File size: 8,092 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# mypy: allow-untyped-defs
"""This file exports ONNX ops for opset 18.

Note [ONNX Operators that are added/updated in opset 18]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-18-of-the-default-onnx-operator-set
New operators:
    BitwiseAnd
    CenterCropPad
    Col2Im
    Mish
    OptionalGetElement
    OptionalHasElement
    Pad
    Resize
    ScatterElements
    ScatterND
    Split
"""

import functools
from collections.abc import Sequence
from typing import Optional

import torch
from torch import _C
from torch.onnx import _type_utils, symbolic_helper, symbolic_opset9 as opset9
from torch.onnx._internal import jit_utils, registration


# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in symbolic_helper.py

__all__ = [
    "col2im",
]

_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=18)


@_onnx_symbolic("aten::__and_")
@_onnx_symbolic("aten::bitwise_and")
def __and_(g: jit_utils.GraphContext, self, other):
    # do type promotion (scalars don't seem to apply)
    args = [self, other]
    # type promotion doesn't happen with torch.bitwise_and(tensor, scalar)
    prom_args = [arg for arg in args if symbolic_helper._get_tensor_rank(arg)]
    if len(prom_args) == 0:
        prom_args = args
    promotion_jit_type = symbolic_helper._type_promote_from_values(*prom_args)
    self = symbolic_helper._maybe_cast_to_type(g, self, promotion_jit_type)
    other = symbolic_helper._maybe_cast_to_type(g, other, promotion_jit_type)
    if promotion_jit_type == _type_utils.JitScalarType.BOOL:
        return g.op("And", self, other)
    return g.op("BitwiseAnd", self, other)


@_onnx_symbolic("aten::col2im")
@symbolic_helper.parse_args("v", "v", "v", "is", "is", "is")
def col2im(
    g,
    input: _C.Value,
    output_size: _C.Value,
    kernel_size: _C.Value,
    dilation: Sequence[int],
    padding: Sequence[int],
    stride: Sequence[int],
):
    # convert [i0, i1, ..., in] into [i0, i0, i1, i1, ..., in, in]
    adjusted_padding: list[int] = []
    for pad in padding:
        adjusted_padding.extend(pad for _ in range(2))

    num_dimensional_axis = symbolic_helper._get_tensor_sizes(output_size)[0]
    if not adjusted_padding:
        adjusted_padding = [0, 0] * num_dimensional_axis

    if not dilation:
        dilation = [1] * num_dimensional_axis

    if not stride:
        stride = [1] * num_dimensional_axis

    return g.op(
        "Col2Im",
        input,
        output_size,
        kernel_size,
        dilations_i=dilation,
        pads_i=adjusted_padding,
        strides_i=stride,
    )


@_onnx_symbolic(
    "aten::mean", decorate=[symbolic_helper._apply_params("ReduceMean", "mean")]
)
@_onnx_symbolic(
    "aten::prod",
    decorate=[
        symbolic_helper._apply_params(
            "ReduceProd", "prod", allow_multi_dim_support=False
        )
    ],
)
def _reduce_with_dtype(onnx_op: str, name: str, allow_multi_dim_support: bool = True):
    return symbolic_helper._reduce_with_dtype_helper(
        onnx_op, name, allow_multi_dim_support
    )


@_onnx_symbolic("aten::native_layer_norm")
@symbolic_helper.quantized_args(True, False, False, False)
@symbolic_helper.parse_args("v", "is", "v", "v", "f")
def _native_layer_norm(
    g: jit_utils.GraphContext,
    input: _C.Value,
    normalized_shape: Sequence[int],
    weight: _C.Value,
    bias: _C.Value,
    eps: float,
) -> tuple[_C.Value, _C.Value, _C.Value]:
    return opset9.native_layer_norm(g, input, normalized_shape, weight, bias, eps)


@_onnx_symbolic("aten::glu")
@symbolic_helper.parse_args("v", "i")
def _glu(g: jit_utils.GraphContext, input, dim):
    dim_size = symbolic_helper._get_tensor_dim_size(input, dim)
    if dim_size is not None:
        assert dim_size % 2 == 0

    first, second = g.op("Split", input, axis_i=dim, num_outputs_i=2, outputs=2)
    return g.op("Mul", first, g.op("Sigmoid", second))


@_onnx_symbolic("aten::max")
# torch.max (same for torch.min) actually has two interfaces smashed together:
# torch.max(x, dim, keepdim) and torch.max(x, y)
# TODO(justinchuby): Support multiple quantized args in output
def max(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None):
    return symbolic_helper._max_helper(g, self, dim_or_y, keepdim)


@_onnx_symbolic("aten::maximum")
@symbolic_helper.quantized_args(True, True)
def maximum(g: jit_utils.GraphContext, input, other):
    return max(g, input, dim_or_y=other)


@_onnx_symbolic("aten::min")
# TODO(justinchuby): Support multiple quantized args in output
def min(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None):
    return symbolic_helper._min_helper(g, self, dim_or_y, keepdim)


@_onnx_symbolic("aten::minimum")
@symbolic_helper.quantized_args(True, True)
def minimum(g: jit_utils.GraphContext, input, other):
    return min(g, input, dim_or_y=other)


@_onnx_symbolic("aten::amax")
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "is", "i")
def amax(g: jit_utils.GraphContext, self, dim, keepdim):
    axes = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long))
    return g.op("ReduceMax", self, axes, keepdims_i=keepdim)


@_onnx_symbolic("aten::amin")
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "is", "i")
def amin(g: jit_utils.GraphContext, self, dim, keepdim):
    axes = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long))
    return g.op("ReduceMin", self, axes, keepdims_i=keepdim)


@_onnx_symbolic("aten::aminmax")
@symbolic_helper.quantized_args(True)
@symbolic_helper.parse_args("v", "v", "i")
def aminmax(g: jit_utils.GraphContext, self, dim, keepdim):
    if not symbolic_helper._is_none(dim):
        dim = symbolic_helper._get_const(dim, "i", "dim")
        axes = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long))
        return g.op("ReduceMin", self, axes, keepdims_i=keepdim), g.op(
            "ReduceMax", self, axes, keepdims_i=keepdim
        )
    else:
        return g.op("ReduceMin", self, keepdims_i=keepdim), g.op(
            "ReduceMax", self, keepdims_i=keepdim
        )


@_onnx_symbolic("aten::var_mean")
def _var_mean(g: jit_utils.GraphContext, input, *args):
    if len(args) == 1:
        return symbolic_helper._var_mean_helper(g, input, None, args[0], None)
    else:
        return symbolic_helper._var_mean_helper(g, input, *args)


@_onnx_symbolic("aten::logsumexp")
@symbolic_helper.parse_args("v", "is", "i")
def _logsumexp(g: jit_utils.GraphContext, input, dim, keepdim):
    if dim is None:
        return g.op("ReduceLogSumExp", input, keepdims_i=0)
    else:
        axes = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long))
        return g.op("ReduceLogSumExp", input, axes, keepdims_i=keepdim)


@_onnx_symbolic("aten::linalg_matrix_norm")
@symbolic_helper.parse_args("v", "v", "is", "b", "v")
def _linalg_matrix_norm(
    g: jit_utils.GraphContext,
    self: torch._C.Value,
    ord: torch._C.Value,
    dim: list[int],
    keepdim: bool,
    dtype: torch._C.Value,
):
    return opset9.linalg_matrix_norm(g, self, ord, dim, keepdim, dtype)


@_onnx_symbolic("aten::embedding_bag")
@symbolic_helper.parse_args("v", "v", "v", "i", "i", "i", "v", "i", "i")
def embedding_bag(
    g: jit_utils.GraphContext,
    embedding_matrix,
    indices,
    offsets,
    scale_grad_by_freq,
    mode,
    sparse,
    per_sample_weights,
    include_last_offset,
    padding_idx,
):
    return symbolic_helper._embedding_bag_helper(
        g,
        embedding_matrix,
        indices,
        offsets,
        scale_grad_by_freq,
        mode,
        sparse,
        per_sample_weights,
        include_last_offset,
        padding_idx,
    )


@_onnx_symbolic("aten::linalg_vector_norm")
@symbolic_helper.parse_args("v", "f", "is", "b", "v")
def linalg_vector_norm(
    g: jit_utils.GraphContext,
    self: torch._C.Value,
    ord: float,
    dim: Optional[Sequence[int]],
    keepdim: bool,
    dtype: torch._C.Value,
):
    return symbolic_helper._linalg_vector_norm_helper(g, self, ord, dim, keepdim, dtype)