File size: 60,839 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 |
# mypy: allow-untyped-defs
import contextlib
import functools
import inspect
import re
import sys
import traceback
import weakref
from collections.abc import Sequence
from typing import (
Any,
Callable,
Literal,
Optional,
overload,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import deprecated, ParamSpec
import torch
import torch._library as _library
from torch._library.custom_ops import (
_cast,
_maybe_get_opdef,
custom_op,
CustomOpDef,
device_types_t,
)
from torch._library.infer_schema import infer_schema # noqa: F401
from torch._library.triton import triton_op, wrap_triton
from torch._ops import OpOverload
from torch.types import _dtype
__all__ = [
"Library",
"impl",
"define",
"fallthrough_kernel",
"impl_abstract",
"register_autocast",
"register_fake",
"register_torch_dispatch",
"register_vmap",
"get_ctx",
"custom_op",
"triton_op",
"wrap_triton",
"infer_schema",
]
_T = TypeVar("_T")
_P = ParamSpec("_P")
# Set containing the combination of (namespace, operator, DispatchKey) for which a new kernel has been registered
# The keys in the set are of the form `namespace + "/" + op_name + "/" + dispatch_key`.
# This set is maintained to ensure that two libraries don't try to override the exact same functionality to avoid
# libraries calling into kernels not intended to be called.
_impls: set[str] = set()
_defs: set[str] = set()
# prim is reserved by TorchScript interpreter
_reserved_namespaces = ["prim"]
def fallthrough_kernel():
"""
A dummy function to pass to ``Library.impl`` in order to register a fallthrough.
"""
raise NotImplementedError("fallthrough_kernel() should never be called.")
class Library:
"""
A class to create libraries that can be used to register new operators or
override operators in existing libraries from Python.
A user can optionally pass in a dispatch keyname if they only want to register
kernels corresponding to only one specific dispatch key.
To create a library to override operators in an existing library (with name ns), set the kind to "IMPL".
To create a new library (with name ns) to register new operators, set the kind to "DEF".
To create a fragment of a possibly existing library to register operators (and bypass
the limitation that there is only one library for a given namespace), set the kind to
"FRAGMENT".
Args:
ns: library name
kind: "DEF", "IMPL" (default: "IMPL"), "FRAGMENT"
dispatch_key: PyTorch dispatch key (default: "")
"""
def __init__(self, ns, kind, dispatch_key=""):
if kind not in ("IMPL", "DEF", "FRAGMENT"):
raise ValueError("Unsupported kind: ", kind)
if ns in _reserved_namespaces and (kind == "DEF" or kind == "FRAGMENT"):
raise ValueError(
ns,
" is a reserved namespace. Please try creating a library with another name.",
)
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
frame = traceback.extract_stack(limit=3)[0]
filename, lineno = frame.filename, frame.lineno
self.m: Optional[Any] = torch._C._dispatch_library(
kind, ns, dispatch_key, filename, lineno
)
self.ns = ns
self._op_defs: set[str] = set()
self._op_impls: set[str] = set()
self._registration_handles: list[torch._library.utils.RegistrationHandle] = []
self.kind = kind
self.dispatch_key = dispatch_key
# Use a finalizer to setup the "destructor" instead of __del__.
# Python __del__ can lead to weird things (globals and locals may already
# be gone when __del__ actually gets called!). finalizers help the
# situation because it lets us capture references and keeps them alive
weakref.finalize(
self,
_del_library,
_impls,
self._op_impls,
_defs,
self._op_defs,
self._registration_handles,
)
def __repr__(self):
return f"Library(kind={self.kind}, ns={self.ns}, dispatch_key={self.dispatch_key})>"
def define(self, schema, alias_analysis="", *, tags=()):
r"""Defines a new operator and its semantics in the ns namespace.
Args:
schema: function schema to define a new operator.
alias_analysis (optional): Indicates if the aliasing properties of the operator arguments can be
inferred from the schema (default behavior) or not ("CONSERVATIVE").
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Returns:
name of the operator as inferred from the schema.
Example::
>>> my_lib = Library("mylib", "DEF")
>>> my_lib.define("sum(Tensor self) -> Tensor")
"""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
# This is added because we also want to disallow PURE_FUNCTION alias analysis which is a valid
# AliasAnalysis type in C++
if alias_analysis not in ["", "FROM_SCHEMA", "CONSERVATIVE"]:
raise RuntimeError(f"Invalid alias_analysis type {alias_analysis}")
assert self.m is not None
if isinstance(tags, torch.Tag):
tags = (tags,)
name = schema.split("(")[0]
packet_name = name.split(".")[0] if "." in name else name
has_preexisting_packet = hasattr(torch.ops, self.ns) and hasattr(
getattr(torch.ops, self.ns), packet_name
)
result = self.m.define(schema, alias_analysis, tuple(tags))
name = schema.split("(")[0]
qualname = self.ns + "::" + name
# If the OpOverloadPacket exists already, then this means we're adding a
# new OpOverload for it. Refresh the packet to include the new OpOverload.
if has_preexisting_packet:
ns = getattr(torch.ops, self.ns)
packet = getattr(ns, packet_name)
torch._ops._refresh_packet(packet)
self._op_defs.add(qualname)
_defs.add(qualname)
return result
def _register_fake(self, op_name, fn, _stacklevel=1):
r"""Registers the fake impl for an operator defined in the library."""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
source = torch._library.utils.get_source(_stacklevel + 1)
frame = sys._getframe(_stacklevel)
caller_module = inspect.getmodule(frame)
# Can be none if you call register_fake from somewhere there isn't a module
# (e.g. __main__)
caller_module_name = None if caller_module is None else caller_module.__name__
# TODO(rzou): We're gonna need to stage this change with torchvision,
# since torchvision is github first.
if caller_module_name is not None and caller_module_name.startswith(
"torchvision."
):
caller_module_name = None
qualname = f"{self.ns}::{op_name}"
entry = torch._library.simple_registry.singleton.find(qualname)
if caller_module_name is not None:
func_to_register = _check_pystubs_once(fn, qualname, caller_module_name)
else:
func_to_register = fn
handle = entry.fake_impl.register(func_to_register, source)
self._registration_handles.append(handle)
def _register_torch_dispatch_rule(self, op_name, torch_dispatch_class, fn):
r"""Registers a torch_dispatch rule for the given operator and torch_dispatch_class.
This allows for open registration to specify the behavior between the operator
and the torch_dispatch_class without needing to modify the torch_dispatch_class
or the operator directly.
The torch_dispatch_class is either a Tensor subclass with `__torch_dispatch__` or a
TorchDispatchMode.
If it is a Tensor subclass, we expect fn to have the following signature:
(cls, func: OpOverload, types: Tuple[type, ...], args, kwargs) -> Any
If it is a TorchDispatchMode, we expect fn to have the following signature:
(mode, func: OpOverload, types: Tuple[type, ...], args, kwargs) -> Any
"""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
qualname = f"{self.ns}::{op_name}"
entry = torch._library.simple_registry.singleton.find(qualname)
handle = entry.torch_dispatch_rules.register(torch_dispatch_class, fn)
self._registration_handles.append(handle)
def _impl_with_aoti_compile(self, op_name, dispatch_key=""):
r"""Register the operator to use the AOTI-compiled implementation.
Args:
op_name: operator name (along with the overload) or OpOverload object.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> my_lib._impl_with_aoti_compile("div.Tensor", "CPU")
"""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
if dispatch_key == "":
dispatch_key = self.dispatch_key
assert torch.DispatchKeySet(dispatch_key).has(torch._C.DispatchKey.Dense)
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != "":
name = name + "." + overload_name
else:
raise RuntimeError(
"_impl_with_aoti_compile should be passed either a name or an OpOverload object "
"as the first argument"
)
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when _impl_with_aoti_compile is called but we error out before that)
raise RuntimeError(
"This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".format(
name.split("::")[-1], dispatch_key, self.ns
)
)
assert self.m is not None
impl_fn: Callable = self.m.impl_with_aoti_compile
impl_fn(self.ns, name.split("::")[-1], dispatch_key)
_impls.add(key)
self._op_impls.add(key)
def impl(self, op_name, fn, dispatch_key="", *, with_keyset=False):
r"""Registers the function implementation for an operator defined in the library.
Args:
op_name: operator name (along with the overload) or OpOverload object.
fn: function that's the operator implementation for the input dispatch key or :func:`~fallthrough_kernel`
to register a fallthrough.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
with_keyset: flag controlling if the current dispatcher call keyset should be passed as the first argument
to :attr:`fn` when calling. This should be used to create the appropriate keyset for redispatch calls.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> def div_cpu(self, other):
>>> return self * (1 / other)
>>> my_lib.impl("div.Tensor", div_cpu, "CPU")
"""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
if not callable(fn):
raise TypeError(
f"Input function is required to be a callable but found type {type(fn)}"
)
if dispatch_key == "":
dispatch_key = self.dispatch_key
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != "":
name = name + "." + overload_name
else:
raise RuntimeError(
"impl should be passed either a name or an OpOverload object as the first argument"
)
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when impl is called but we error out before that)
raise RuntimeError(
"This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".format(
name.split("::")[-1], dispatch_key, self.ns
)
)
if dispatch_key == "Meta":
dispatcher_op_name = name
if "::" not in dispatcher_op_name:
dispatcher_op_name = f"{self.ns}::{dispatcher_op_name}"
# Internally, we shouldn't be registering meta kernels for any operators that
# have CompositeImplicitAutograd kernels.
# Instead, we should be letting those decompositions run, and writing meta kernels
# only for the base operators.
if torch._C._dispatch_has_kernel_for_dispatch_key(
dispatcher_op_name, "CompositeImplicitAutograd"
):
raise RuntimeError(
f"We should not register a meta kernel directly to the operator '{name}',"
" because it has a CompositeImplicitAutograd kernel in core."
" Instead we should let the operator decompose, and ensure that we have meta kernels"
" for the base ops that it decomposes into."
)
assert self.m is not None
self.m.impl(
name,
dispatch_key if dispatch_key != "" else "CompositeImplicitAutograd",
fn,
with_keyset,
)
_impls.add(key)
self._op_impls.add(key)
def fallback(self, fn, dispatch_key="", *, with_keyset=False):
r"""Registers the function implementation as the fallback for the given key.
This function only works for a library with global namespace ("_").
Args:
fn: function used as fallback for the given dispatch key or :func:`~fallthrough_kernel`
to register a fallthrough.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
with_keyset: flag controlling if the current dispatcher call keyset should be passed as the first argument
to :attr:`fn` when calling. This should be used to create the appropriate keyset for redispatch calls.
Example::
>>> my_lib = Library("_", "IMPL")
>>> def fallback_kernel(op, *args, **kwargs):
>>> # Handle all autocast ops generically
>>> # ...
>>> my_lib.fallback(fallback_kernel, "Autocast")
"""
if torch._running_with_deploy():
_library.utils.warn_deploy()
return
if dispatch_key == "":
dispatch_key = self.dispatch_key
if self.ns != "_":
raise RuntimeError(
f"""Fallback can only be registered using libary fragment on the global namespace "_" but it is {self.ns}"""
)
assert dispatch_key != ""
assert self.m is not None
self.m.fallback(dispatch_key, fn, with_keyset)
def _destroy(self):
if self.m is not None:
self.m.reset()
self.m = None
for handle in self._registration_handles:
handle.destroy()
self._registration_handles.clear()
global _impls
_impls -= self._op_impls
for name in self._op_defs:
# Delete the cached torch.ops.ns.foo if it was registered.
# Otherwise, accessing it leads to a segfault.
# It's possible that we only registered an overload in this Library
# and another library owns an alive overload.
# That's OK - the next time torch.ops.ns.foo gets called, it'll be
# recomputed to point at the right collection of overloads.
ns, name_with_overload = name.split("::")
name = name_with_overload.split(".")[0]
if not hasattr(torch.ops, ns):
continue
namespace = getattr(torch.ops, ns)
if not hasattr(namespace, name):
continue
delattr(namespace, name)
namespace._dir.remove(name)
def _del_library(
captured_impls,
op_impls,
captured_defs,
op_defs,
registration_handles,
):
captured_impls -= op_impls
captured_defs -= op_defs
for handle in registration_handles:
handle.destroy()
@contextlib.contextmanager
def _scoped_library(*args, **kwargs):
try:
lib = Library(*args, **kwargs)
yield lib
finally:
lib._destroy()
_keep_alive: list[Library] = []
NAMELESS_SCHEMA = re.compile(r"\(.*\) -> .*")
@functools.singledispatch
def define(qualname, schema, *, lib=None, tags=()):
r"""Defines a new operator.
In PyTorch, defining an op (short for "operator") is a two step-process:
- we need to define the op (by providing an operator name and schema)
- we need to implement behavior for how the operator interacts with
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
This entrypoint defines the custom operator (the first step)
you must then perform the second step by calling various
``impl_*`` APIs, like :func:`torch.library.impl` or
:func:`torch.library.register_fake`.
Args:
qualname (str): The qualified name for the operator. Should be
a string that looks like "namespace::name", e.g. "aten::sin".
Operators in PyTorch need a namespace to
avoid name collisions; a given operator may only be created once.
If you are writing a Python library, we recommend the namespace to
be the name of your top-level module.
schema (str): The schema of the operator. E.g. "(Tensor x) -> Tensor"
for an op that accepts one Tensor and returns one Tensor. It does
not contain the operator name (that is passed in ``qualname``).
lib (Optional[Library]): If provided, the lifetime of this operator
will be tied to the lifetime of the Library object.
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Example::
>>> import torch
>>> import numpy as np
>>>
>>> # Define the operator
>>> torch.library.define("mylib::sin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the operator
>>> @torch.library.impl("mylib::sin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Call the new operator from torch.ops.
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.sin(x)
>>> assert torch.allclose(y, x.sin())
"""
if not isinstance(qualname, str):
raise ValueError(
f"define(qualname, schema): expected qualname "
f"to be instance of str, got {type(qualname)}"
)
namespace, name = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
if not NAMELESS_SCHEMA.fullmatch(schema):
raise ValueError(
f"define(qualname, schema, ...): expected schema "
f'to look like e.g. "(Tensor x) -> Tensor" but '
f'got "{schema}"'
)
lib.define(name + schema, alias_analysis="", tags=tags)
@define.register
def _(lib: Library, schema, alias_analysis=""):
"""The old torch.library.define.
We're keeping this around for BC reasons
"""
def wrap(f):
name = lib.define(schema, alias_analysis)
lib.impl(name, f)
return f
return wrap
@overload
def impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Literal[None] = None,
*,
lib: Optional[Library] = None,
) -> Callable[[Callable[..., object]], None]: ...
@overload
def impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Callable[..., object],
*,
lib: Optional[Library] = None,
) -> None: ...
# Deprecated BC API
@overload
def impl(
lib: Library,
name: str,
dispatch_key: str = "",
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]: ...
@functools.singledispatch
def impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Optional[Callable[_P, _T]] = None,
*,
lib: Optional[Library] = None,
) -> object:
"""Register an implementation for a device type for this operator.
You may pass "default" for ``types`` to register this implementation as the
default implementation for ALL device types.
Please only use this if the implementation truly supports all device types;
for example, this is true if it is a composition of built-in PyTorch operators.
This API may be used as a decorator. You can use nested decorators
with this API provided they return a function and are placed inside
this API (see Example 2).
Some valid types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
Args:
qualname (str): Should be a string that looks like "namespace::operator_name".
types (str | Sequence[str]): The device types to register an impl to.
lib (Optional[Library]): If provided, the lifetime of this registration
will be tied to the lifetime of the Library object.
Examples:
>>> import torch
>>> import numpy as np
>>> # Example 1: Register function.
>>> # Define the operator
>>> torch.library.define("mylib::mysin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the cpu device
>>> @torch.library.impl("mylib::mysin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.mysin(x)
>>> assert torch.allclose(y, x.sin())
>>>
>>> # Example 2: Register function with decorator.
>>> def custom_decorator(func):
>>> def wrapper(*args, **kwargs):
>>> return func(*args, **kwargs) + 1
>>> return wrapper
>>>
>>> # Define the operator
>>> torch.library.define("mylib::sin_plus_one", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the operator
>>> @torch.library.impl("mylib::sin_plus_one", "cpu")
>>> @custom_decorator
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Call the new operator from torch.ops.
>>> x = torch.randn(3)
>>>
>>> y1 = torch.ops.mylib.sin_plus_one(x)
>>> y2 = torch.sin(x) + 1
>>> assert torch.allclose(y1, y2)
"""
return _impl(qualname, types, func, lib=lib, disable_dynamo=False)
if not TYPE_CHECKING:
@impl.register
def _(
lib: Library, name: str, dispatch_key: str = ""
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
"""Legacy torch.library.impl API. Kept around for BC"""
def wrap(f: Callable[_P, _T]) -> Callable[_P, _T]:
lib.impl(name, f, dispatch_key)
return f
return wrap
@overload
def _impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Literal[None] = None,
*,
lib: Optional[Library] = None,
disable_dynamo: bool = False,
) -> Callable[[Callable[..., object]], None]: ...
@overload
def _impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Callable[..., object],
*,
lib: Optional[Library] = None,
disable_dynamo: bool = False,
) -> None: ...
def _impl(
qualname: str,
types: Union[str, Sequence[str]],
func: Optional[Callable[..., object]] = None,
*,
lib: Optional[Library] = None,
disable_dynamo: bool = False,
) -> Optional[Callable[[Callable[..., object]], None]]:
# See impl()
if isinstance(types, str):
types = (types,)
keys = set({})
for typ in types:
is_dispatch_key = torch._C._parse_dispatch_key(typ)
if is_dispatch_key:
# We also support passing a DispatchKey to impl. Please prefer using
# the higher-level torch.library APIs and only pass DispatchKey to
# torch.library.impl with caution (or even better, don't use this
# option and file an issue on GitHub for what you need).
# We don't advertise this to users because
# it is very easy to shoot yourself in the foot.
keys.add(typ)
else:
keys.add(_device_type_to_key(typ))
def register_(func: Callable[..., object]) -> None:
namespace, _ = torch._library.utils.parse_namespace(qualname)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
if disable_dynamo:
@torch._disable_dynamo
def func_no_dynamo(*args, **kwargs):
return func(*args, **kwargs)
for key in keys:
use_lib.impl(qualname, func_no_dynamo, key)
else:
for key in keys:
use_lib.impl(qualname, func, key)
if func is None:
return register_
else:
register_(func)
return None
def _device_type_to_key(device_type: str) -> str:
if device_type == "default":
# This is technically not correct, because although all device_type
# DispatchKeys are included in CompositeExplicitAutograd,
# not everything in CompositeExplicitAutograd is associated with a
# device_type. I don't really care that much about the difference.
return "CompositeExplicitAutograd"
return torch._C._dispatch_key_for_device(device_type)
@deprecated(
"`torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that "
"instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.",
category=FutureWarning,
)
def impl_abstract(qualname, func=None, *, lib=None, _stacklevel=1):
r"""This API was renamed to :func:`torch.library.register_fake` in PyTorch 2.4.
Please use that instead.
"""
if func is not None:
_stacklevel = _stacklevel + 1
return register_fake(qualname, func, lib=lib, _stacklevel=_stacklevel)
_op_identifier = Union[
str, "torch._ops.OpOverload", "torch._library.custom_ops.CustomOpDef"
]
def register_kernel(
op: _op_identifier,
device_types: device_types_t,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None,
):
"""Register an implementation for a device type for this operator.
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
This API may be used as a decorator.
Args:
op (str | OpOverload): The operator to register an impl to.
device_types (None | str | Sequence[str]): The device_types to register an impl to.
If None, we will register to all device types -- please only use
this option if your implementation is truly device-type-agnostic.
func (Callable): The function to register as the implementation for
the given device types.
lib (Optional[Library]): If provided, the lifetime of this registration
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>> import numpy as np
>>>
>>> # Create a custom op that works on cpu
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np)
>>>
>>> # Add implementations for the cuda device
>>> @torch.library.register_kernel("mylib::numpy_sin", "cuda")
>>> def _(x):
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> x_cpu = torch.randn(3)
>>> x_cuda = x_cpu.cuda()
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(
f"register_kernel({op}): got unexpected type for op: {type(op)}"
)
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_kernel(device_types, func)
assert isinstance(op, str)
if device_types is None:
device_types = "CompositeExplicitAutograd"
return _impl(op, device_types, func, lib=lib, disable_dynamo=True)
def register_autocast(
op: _op_identifier,
device_type: str,
cast_inputs: _dtype,
/,
*,
lib: Optional[Library] = None,
):
r"""Register an autocast dispatch rule for this custom op.
Valid `device_type` include: "cpu" and "cuda".
Args:
op (str | OpOverload): The operator to register an autocast dispatch rule to.
device_type(str): Device type to use. 'cuda' or 'cpu'.
The type is the same as the `type` attribute of a :class:`torch.device`.
Thus, you may obtain the device type of a tensor using `Tensor.device.type`.
cast_inputs (:class:`torch.dtype`): When custom op runs in an autocast-enabled region,
casts incoming floating-point Tensors to the target dtype (non-floating-point Tensors
are not affected), then executes custom op with autocast disabled.
lib (Optional[Library]): If provided, the lifetime of this registration
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>>
>>> # Create a custom op that works on cuda
>>> @torch.library.custom_op("mylib::my_sin", mutates_args=())
>>> def my_sin(x: Tensor) -> Tensor:
>>> return torch.sin(x)
>>>
>>> # Register autocast dispatch rule for the cuda device
>>> torch.library.register_autocast("mylib::my_sin", "cuda", torch.float16)
>>>
>>> x = torch.randn(3, dtype=torch.float32, device="cuda")
>>> with torch.autocast("cuda", dtype=torch.float16):
>>> y = torch.ops.mylib.my_sin(x)
>>> assert y.dtype == torch.float16
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(
f"register_autocast({op}): got unexpected type for op: {type(op)}"
)
if device_type not in ["cpu", "cuda"]:
raise ValueError(f"Unknown device type: {device_type}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_autocast(device_type, cast_inputs)
assert isinstance(op, str)
qualname = op
_op = torch._library.utils.lookup_op(qualname)
namespace, opname = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
def kernel(_, *args, **kwargs):
assert len(kwargs) == 0, "Custom ops do not support kwargs yet."
autocast_keyset = torch._C.DispatchKeySet(
torch._C.DispatchKey.AutocastCPU
) | torch._C.DispatchKeySet(torch._C.DispatchKey.AutocastCUDA)
with torch._C._ExcludeDispatchKeyGuard(autocast_keyset):
return _op(*_cast(args, device_type, cast_inputs))
if device_type == "cuda":
return lib.impl(opname, kernel, "AutocastCUDA", with_keyset=True)
else:
# device_type is "cpu"
return lib.impl(opname, kernel, "AutocastCPU", with_keyset=True)
def register_fake(
op: _op_identifier,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None,
_stacklevel: int = 1,
):
r"""Register a FakeTensor implementation ("fake impl") for this operator.
Also sometimes known as a "meta kernel", "abstract impl".
An "FakeTensor implementation" specifies the behavior of this operator on
Tensors that carry no data ("FakeTensor"). Given some input Tensors with
certain properties (sizes/strides/storage_offset/device), it specifies
what the properties of the output Tensors are.
The FakeTensor implementation has the same signature as the operator.
It is run for both FakeTensors and meta tensors. To write a FakeTensor
implementation, assume that all Tensor inputs to the operator are
regular CPU/CUDA/Meta tensors, but they do not have storage, and
you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
The FakeTensor implementation must consist of only PyTorch operations
(and may not directly access the storage or data of any input or
intermediate Tensors).
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_linear", mutates_args=())
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
>>> raise NotImplementedError("Implementation goes here")
>>>
>>> @torch.library.register_fake("mylib::custom_linear")
>>> def _(x, weight, bias):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>>
>>> return (x @ weight.t()) + bias
>>>
>>> with torch._subclasses.fake_tensor.FakeTensorMode():
>>> x = torch.randn(2, 3)
>>> w = torch.randn(3, 3)
>>> b = torch.randn(3)
>>> y = torch.ops.mylib.custom_linear(x, w, b)
>>>
>>> assert y.shape == (2, 3)
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_nonzero", mutates_args=())
>>> def custom_nonzero(x: Tensor) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> return torch.tensor(res, device=x.device)
>>>
>>> @torch.library.register_fake("mylib::custom_nonzero")
>>> def _(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an fake impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch.library.get_ctx()
>>> nnz = ctx.new_dynamic_size()
>>> shape = [nnz, x.dim()]
>>> result = x.new_empty(shape, dtype=torch.int64)
>>> return result
>>>
>>> from torch.fx.experimental.proxy_tensor import make_fx
>>>
>>> x = torch.tensor([0, 1, 2, 3, 4, 0])
>>> trace = make_fx(torch.ops.mylib.custom_nonzero, tracing_mode="symbolic")(x)
>>> trace.print_readable()
>>>
>>> assert torch.allclose(trace(x), torch.ops.mylib.custom_nonzero(x))
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(f"register_fake({op}): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
if func is None:
return opdef.register_fake
else:
return opdef.register_fake(func)
assert isinstance(op, str)
stacklevel = _stacklevel
def register(func):
namespace, op_name = torch._library.utils.parse_namespace(op)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
return func
if func is None:
return register
else:
stacklevel += 1
return register(func)
def register_autograd(
op: _op_identifier,
backward: Callable,
/,
*,
setup_context: Optional[Callable] = None,
lib=None,
) -> None:
r"""Register a backward formula for this custom op.
In order for an operator to work with autograd, you need to register
a backward formula:
1. You must tell us how to compute gradients during the backward pass
by providing us a "backward" function.
2. If you need any values from the forward to compute gradients, you can
use `setup_context` to save values for backward.
``backward`` runs during the backward pass. It accepts ``(ctx, *grads)``:
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the operator.
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
same as :meth:`torch.autograd.Function.backward`.
``setup_context(ctx, inputs, output)`` runs during the forward pass.
Please save quantities needed for backward onto the ``ctx`` object via
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
or assigning them as attributes of ``ctx``. If your custom op has
kwarg-only arguments, we expect the signature of ``setup_context``
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
they may not directly access :meth:`torch.Tensor.data_ptr` and they must
not depend on or mutate global state. If you need a non-traceable backward,
you can make it a separate custom_op that you call inside ``backward_fn``.
If you need different autograd behavior on different devices, then we
recommend creating two different custom operators, one for each device
that needs different behavior, and switching between them at runtime.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, output) -> Tensor:
>>> x, = inputs
>>> ctx.save_for_backward(x)
>>>
>>> def backward(ctx, grad):
>>> x, = ctx.saved_tensors
>>> return grad * x.cos()
>>>
>>> torch.library.register_autograd(
... "mylib::numpy_sin", backward, setup_context=setup_context
... )
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_sin(x)
>>> (grad_x,) = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, x.cos())
>>>
>>> # Example with a keyword-only arg
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = x_np * val
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
>>> ctx.val = keyword_only_inputs["val"]
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.val
>>>
>>> torch.library.register_autograd(
... "mylib::numpy_mul", backward, setup_context=setup_context
... )
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_mul(x, val=3.14)
>>> (grad_x,) = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(
f"register_autograd({op}): got unexpected type for op: {type(op)}"
)
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
opdef.register_autograd(backward, setup_context=setup_context)
return
assert isinstance(op, str)
qualname = op
op = torch._library.utils.lookup_op(qualname)
schema = op._schema
if not _library.utils.is_functional_schema(schema):
raise RuntimeError(
f"Cannot register autograd formula for non-functional operator "
f"{op} with schema {schema}. Please create "
f"a functional operator and register an autograd formula for that."
)
if _library.utils.has_kwarg_only_tensors(schema):
raise NotImplementedError(
f"register_autograd with kwarg-only Tensor args. In the original "
f"definition of the op, please make your tensors not kwarg-only. "
f"Got: {schema}"
)
info = _library.autograd.Info(backward, setup_context)
autograd_kernel = _library.autograd.make_autograd_impl(op, info)
namespace, opname = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
lib.impl(opname, autograd_kernel, "Autograd", with_keyset=True)
def register_torch_dispatch(
op: _op_identifier,
torch_dispatch_class: Any,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None,
):
r"""Registers a torch_dispatch rule for the given operator and ``torch_dispatch_class``.
This allows for open registration to specify the behavior between the operator
and the ``torch_dispatch_class`` without needing to modify the ``torch_dispatch_class``
or the operator directly.
The ``torch_dispatch_class`` is either a Tensor subclass with ``__torch_dispatch__`` or a
TorchDispatchMode.
If it is a Tensor subclass, we expect ``func`` to have the following signature:
``(cls, func: OpOverload, types: Tuple[type, ...], args, kwargs) -> Any``
If it is a TorchDispatchMode, we expect ``func`` to have the following signature:
``(mode, func: OpOverload, types: Tuple[type, ...], args, kwargs) -> Any``
``args`` and ``kwargs`` will have been normalized the same way they are
in ``__torch_dispatch__`` (see :ref:`torch-dispatch-calling-convention`).
Examples:
>>> import torch
>>>
>>> @torch.library.custom_op("mylib::foo", mutates_args={})
>>> def foo(x: torch.Tensor) -> torch.Tensor:
>>> return x.clone()
>>>
>>> class MyMode(torch.utils._python_dispatch.TorchDispatchMode):
>>> def __torch_dispatch__(self, func, types, args=(), kwargs=None):
>>> return func(*args, **kwargs)
>>>
>>> @torch.library.register_torch_dispatch("mylib::foo", MyMode)
>>> def _(mode, func, types, args, kwargs):
>>> x, = args
>>> return x + 1
>>>
>>> x = torch.randn(3)
>>> y = foo(x)
>>> assert torch.allclose(y, x)
>>>
>>> with MyMode():
>>> y = foo(x)
>>> assert torch.allclose(y, x + 1)
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(
f"register_torch_dispatch({op}): got unexpected type for op: {type(op)}"
)
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_torch_dispatch(torch_dispatch_class, func)
assert isinstance(op, str)
def register(func):
namespace, op_name = torch._library.utils.parse_namespace(op)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
use_lib._register_torch_dispatch_rule(op_name, torch_dispatch_class, func)
return func
if func is None:
return register
else:
return register(func)
def register_vmap(
op: _op_identifier,
func: Optional[Callable] = None,
/,
*,
lib=None,
):
r"""Register a vmap implementation to support :func:`torch.vmap` for this custom op.
This API may be used as a decorator (see examples).
In order for an operator to work with :func:`torch.vmap`, you may need to register a
vmap implementation in the following signature:
``vmap_func(info, in_dims: Tuple[Optional[int]], *args, **kwargs)``,
where ``*args`` and ``**kwargs`` are the arguments and kwargs for ``op``.
We do not support kwarg-only Tensor args.
It specifies how do we compute the batched version of ``op`` given inputs with an additional
dimension (specified by ``in_dims``).
For each arg in ``args``, ``in_dims`` has a corresponding ``Optional[int]``. It is ``None``
if the arg is not a Tensor or if the arg is not being vmapped over, otherwise, it is an integer
specifying what dimension of the Tensor is being vmapped over.
``info`` is a collection of additional metadata that may be helpful:
``info.batch_size`` specifies the size of the dimension being vmapped over, while
``info.randomness`` is the ``randomness`` option that was passed to :func:`torch.vmap`.
The return of the function ``func`` is a tuple of ``(output, out_dims)``. Similar to ``in_dims``,
``out_dims`` should be of the same structure as ``output`` and contain one ``out_dim``
per output that specifies if the output has the vmapped dimension and what index it is in.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>> from typing import Tuple
>>>
>>> def to_numpy(tensor):
>>> return tensor.cpu().numpy()
>>>
>>> lib = torch.library.Library("mylib", "FRAGMENT")
>>> @torch.library.custom_op("mylib::numpy_cube", mutates_args=())
>>> def numpy_cube(x: Tensor) -> Tuple[Tensor, Tensor]:
>>> x_np = to_numpy(x)
>>> dx = torch.tensor(3 * x_np ** 2, device=x.device)
>>> return torch.tensor(x_np ** 3, device=x.device), dx
>>>
>>> def numpy_cube_vmap(info, in_dims, x):
>>> result = numpy_cube(x)
>>> return result, (in_dims[0], in_dims[0])
>>>
>>> torch.library.register_vmap(numpy_cube, numpy_cube_vmap)
>>>
>>> x = torch.randn(3)
>>> torch.vmap(numpy_cube)(x)
>>>
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, y: Tensor) -> Tensor:
>>> return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
>>>
>>> @torch.library.register_vmap("mylib::numpy_mul")
>>> def numpy_mul_vmap(info, in_dims, x, y):
>>> x_bdim, y_bdim = in_dims
>>> x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
>>> y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
>>> result = x * y
>>> result = result.movedim(-1, 0)
>>> return result, 0
>>>
>>>
>>> x = torch.randn(3)
>>> y = torch.randn(3)
>>> torch.vmap(numpy_mul)(x, y)
.. note::
The vmap function should aim to preserve the semantics of the entire custom operator.
That is, ``grad(vmap(op))`` should be replaceable with a ``grad(map(op))``.
If your custom operator has any custom behavior in the backward pass, please
keep this in mind.
"""
if not isinstance(
op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)
):
raise ValueError(f"register_vmap({op}): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_vmap(func)
assert isinstance(op, str)
qualname = op
op = torch._library.utils.lookup_op(qualname)
schema = op._schema
if _library.utils.has_kwarg_only_tensors(schema):
raise NotImplementedError(
f"register_vmap with kwarg-only Tensor args. In the original "
f"definition of the op, please make your tensors not kwarg-only. "
f"Got: {schema}"
)
def register(func):
nonlocal op, lib
namespace, opname = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
from torch._functorch.autograd_function import custom_function_call_vmap_helper
from torch._functorch.pyfunctorch import retrieve_current_functorch_interpreter
def wrapped_func(keyset, *args, **kwargs):
interpreter = retrieve_current_functorch_interpreter()
return custom_function_call_vmap_helper(
interpreter, func, op, *args, **kwargs
)
lib.impl(opname, wrapped_func, "FuncTorchBatched", with_keyset=True)
if func is None:
return register
else:
return register(func)
# If the op was defined in C++, then we want to make sure there was an
# m.set_python_module(module, ...) call and that the module is the
# same as the module that called torch.library.register_fake.
def _check_pystubs_once(func, qualname, actual_module_name):
checked = False
def inner(*args, **kwargs):
nonlocal checked
if checked:
return func(*args, **kwargs)
op = torch._library.utils.lookup_op(qualname)
if op._defined_in_python:
checked = True
return func(*args, **kwargs)
maybe_pystub = torch._C._dispatch_pystub(
op._schema.name, op._schema.overload_name
)
if maybe_pystub is None:
if torch._library.utils.requires_set_python_module():
namespace = op.namespace
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' was defined in C++ and has a Python "
f"fake impl. In this situation, we require there to also be a "
f'companion C++ `m.set_python_module("{actual_module_name}")` '
f"call, but we could not find one. Please add that to "
f"to the top of the C++ TORCH_LIBRARY({namespace}, ...) block the "
f"operator was registered in ({cpp_filename})"
)
else:
pystub_module = maybe_pystub[0]
if actual_module_name != pystub_module:
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' specified that its python fake impl "
f"is in the Python module '{pystub_module}' but it was actually found "
f"in '{actual_module_name}'. Please either move the fake impl "
f"or correct the m.set_python_module call ({cpp_filename})"
)
checked = True
return func(*args, **kwargs)
return inner
# NOTE [ctx inside the fake implementation]
# If a user has an operator with data-dependent output shape, then when writing
# a fake implementation they must query the current ctx and use methods on the
# ctx to construct a new unbacked symint.
#
# This is done via us setting the global_ctx_getter function every time a fake
# implementation is invoked.
def get_ctx() -> "torch._library.fake_impl.FakeImplCtx":
"""get_ctx() returns the current AbstractImplCtx object.
Calling ``get_ctx()`` is only valid inside of an fake impl
(see :func:`torch.library.register_fake` for more usage details.
"""
return torch._library.fake_impl.global_ctx_getter()
_OPCHECK_DEFAULT_UTILS = (
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
)
def opcheck(
op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket, CustomOpDef],
args: tuple[Any, ...],
kwargs: Optional[dict[str, Any]] = None,
*,
test_utils: Union[str, Sequence[str]] = _OPCHECK_DEFAULT_UTILS,
raise_exception: bool = True,
atol=None,
rtol=None,
) -> dict[str, str]:
"""Given an operator and some sample arguments, tests if the operator is
registered correctly.
That is, when you use the torch.library/TORCH_LIBRARY APIs to create a
custom op, you specified metadata (e.g. mutability info) about the custom op
and these APIs require that the functions you pass them satisfy certain
properties (e.g. no data pointer access in the fake/meta/abstract kernel)
``opcheck`` tests these metadata and properties.
Concretely, we test the following:
- test_schema: If the schema matches the implementation of
the operator. For example: if the schema specifies a Tensor is mutated,
then we check the implementation mutates the Tensor. If the schema
specifies that we return a new Tensor, then we check that the
implementation returns a new Tensor (instead of an existing one or
a view of an existing one).
- test_autograd_registration: If the operator supports training
(autograd): we check that its autograd formula is registered via
torch.library.register_autograd or a manual registration to one
or more DispatchKey::Autograd keys. Any other DispatchKey-based
registrations may lead to undefined behavior.
- test_faketensor: If the operator has a FakeTensor kernel
(and if it is correct). The FakeTensor kernel is necessary (
but not sufficient) for the operator to work with PyTorch compilation
APIs (torch.compile/export/FX). We check that a FakeTensor kernel
(also sometimes known as a meta kernel) was registered for the
operator and that it is correct. This test takes the result of
running the operator on real tensors and the result of running
the operator on FakeTensors and checks that they have the same
Tensor metadata (sizes/strides/dtype/device/etc).
- test_aot_dispatch_dynamic: If the operator has correct behavior
with PyTorch compilation APIs (torch.compile/export/FX).
This checks that the outputs (and gradients, if applicable) are the
same under eager-mode PyTorch and torch.compile.
This test is a superset of ``test_faketensor`` and is an e2e test;
other things it tests are that the operator supports
functionalization and that the backward pass (if it exists) also
supports FakeTensor and functionalization.
For best results, please call ``opcheck`` multiple times with a
representative set of inputs. If your operator supports
autograd, please use ``opcheck`` with inputs with ``requires_grad = True``;
if your operator supports multiple devices (e.g. CPU and CUDA), please
use ``opcheck`` with inputs on all supported devices.
Args:
op: The operator. Must either be a function decorated with
:func:`torch.library.custom_op` or an OpOverload/OpOverloadPacket
found in torch.ops.* (e.g. torch.ops.aten.sin, torch.ops.mylib.foo)
args: The args to the operator
kwargs: The kwargs to the operator
test_utils: Tests that we should run. Default: all of them.
Example: ("test_schema", "test_faketensor")
raise_exception: If we should raise an exception on the first
error. If False, we will return a dict with information
on if each test passed or not.
rtol (Optional[float]): Relative tolerance for floating point comparisons.
If specified ``atol`` must also be specified.
If omitted, default values based on the ``dtype`` are selected
(see the table in :func:`torch.testing.assert_close`).
atol (Optional[float]): Absolute tolerance for floating point comparisons.
If specified ``rtol`` must also be specified.
If omitted, default values based on the ``dtype`` are selected
(see the table in :func:`torch.testing.assert_close`).
.. warning::
opcheck and :func:`torch.autograd.gradcheck` test different things;
opcheck tests if your usage of torch.library APIs is correct while
:func:`torch.autograd.gradcheck` tests if your autograd formula is
mathematically correct. Use both to test custom ops that support
gradient computation.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, y: float) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> z_np = x_np * y
>>> return torch.from_numpy(z_np).to(x.device)
>>>
>>> @numpy_mul.register_fake
>>> def _(x, y):
>>> return torch.empty_like(x)
>>>
>>> def setup_context(ctx, inputs, output):
>>> y, = inputs
>>> ctx.y = y
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.y, None
>>>
>>> numpy_mul.register_autograd(backward, setup_context=setup_context)
>>>
>>> sample_inputs = [
>>> (torch.randn(3), 3.14),
>>> (torch.randn(2, 3, device='cuda'), 2.718),
>>> (torch.randn(1, 10, requires_grad=True), 1.234),
>>> (torch.randn(64, 64, device='cuda', requires_grad=True), 90.18),
>>> ]
>>>
>>> for args in sample_inputs:
>>> torch.library.opcheck(numpy_mul, args)
"""
import torch.testing._internal.optests as optests
return optests.opcheck(
op,
args,
kwargs,
test_utils=test_utils,
raise_exception=raise_exception,
rtol=rtol,
atol=atol,
)
|