File size: 9,910 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# mypy: allow-untyped-defs
"""Gradient interface."""

import torch
from torch.nn.modules.utils import _pair, _single, _triple


def conv1d_input(
    input_size,
    weight,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv1d with respect to the input of the convolution.

    This is same as the 1D transposed convolution operator under the hood but requires
    the shape of the gradient w.r.t. input to be specified explicitly.

    Args:
        input_size : Shape of the input gradient tensor
        weight: weight tensor (out_channels x in_channels/groups x kW)
        grad_output : output gradient tensor (minibatch x out_channels x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(1, 1, 3, requires_grad=True)
        >>> weight = torch.randn(1, 1, 1, requires_grad=True)
        >>> output = F.conv1d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> grad_input = torch.autograd.grad(output, input, grad_output)
        >>> F.grad.conv1d_input(input.shape, weight, grad_output)

    """
    input = grad_output.new_empty(1).expand(input_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _single(stride),
        _single(padding),
        _single(dilation),
        False,
        [0],
        groups,
        (True, False, False),
    )[0]


def conv1d_weight(
    input,
    weight_size,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv1d with respect to the weight of the convolution.

    Args:
        input: input tensor of shape (minibatch x in_channels x iW)
        weight_size : Shape of the weight gradient tensor
        grad_output : output gradient tensor (minibatch x out_channels x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(1, 1, 3, requires_grad=True)
        >>> weight = torch.randn(1, 1, 1, requires_grad=True)
        >>> output = F.conv1d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> # xdoctest: +SKIP
        >>> grad_weight = torch.autograd.grad(output, filter, grad_output)
        >>> F.grad.conv1d_weight(input, weight.shape, grad_output)

    """
    weight = grad_output.new_empty(1).expand(weight_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _single(stride),
        _single(padding),
        _single(dilation),
        False,
        [0],
        groups,
        (False, True, False),
    )[1]


def conv2d_input(
    input_size,
    weight,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv2d with respect to the input of the convolution.

    This is same as the 2D transposed convolution operator under the hood but requires
    the shape of the gradient w.r.t. input to be specified explicitly.

    Args:
        input_size : Shape of the input gradient tensor
        weight: weight tensor (out_channels x in_channels/groups x kH x kW)
        grad_output : output gradient tensor (minibatch x out_channels x oH x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(1, 1, 3, 3, requires_grad=True)
        >>> weight = torch.randn(1, 1, 1, 2, requires_grad=True)
        >>> output = F.conv2d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> grad_input = torch.autograd.grad(output, input, grad_output)
        >>> F.grad.conv2d_input(input.shape, weight, grad_output)

    """
    input = grad_output.new_empty(1).expand(input_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _pair(stride),
        _pair(padding),
        _pair(dilation),
        False,
        [0],
        groups,
        (True, False, False),
    )[0]


def conv2d_weight(
    input,
    weight_size,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv2d with respect to the weight of the convolution.

    Args:
        input: input tensor of shape (minibatch x in_channels x iH x iW)
        weight_size : Shape of the weight gradient tensor
        grad_output : output gradient tensor (minibatch x out_channels x oH x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(1, 1, 3, 3, requires_grad=True)
        >>> weight = torch.randn(1, 1, 1, 2, requires_grad=True)
        >>> output = F.conv2d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> # xdoctest: +SKIP
        >>> grad_weight = torch.autograd.grad(output, filter, grad_output)
        >>> F.grad.conv2d_weight(input, weight.shape, grad_output)

    """
    weight = grad_output.new_empty(1).expand(weight_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _pair(stride),
        _pair(padding),
        _pair(dilation),
        False,
        [0],
        groups,
        (False, True, False),
    )[1]


def conv3d_input(
    input_size,
    weight,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv3d with respect to the input of the convolution.

    This is same as the 3D transposed convolution operator under the hood but requires
    the shape of the gradient w.r.t. input to be specified explicitly.

    Args:
        input_size : Shape of the input gradient tensor
        weight: weights tensor (out_channels x in_channels/groups x kT x kH x kW)
        grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True)
        >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True)
        >>> output = F.conv3d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> grad_input = torch.autograd.grad(output, input, grad_output)
        >>> F.grad.conv3d_input(input.shape, weight, grad_output)

    """
    input = grad_output.new_empty(1).expand(input_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _triple(stride),
        _triple(padding),
        _triple(dilation),
        False,
        [0],
        groups,
        (True, False, False),
    )[0]


def conv3d_weight(
    input,
    weight_size,
    grad_output,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
):
    r"""Compute the gradient of conv3d with respect to the weight of the convolution.

    Args:
        input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
        weight_size : Shape of the weight gradient tensor
        grad_output : output gradient tensor (minibatch x out_channels x oT x oH x oW)
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

    Examples::

        >>> input = torch.randn(2, 8, 10, 10, 20, requires_grad=True)
        >>> weight = torch.randn(4, 8, 2, 3, 3, requires_grad=True)
        >>> output = F.conv3d(input, weight)
        >>> grad_output = torch.randn(output.shape)
        >>> grad_weight = torch.autograd.grad(output, weight, grad_output)
        >>> F.grad.conv3d_weight(input, weight.shape, grad_output)

    """
    weight = grad_output.new_empty(1).expand(weight_size)

    return torch.ops.aten.convolution_backward(
        grad_output,
        input,
        weight,
        None,
        _triple(stride),
        _triple(padding),
        _triple(dilation),
        False,
        [0],
        groups,
        (False, True, False),
    )[1]