted_param_tensors = []
extracted_param_names = []
for param in param_group["params"]:
if isinstance(param, tuple):
param_name = param[0]
extracted_param_names.append(param_name)
extracted_param_tensors.append(param[1])
else:
extracted_param_tensors.append(param)
param_group["params"] = extracted_param_tensors
if len(extracted_param_names) != 0:
if len(extracted_param_names) == len(extracted_param_tensors):
param_group["param_names"] = extracted_param_names
else:
raise ValueError(
"all optimizer params should be with/without names. Some param names are missing"
)
for param in param_group["params"]:
if not isinstance(param, torch.Tensor):
raise TypeError(
"optimizer can only optimize Tensors, "
"but one of the params is " + torch.typename(param)
)
if not self.defaults.get("differentiable", None) and not (
param.is_leaf or param.retains_grad
):
raise ValueError("can't optimize a non-leaf Tensor")
for name, default in self.defaults.items():
if default is required and name not in param_group:
raise ValueError(
f"parameter group didn't specify a value of required optimization parameter {name}"
)
else:
param_group.setdefault(name, default)
params = param_group["params"]
if len(params) != len(set(params)):
warnings.warn(
"optimizer contains a parameter group with duplicate parameters; "
"in future, this will cause an error; "
"see github.com/pytorch/pytorch/issues/40967 for more information",
stacklevel=3,
)
param_set: set[torch.Tensor] = set()
for group in self.param_groups:
param_set.update(set(group["params"]))
if ("param_names" in param_group) != ("param_names" in group):
current_group_txt = (
"with names" if "param_names" in param_group else "without names"
)
raise ValueError(
"all optimizer param groups should be with/without names. "
f"cannot add param group {current_group_txt} to the optimizer"
)
if not param_set.isdisjoint(set(param_group["params"])):
raise ValueError("some parameters appear in more than one parameter group")
self.param_groups.append(param_group)
|