File size: 5,137 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#endif
#include <c10/macros/Macros.h>
#include <c10/util/BFloat16.h>
#include <c10/util/Float8_e4m3fn.h>
#include <c10/util/Float8_e4m3fnuz.h>
#include <c10/util/Float8_e5m2.h>
#include <c10/util/Float8_e5m2fnuz.h>
#include <c10/util/Half.h>
#include <c10/util/complex.h>
#include <cmath>
#include <type_traits>
namespace at {
// std::isnan isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
return false;
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isnan(val);
#else
return std::isnan(val);
#endif
}
template <typename T, std::enable_if_t<c10::is_complex<T>::value, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return std::isnan(val.real()) || std::isnan(val.imag());
}
template <typename T, std::enable_if_t<std::is_same_v<T, at::Half>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::BFloat16>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fn>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2fnuz>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fnuz>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
// std::isinf isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
return false;
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isinf(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isinf(val);
#else
return std::isinf(val);
#endif
}
inline C10_HOST_DEVICE bool _isinf(at::Half val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
return val.isinf();
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val [[maybe_unused]]) {
return false;
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2fnuz val [[maybe_unused]]) {
return false;
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fnuz val [[maybe_unused]]) {
return false;
}
template <typename T>
C10_HOST_DEVICE inline T exp(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __expf fast approximation for peak bandwidth
return __expf(x);
#else
return ::exp(x);
#endif
}
template <>
C10_HOST_DEVICE inline double exp<double>(double x) {
return ::exp(x);
}
template <typename T>
C10_HOST_DEVICE inline T log(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
return __logf(x);
#else
return ::log(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log<double>(double x) {
return ::log(x);
}
template <typename T>
C10_HOST_DEVICE inline T log1p(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
// NOTE: There is no __log1pf so unfortunately we lose precision.
return __logf(1.0f + x);
#else
return ::log1p(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log1p<double>(double x) {
return ::log1p(x);
}
template <typename T>
C10_HOST_DEVICE inline T tan(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __tanf fast approximation for peak bandwidth
return __tanf(x);
#else
return ::tan(x);
#endif
}
template <>
C10_HOST_DEVICE inline double tan<double>(double x) {
return ::tan(x);
}
} // namespace at
|