File size: 88,308 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
# mypy: allow-untyped-defs
import itertools
import operator
from collections.abc import Sequence
from typing import Any, Optional, TYPE_CHECKING, Union

import torch
import torch.nn.functional as F
from torch import _VF, Tensor
from torch._C import _add_docstr
from torch._jit_internal import _overload as overload, boolean_dispatch
from torch._lowrank import pca_lowrank, svd_lowrank
from torch.overrides import (
    handle_torch_function,
    has_torch_function,
    has_torch_function_unary,
    has_torch_function_variadic,
)


__all__ = [
    "atleast_1d",
    "atleast_2d",
    "atleast_3d",
    "align_tensors",
    "broadcast_shapes",
    "broadcast_tensors",
    "cartesian_prod",
    "block_diag",
    "cdist",
    "chain_matmul",
    "einsum",
    "istft",
    "lu",
    "norm",
    "meshgrid",
    "pca_lowrank",
    "split",
    "stft",
    "svd_lowrank",
    "tensordot",
    "unique",
    "unique_consecutive",
    "unravel_index",
]


def broadcast_tensors(*tensors):
    r"""broadcast_tensors(*tensors) -> List of Tensors

    Broadcasts the given tensors according to :ref:`broadcasting-semantics`.

    Args:
        *tensors: any number of tensors of the same type

    .. warning::

        More than one element of a broadcasted tensor may refer to a single
        memory location. As a result, in-place operations (especially ones that
        are vectorized) may result in incorrect behavior. If you need to write
        to the tensors, please clone them first.

    Example::

        >>> x = torch.arange(3).view(1, 3)
        >>> y = torch.arange(2).view(2, 1)
        >>> a, b = torch.broadcast_tensors(x, y)
        >>> a.size()
        torch.Size([2, 3])
        >>> a
        tensor([[0, 1, 2],
                [0, 1, 2]])
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(broadcast_tensors, tensors, *tensors)
    return _VF.broadcast_tensors(tensors)  # type: ignore[attr-defined]


def broadcast_shapes(*shapes):
    r"""broadcast_shapes(*shapes) -> Size

    Similar to :func:`broadcast_tensors` but for shapes.

    This is equivalent to
    ``torch.broadcast_tensors(*map(torch.empty, shapes))[0].shape``
    but avoids the need create to intermediate tensors. This is useful for
    broadcasting tensors of common batch shape but different rightmost shape,
    e.g. to broadcast mean vectors with covariance matrices.

    Example::

        >>> torch.broadcast_shapes((2,), (3, 1), (1, 1, 1))
        torch.Size([1, 3, 2])

    Args:
        \*shapes (torch.Size): Shapes of tensors.

    Returns:
        shape (torch.Size): A shape compatible with all input shapes.

    Raises:
        RuntimeError: If shapes are incompatible.
    """
    # This wrapper exists to support variadic args.
    # TODO Move this to C++ once the jit has better support for torch.Size.
    if not torch.jit.is_tracing():
        max_len = 0
        for shape in shapes:
            if isinstance(shape, (int, torch.SymInt)):
                if max_len < 1:
                    max_len = 1
            elif isinstance(shape, (tuple, list)):
                s = len(shape)
                if max_len < s:
                    max_len = s
        result = [1] * max_len

        from torch.fx.experimental.symbolic_shapes import (
            guard_size_oblivious,
            is_nested_int,
        )

        for shape in shapes:
            if isinstance(shape, (int, torch.SymInt)):
                shape = (shape,)
            if isinstance(shape, (tuple, list)):
                for i in range(-1, -1 - len(shape), -1):
                    if shape[i] < 0:
                        raise RuntimeError(
                            f"Trying to create tensor with negative dimension ({shape[i]}): ({shape[i]})"
                        )

                    # NB: handle nested ints specially to avoid invalid guarding on Ne(j0, 1).
                    if is_nested_int(shape[i]):
                        # Broadcasting is allowed for (j0, 1) or (j0, j0);
                        # not (j0, j1), (j0, 5), etc.
                        if is_nested_int(result[i]) and guard_size_oblivious(
                            shape[i] == result[i]
                        ):
                            continue
                    else:
                        # NB: result is initialized to 1 so this is effectively an
                        # equals one test
                        if guard_size_oblivious(shape[i] == 1) or guard_size_oblivious(
                            shape[i] == result[i]
                        ):
                            continue

                    if result[i] != 1:
                        raise RuntimeError(
                            "Shape mismatch: objects cannot be broadcast to a single shape"
                        )
                    result[i] = shape[i]
            else:
                raise RuntimeError(
                    "Input shapes should be of type ints, a tuple of ints, or a list of ints, got ",
                    shape,
                )
        return torch.Size(result)
    else:
        # with implementation above, torch.jit.trace hardcodes the sizes which makes subsequent replays fail
        with torch.no_grad():
            scalar = torch.zeros((), device="cpu")
            tensors = [scalar.expand(shape) for shape in shapes]
            tensors = broadcast_tensors(*tensors)
            return tensors[0].shape


def split(
    tensor: Tensor,
    split_size_or_sections: Union[int, list[int]],
    dim: int = 0,
) -> tuple[Tensor, ...]:
    r"""Splits the tensor into chunks. Each chunk is a view of the original tensor.

    If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will
    be split into equally sized chunks (if possible). Last chunk will be smaller if
    the tensor size along the given dimension :attr:`dim` is not divisible by
    :attr:`split_size`.

    If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split
    into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according
    to :attr:`split_size_or_sections`.

    Args:
        tensor (Tensor): tensor to split.
        split_size_or_sections (int) or (list(int)): size of a single chunk or
            list of sizes for each chunk
        dim (int): dimension along which to split the tensor.

    Example::

        >>> a = torch.arange(10).reshape(5, 2)
        >>> a
        tensor([[0, 1],
                [2, 3],
                [4, 5],
                [6, 7],
                [8, 9]])
        >>> torch.split(a, 2)
        (tensor([[0, 1],
                 [2, 3]]),
         tensor([[4, 5],
                 [6, 7]]),
         tensor([[8, 9]]))
        >>> torch.split(a, [1, 4])
        (tensor([[0, 1]]),
         tensor([[2, 3],
                 [4, 5],
                 [6, 7],
                 [8, 9]]))
    """
    if has_torch_function_unary(tensor):
        return handle_torch_function(
            split, (tensor,), tensor, split_size_or_sections, dim=dim
        )
    # Overwriting reason:
    # This dispatches to two ATen functions depending on the type of
    # split_size_or_sections. The branching code is in _tensor.py, which we
    # call here.
    return tensor.split(split_size_or_sections, dim)


def einsum(*args: Any) -> Tensor:
    r"""einsum(equation, *operands) -> Tensor

    Sums the product of the elements of the input :attr:`operands` along dimensions specified using a notation
    based on the Einstein summation convention.

    Einsum allows computing many common multi-dimensional linear algebraic array operations by representing them
    in a short-hand format based on the Einstein summation convention, given by :attr:`equation`. The details of
    this format are described below, but the general idea is to label every dimension of the input :attr:`operands`
    with some subscript and define which subscripts are part of the output. The output is then computed by summing
    the product of the elements of the :attr:`operands` along the dimensions whose subscripts are not part of the
    output. For example, matrix multiplication can be computed using einsum as `torch.einsum("ij,jk->ik", A, B)`.
    Here, j is the summation subscript and i and k the output subscripts (see section below for more details on why).

    Equation:

        The :attr:`equation` string specifies the subscripts (letters in `[a-zA-Z]`) for each dimension of
        the input :attr:`operands` in the same order as the dimensions, separating subscripts for each operand by a
        comma (','), e.g. `'ij,jk'` specify subscripts for two 2D operands. The dimensions labeled with the same subscript
        must be broadcastable, that is, their size must either match or be `1`. The exception is if a subscript is
        repeated for the same input operand, in which case the dimensions labeled with this subscript for this operand
        must match in size and the operand will be replaced by its diagonal along these dimensions. The subscripts that
        appear exactly once in the :attr:`equation` will be part of the output, sorted in increasing alphabetical order.
        The output is computed by multiplying the input :attr:`operands` element-wise, with their dimensions aligned based
        on the subscripts, and then summing out the dimensions whose subscripts are not part of the output.

        Optionally, the output subscripts can be explicitly defined by adding an arrow ('->') at the end of the equation
        followed by the subscripts for the output. For instance, the following equation computes the transpose of a
        matrix multiplication: 'ij,jk->ki'. The output subscripts must appear at least once for some input operand and
        at most once for the output.

        Ellipsis ('...') can be used in place of subscripts to broadcast the dimensions covered by the ellipsis.
        Each input operand may contain at most one ellipsis which will cover the dimensions not covered by subscripts,
        e.g. for an input operand with 5 dimensions, the ellipsis in the equation `'ab...c'` cover the third and fourth
        dimensions. The ellipsis does not need to cover the same number of dimensions across the :attr:`operands` but the
        'shape' of the ellipsis (the size of the dimensions covered by them) must broadcast together. If the output is not
        explicitly defined with the arrow ('->') notation, the ellipsis will come first in the output (left-most dimensions),
        before the subscript labels that appear exactly once for the input operands. e.g. the following equation implements
        batch matrix multiplication `'...ij,...jk'`.

        A few final notes: the equation may contain whitespaces between the different elements (subscripts, ellipsis,
        arrow and comma) but something like `'. . .'` is not valid. An empty string `''` is valid for scalar operands.

    .. note::

        ``torch.einsum`` handles ellipsis ('...') differently from NumPy in that it allows dimensions
        covered by the ellipsis to be summed over, that is, ellipsis are not required to be part of the output.

    .. note::

        Please install opt-einsum (https://optimized-einsum.readthedocs.io/en/stable/) in order to enroll into a more
        performant einsum. You can install when installing torch like so: `pip install torch[opt-einsum]` or by itself
        with `pip install opt-einsum`.

        If opt-einsum is available, this function will automatically speed up computation and/or consume less memory
        by optimizing contraction order through our opt_einsum backend :mod:`torch.backends.opt_einsum` (The _ vs - is
        confusing, I know). This optimization occurs when there are at least three inputs, since the order does not matter
        otherwise. Note that finding `the` optimal path is an NP-hard problem, thus, opt-einsum relies on different
        heuristics to achieve near-optimal results. If opt-einsum is not available, the default order is to contract
        from left to right.

        To bypass this default behavior, add the following to disable opt_einsum and skip path calculation:
        ``torch.backends.opt_einsum.enabled = False``

        To specify which strategy you'd like for opt_einsum to compute the contraction path, add the following line:
        ``torch.backends.opt_einsum.strategy = 'auto'``. The default strategy is 'auto', and we also support 'greedy' and
        'optimal'. Disclaimer that the runtime of 'optimal' is factorial in the number of inputs! See more details in
        the opt_einsum documentation (https://optimized-einsum.readthedocs.io/en/stable/path_finding.html).

    .. note::

        As of PyTorch 1.10 :func:`torch.einsum` also supports the sublist format (see examples below). In this format,
        subscripts for each operand are specified by sublists, list of integers in the range [0, 52). These sublists
        follow their operands, and an extra sublist can appear at the end of the input to specify the output's
        subscripts., e.g. `torch.einsum(op1, sublist1, op2, sublist2, ..., [subslist_out])`. Python's `Ellipsis` object
        may be provided in a sublist to enable broadcasting as described in the Equation section above.

    Args:
        equation (str): The subscripts for the Einstein summation.
        operands (List[Tensor]): The tensors to compute the Einstein summation of.

    Examples::

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> # trace
        >>> torch.einsum('ii', torch.randn(4, 4))
        tensor(-1.2104)

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> # diagonal
        >>> torch.einsum('ii->i', torch.randn(4, 4))
        tensor([-0.1034,  0.7952, -0.2433,  0.4545])

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> # outer product
        >>> x = torch.randn(5)
        >>> y = torch.randn(4)
        >>> torch.einsum('i,j->ij', x, y)
        tensor([[ 0.1156, -0.2897, -0.3918,  0.4963],
                [-0.3744,  0.9381,  1.2685, -1.6070],
                [ 0.7208, -1.8058, -2.4419,  3.0936],
                [ 0.1713, -0.4291, -0.5802,  0.7350],
                [ 0.5704, -1.4290, -1.9323,  2.4480]])

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> # batch matrix multiplication
        >>> As = torch.randn(3, 2, 5)
        >>> Bs = torch.randn(3, 5, 4)
        >>> torch.einsum('bij,bjk->bik', As, Bs)
        tensor([[[-1.0564, -1.5904,  3.2023,  3.1271],
                [-1.6706, -0.8097, -0.8025, -2.1183]],

                [[ 4.2239,  0.3107, -0.5756, -0.2354],
                [-1.4558, -0.3460,  1.5087, -0.8530]],

                [[ 2.8153,  1.8787, -4.3839, -1.2112],
                [ 0.3728, -2.1131,  0.0921,  0.8305]]])

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> # with sublist format and ellipsis
        >>> torch.einsum(As, [..., 0, 1], Bs, [..., 1, 2], [..., 0, 2])
        tensor([[[-1.0564, -1.5904,  3.2023,  3.1271],
                [-1.6706, -0.8097, -0.8025, -2.1183]],

                [[ 4.2239,  0.3107, -0.5756, -0.2354],
                [-1.4558, -0.3460,  1.5087, -0.8530]],

                [[ 2.8153,  1.8787, -4.3839, -1.2112],
                [ 0.3728, -2.1131,  0.0921,  0.8305]]])

        >>> # batch permute
        >>> A = torch.randn(2, 3, 4, 5)
        >>> torch.einsum('...ij->...ji', A).shape
        torch.Size([2, 3, 5, 4])

        >>> # equivalent to torch.nn.functional.bilinear
        >>> A = torch.randn(3, 5, 4)
        >>> l = torch.randn(2, 5)
        >>> r = torch.randn(2, 4)
        >>> torch.einsum('bn,anm,bm->ba', l, A, r)
        tensor([[-0.3430, -5.2405,  0.4494],
                [ 0.3311,  5.5201, -3.0356]])
    """
    import torch.backends.opt_einsum as opt_einsum

    # This wrapper exists to support variadic args.
    if len(args) < 2:
        raise ValueError(
            "einsum(): must specify the equation string and at least one operand, "
            "or at least one operand and its subscripts list"
        )

    equation = None
    operands = None

    if isinstance(args[0], torch.Tensor):
        # Convert the subscript list format which is an interleaving of operand and its subscripts
        # list with an optional output subscripts list at the end (see documentation for more details on this)
        # to the equation string format by creating the equation string from the subscripts list and grouping the
        # input operands into a tensorlist (List[Tensor]).
        def parse_subscript(n: int) -> str:
            if n == Ellipsis:
                return "..."
            if n >= 0 and n < 26:
                return chr(ord("A") + n)
            if n >= 26 and n < 52:
                return chr(ord("a") + n - 26)
            raise ValueError(
                "einsum(): subscript in subscript list is not within the valid range [0, 52)"
            )

        # Parse subscripts for input operands
        equation = ",".join("".join(parse_subscript(s) for s in l) for l in args[1::2])

        # Parse optional output subscripts (provided when the number of arguments is odd)
        if len(args) % 2 == 1:
            equation += "->" + "".join(parse_subscript(s) for s in args[-1])
            operands = args[:-1:2]
        else:
            operands = args[::2]
    else:
        equation = args[0]
        operands = args[1:]

    if has_torch_function(operands):
        return handle_torch_function(einsum, operands, equation, *operands)

    if len(operands) == 1 and isinstance(operands[0], (list, tuple)):
        # the old interface of passing the operands as one list argument
        _operands = operands[0]
        # recurse incase operands contains value that has torch function
        # in the original implementation this line is omitted
        return einsum(equation, *_operands)

    if len(operands) <= 2 or not opt_einsum.enabled:
        # the path for contracting 0 or 1 time(s) is already optimized
        # or the user has disabled using opt_einsum
        return _VF.einsum(equation, operands)  # type: ignore[attr-defined]

    path = None
    if opt_einsum.is_available():
        _opt_einsum = opt_einsum.get_opt_einsum()
        tupled_path = _opt_einsum.contract_path(
            equation, *operands, optimize=opt_einsum.strategy
        )[0]
        # flatten path for dispatching to C++
        path = [*itertools.chain.from_iterable(tupled_path)]
    return _VF.einsum(equation, operands, path=path)  # type: ignore[attr-defined]


# This wrapper exists to support variadic args.
if TYPE_CHECKING:
    # The JIT doesn't understand Union, so only add type annotation for mypy
    def meshgrid(
        *tensors: Union[Tensor, list[Tensor]], indexing: Optional[str] = None
    ) -> tuple[Tensor, ...]:
        return _meshgrid(*tensors, indexing=indexing)

else:

    def meshgrid(*tensors, indexing: Optional[str] = None) -> tuple[Tensor, ...]:
        r"""Creates grids of coordinates specified by the 1D inputs in `attr`:tensors.

        This is helpful when you want to visualize data over some
        range of inputs. See below for a plotting example.

        Given :math:`N` 1D tensors :math:`T_0 \ldots T_{N-1}` as
        inputs with corresponding sizes :math:`S_0 \ldots S_{N-1}`,
        this creates :math:`N` N-dimensional tensors :math:`G_0 \ldots
        G_{N-1}`, each with shape :math:`(S_0, ..., S_{N-1})` where
        the output :math:`G_i` is constructed by expanding :math:`T_i`
        to the result shape.

        .. note::
            0D inputs are treated equivalently to 1D inputs of a
            single element.

        .. warning::
            `torch.meshgrid(*tensors)` currently has the same behavior
            as calling `numpy.meshgrid(*arrays, indexing='ij')`.

            In the future `torch.meshgrid` will transition to
            `indexing='xy'` as the default.

            https://github.com/pytorch/pytorch/issues/50276 tracks
            this issue with the goal of migrating to NumPy's behavior.

        .. seealso::

            :func:`torch.cartesian_prod` has the same effect but it
            collects the data in a tensor of vectors.

        Args:
            tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be
                treated as tensors of size :math:`(1,)` automatically

            indexing: (str, optional): the indexing mode, either "xy"
                or "ij", defaults to "ij". See warning for future changes.

                If "xy" is selected, the first dimension corresponds
                to the cardinality of the second input and the second
                dimension corresponds to the cardinality of the first
                input.

                If "ij" is selected, the dimensions are in the same
                order as the cardinality of the inputs.

        Returns:
            seq (sequence of Tensors): If the input has :math:`N`
            tensors of size :math:`S_0 \ldots S_{N-1}``, then the
            output will also have :math:`N` tensors, where each tensor
            is of shape :math:`(S_0, ..., S_{N-1})`.

        Example::

            >>> x = torch.tensor([1, 2, 3])
            >>> y = torch.tensor([4, 5, 6])

            Observe the element-wise pairings across the grid, (1, 4),
            (1, 5), ..., (3, 6). This is the same thing as the
            cartesian product.
            >>> grid_x, grid_y = torch.meshgrid(x, y, indexing='ij')
            >>> grid_x
            tensor([[1, 1, 1],
                    [2, 2, 2],
                    [3, 3, 3]])
            >>> grid_y
            tensor([[4, 5, 6],
                    [4, 5, 6],
                    [4, 5, 6]])

            This correspondence can be seen when these grids are
            stacked properly.
            >>> torch.equal(torch.cat(tuple(torch.dstack([grid_x, grid_y]))),
            ...             torch.cartesian_prod(x, y))
            True

            `torch.meshgrid` is commonly used to produce a grid for
            plotting.
            >>> # xdoctest: +REQUIRES(module:matplotlib)
            >>> # xdoctest: +REQUIRES(env:DOCTEST_SHOW)
            >>> import matplotlib.pyplot as plt
            >>> xs = torch.linspace(-5, 5, steps=100)
            >>> ys = torch.linspace(-5, 5, steps=100)
            >>> x, y = torch.meshgrid(xs, ys, indexing='xy')
            >>> z = torch.sin(torch.sqrt(x * x + y * y))
            >>> ax = plt.axes(projection='3d')
            >>> ax.plot_surface(x.numpy(), y.numpy(), z.numpy())
            >>> plt.show()

        .. image:: ../_static/img/meshgrid.png
            :width: 512

        """
        return _meshgrid(*tensors, indexing=indexing)


def _meshgrid(*tensors, indexing: Optional[str]):
    if has_torch_function(tensors):
        return handle_torch_function(meshgrid, tensors, *tensors, indexing=indexing)
    if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
        # the old interface of passing the operands as one list argument
        tensors = tensors[0]  # type: ignore[assignment]

    # Continue allowing call of old method that takes no indexing
    # kwarg for forward compatibility reasons.
    #
    # Remove this two weeks after landing.
    kwargs = {} if indexing is None else {"indexing": indexing}
    return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]


def stft(
    input: Tensor,
    n_fft: int,
    hop_length: Optional[int] = None,
    win_length: Optional[int] = None,
    window: Optional[Tensor] = None,
    center: bool = True,
    pad_mode: str = "reflect",
    normalized: bool = False,
    onesided: Optional[bool] = None,
    return_complex: Optional[bool] = None,
    align_to_window: Optional[bool] = None,
) -> Tensor:
    r"""Short-time Fourier transform (STFT).

    .. warning::
        From version 1.8.0, :attr:`return_complex` must always be given
        explicitly for real inputs and `return_complex=False` has been
        deprecated. Strongly prefer `return_complex=True` as in a future
        pytorch release, this function will only return complex tensors.

        Note that :func:`torch.view_as_real` can be used to recover a real
        tensor with an extra last dimension for real and imaginary components.

    .. warning::
        From version 2.1, a warning will be provided if a :attr:`window` is
        not specified. In a future release, this attribute will be required.
        Not providing a window currently defaults to using a rectangular window,
        which may result in undesirable artifacts. Consider using tapered windows,
        such as :func:`torch.hann_window`.

    The STFT computes the Fourier transform of short overlapping windows of the
    input. This giving frequency components of the signal as they change over
    time. The interface of this function is modeled after (but *not* a drop-in
    replacement for) librosa_ stft function.

    .. _librosa: https://librosa.org/doc/latest/generated/librosa.stft.html

    Ignoring the optional batch dimension, this method computes the following
    expression:

    .. math::
        X[\omega, m] = \sum_{k = 0}^{\text{win\_length-1}}%
                            \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %
                            \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{n\_fft}}\right),

    where :math:`m` is the index of the sliding window, and :math:`\omega` is
    the frequency :math:`0 \leq \omega < \text{n\_fft}` for ``onesided=False``,
    or :math:`0 \leq \omega < \lfloor \text{n\_fft} / 2 \rfloor + 1` for ``onesided=True``.

    * :attr:`input` must be either a 1-D time sequence or a 2-D batch of time
      sequences.

    * If :attr:`hop_length` is ``None`` (default), it is treated as equal to
      ``floor(n_fft / 4)``.

    * If :attr:`win_length` is ``None`` (default), it is treated as equal to
      :attr:`n_fft`.

    * :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from
      :meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is
      treated as if having :math:`1` everywhere in the window. If
      :math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on
      both sides to length :attr:`n_fft` before being applied.

    * If :attr:`center` is ``True`` (default), :attr:`input` will be padded on
      both sides so that the :math:`t`-th frame is centered at time
      :math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame
      begins at time  :math:`t \times \text{hop\_length}`.

    * :attr:`pad_mode` determines the padding method used on :attr:`input` when
      :attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for
      all available options. Default is ``"reflect"``.

    * If :attr:`onesided` is ``True`` (default for real input), only values for
      :math:`\omega` in :math:`\left[0, 1, 2, \dots, \left\lfloor
      \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]` are returned because
      the real-to-complex Fourier transform satisfies the conjugate symmetry,
      i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`.
      Note if the input or window tensors are complex, then :attr:`onesided`
      output is not possible.

    * If :attr:`normalized` is ``True`` (default is ``False``), the function
      returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`.

    * If :attr:`return_complex` is ``True`` (default if input is complex), the
      return is a ``input.dim() + 1`` dimensional complex tensor. If ``False``,
      the output is a ``input.dim() + 2`` dimensional real tensor where the last
      dimension represents the real and imaginary components.

    Returns either a complex tensor of size :math:`(* \times N \times T)` if
    :attr:`return_complex` is true, or a real tensor of size :math:`(* \times N
    \times T \times 2)`. Where :math:`*` is the optional batch size of
    :attr:`input`, :math:`N` is the number of frequencies where STFT is applied
    and :math:`T` is the total number of frames used.

    .. warning::
      This function changed signature at version 0.4.1. Calling with the
      previous signature may cause error or return incorrect result.

    Args:
        input (Tensor): the input tensor of shape `(B?, L)` where `B?` is an optional
            batch dimension
        n_fft (int): size of Fourier transform
        hop_length (int, optional): the distance between neighboring sliding window
            frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``)
        win_length (int, optional): the size of window frame and STFT filter.
            Default: ``None``  (treated as equal to :attr:`n_fft`)
        window (Tensor, optional): the optional window function.
            Shape must be 1d and `<= n_fft`
            Default: ``None`` (treated as window of all :math:`1` s)
        center (bool, optional): whether to pad :attr:`input` on both sides so
            that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
            Default: ``True``
        pad_mode (str, optional): controls the padding method used when
            :attr:`center` is ``True``. Default: ``"reflect"``
        normalized (bool, optional): controls whether to return the normalized STFT results
             Default: ``False``
        onesided (bool, optional): controls whether to return half of results to
            avoid redundancy for real inputs.
            Default: ``True`` for real :attr:`input` and :attr:`window`, ``False`` otherwise.
        return_complex (bool, optional): whether to return a complex tensor, or
            a real tensor with an extra last dimension for the real and
            imaginary components.

            .. versionchanged:: 2.0
               ``return_complex`` is now a required argument for real inputs,
               as the default is being transitioned to ``True``.

            .. deprecated:: 2.0
               ``return_complex=False`` is deprecated, instead use ``return_complex=True``
               Note that calling :func:`torch.view_as_real` on the output will
               recover the deprecated output format.

    Returns:
        Tensor: A tensor containing the STFT result with shape `(B?, N, T, C?)` where
           - `B?` is an optional batch dimension from the input.
           - `N` is the number of frequency samples, `(n_fft // 2) + 1` for
             `onesided=True`, or otherwise `n_fft`.
           - `T` is the number of frames, `1 + L // hop_length`
             for `center=True`, or `1 + (L - n_fft) // hop_length` otherwise.
           - `C?` is an optional length-2 dimension of real and imaginary
             components, present when `return_complex=False`.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            stft,
            (input,),
            input,
            n_fft,
            hop_length=hop_length,
            win_length=win_length,
            window=window,
            center=center,
            pad_mode=pad_mode,
            normalized=normalized,
            onesided=onesided,
            return_complex=return_complex,
            align_to_window=align_to_window,
        )
    if center and align_to_window is not None:
        raise RuntimeError(
            "stft align_to_window should only be set when center = false"
        )
    # NOTE: Do not edit. This code will be removed once the forward-compatibility
    #       period is over for PR #73432
    if center:
        signal_dim = input.dim()
        extended_shape = [1] * (3 - signal_dim) + list(input.size())
        pad = int(n_fft // 2)
        input = F.pad(input.view(extended_shape), [pad, pad], pad_mode)
        input = input.view(input.shape[-signal_dim:])
    return _VF.stft(  # type: ignore[attr-defined]
        input,
        n_fft,
        hop_length,
        win_length,
        window,
        normalized,
        onesided,
        return_complex,
        align_to_window,
    )


istft = _add_docstr(
    torch.istft,
    "istft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, "
    "normalized=False, onesided=None, length=None, return_complex=False) -> Tensor:\n"
    r"""
Inverse short time Fourier Transform. This is expected to be the inverse of :func:`~torch.stft`.

.. warning::
    From version 2.1, a warning will be provided if a :attr:`window` is
    not specified. In a future release, this attribute will be required.
    Please provide the same window used in the stft call.

It has the same parameters (+ additional optional parameter of :attr:`length`) and it should return the
least squares estimation of the original signal. The algorithm will check using the NOLA condition (
nonzero overlap).

Important consideration in the parameters :attr:`window` and :attr:`center` so that the envelope
created by the summation of all the windows is never zero at certain point in time. Specifically,
:math:`\sum_{t=-\infty}^{\infty} |w|^2[n-t\times hop\_length] \cancel{=} 0`.

Since :func:`~torch.stft` discards elements at the end of the signal if they do not fit in a frame,
``istft`` may return a shorter signal than the original signal (can occur if :attr:`center` is False
since the signal isn't padded). If `length` is given in the arguments and is longer than expected,
``istft`` will pad zeros to the end of the returned signal.

If :attr:`center` is ``True``, then there will be padding e.g. ``'constant'``, ``'reflect'``, etc.
Left padding can be trimmed off exactly because they can be calculated but right padding cannot be
calculated without additional information.

Example: Suppose the last window is:
``[17, 18, 0, 0, 0]`` vs ``[18, 0, 0, 0, 0]``

The :attr:`n_fft`, :attr:`hop_length`, :attr:`win_length` are all the same which prevents the calculation
of right padding. These additional values could be zeros or a reflection of the signal so providing
:attr:`length` could be useful. If :attr:`length` is ``None`` then padding will be aggressively removed
(some loss of signal).

[1] D. W. Griffin and J. S. Lim, "Signal estimation from modified short-time Fourier transform,"
IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984.

Args:
    input (Tensor): The input tensor. Expected to be in the format of :func:`~torch.stft`,
        output. That is a complex tensor of shape `(B?, N, T)` where

        - `B?` is an optional batch dimension
        - `N` is the number of frequency samples, `(n_fft // 2) + 1`
          for onesided input, or otherwise `n_fft`.
        - `T` is the number of frames, `1 + length // hop_length` for centered stft,
          or `1 + (length - n_fft) // hop_length` otherwise.

        .. versionchanged:: 2.0
            Real datatype inputs are no longer supported. Input must now have a
            complex datatype, as returned by ``stft(..., return_complex=True)``.
    n_fft (int): Size of Fourier transform
    hop_length (Optional[int]): The distance between neighboring sliding window frames.
        (Default: ``n_fft // 4``)
    win_length (Optional[int]): The size of window frame and STFT filter. (Default: ``n_fft``)
    window (Optional[torch.Tensor]): The optional window function.
        Shape must be 1d and `<= n_fft`
        (Default: ``torch.ones(win_length)``)
    center (bool): Whether :attr:`input` was padded on both sides so that the :math:`t`-th frame is
        centered at time :math:`t \times \text{hop\_length}`.
        (Default: ``True``)
    normalized (bool): Whether the STFT was normalized. (Default: ``False``)
    onesided (Optional[bool]): Whether the STFT was onesided.
        (Default: ``True`` if `n_fft != fft_size` in the input size)
    length (Optional[int]): The amount to trim the signal by (i.e. the
        original signal length). Defaults to `(T - 1) * hop_length` for
        centered stft, or `n_fft + (T - 1) * hop_length` otherwise, where `T`
        is the number of input frames.
    return_complex (Optional[bool]):
        Whether the output should be complex, or if the input should be
        assumed to derive from a real signal and window.
        Note that this is incompatible with ``onesided=True``.
        (Default: ``False``)

Returns:
    Tensor: Least squares estimation of the original signal of shape `(B?, length)` where
        `B?` is an optional batch dimension from the input tensor.
""",
)


if TYPE_CHECKING:
    # These _impl functions return a variable number of tensors as output with
    # __torch_function__; tuple unpacking is done already rather than being
    # done by the caller of the _impl function
    _unique_impl_out = Any
else:
    _unique_impl_out = tuple[Tensor, Tensor, Tensor]


def _unique_impl(
    input: Tensor,
    sorted: bool = True,
    return_inverse: bool = False,
    return_counts: bool = False,
    dim: Optional[int] = None,
) -> _unique_impl_out:
    r"""unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None) -> tuple[Tensor, Tensor, Tensor]

    Returns the unique elements of the input tensor.

    .. note:: This function is different from :func:`torch.unique_consecutive` in the sense that
        this function also eliminates non-consecutive duplicate values.

    .. note:: Currently in the CUDA implementation and the CPU implementation,
        `torch.unique` always sort the tensor at the beginning regardless of the `sort` argument.
        Sorting could be slow, so if your input tensor is already sorted, it is recommended to use
        :func:`torch.unique_consecutive` which avoids the sorting.

    Args:
        input (Tensor): the input tensor
        sorted (bool): Whether to sort the unique elements in ascending order
            before returning as output.
        return_inverse (bool): Whether to also return the indices for where
            elements in the original input ended up in the returned unique list.
        return_counts (bool): Whether to also return the counts for each unique
            element.
        dim (int, optional): the dimension to operate upon. If ``None``, the
            unique of the flattened input is returned. Otherwise, each of the
            tensors indexed by the given dimension is treated as one of the
            elements to apply the unique operation upon. See examples for more
            details. Default: ``None``

    Returns:
        (Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing

            - **output** (*Tensor*): the output list of unique scalar elements.
            - **inverse_indices** (*Tensor*): (optional) if
              :attr:`return_inverse` is True, there will be an additional
              returned tensor (same shape as input) representing the indices
              for where elements in the original input map to in the output;
              otherwise, this function will only return a single tensor.
            - **counts** (*Tensor*): (optional) if
              :attr:`return_counts` is True, there will be an additional
              returned tensor (same shape as output or output.size(dim),
              if dim was specified) representing the number of occurrences
              for each unique value or tensor.

    Example::

        >>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))
        >>> output
        tensor([1, 2, 3])

        >>> output, inverse_indices = torch.unique(
        ...     torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True)
        >>> output
        tensor([1, 2, 3])
        >>> inverse_indices
        tensor([0, 2, 1, 2])

        >>> output, inverse_indices = torch.unique(
        ...     torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True)
        >>> output
        tensor([1, 2, 3])
        >>> inverse_indices
        tensor([[0, 2],
                [1, 2]])

        >>> a = torch.tensor([
        ...     [
        ...         [1, 1, 0, 0],
        ...         [1, 1, 0, 0],
        ...         [0, 0, 1, 1],
        ...     ],
        ...     [
        ...         [0, 0, 1, 1],
        ...         [0, 0, 1, 1],
        ...         [1, 1, 1, 1],
        ...     ],
        ...     [
        ...         [1, 1, 0, 0],
        ...         [1, 1, 0, 0],
        ...         [0, 0, 1, 1],
        ...     ],
        ... ])

        >>> # If we call `torch.unique(a, dim=0)`, each of the tensors `a[idx, :, :]`
        >>> # will be compared. We can see that `a[0, :, :]` and `a[2, :, :]` match
        >>> # each other, so one of them will be removed.
        >>> (a[0, :, :] == a[2, :, :]).all()
        tensor(True)
        >>> a_unique_dim0 = torch.unique(a, dim=0)
        >>> a_unique_dim0
        tensor([[[0, 0, 1, 1],
                 [0, 0, 1, 1],
                 [1, 1, 1, 1]],
                [[1, 1, 0, 0],
                 [1, 1, 0, 0],
                 [0, 0, 1, 1]]])

        >>> # Notice which sub-tensors from `a` match with the sub-tensors from
        >>> # `a_unique_dim0`:
        >>> (a_unique_dim0[0, :, :] == a[1, :, :]).all()
        tensor(True)
        >>> (a_unique_dim0[1, :, :] == a[0, :, :]).all()
        tensor(True)

        >>> # For `torch.unique(a, dim=1)`, each of the tensors `a[:, idx, :]` are
        >>> # compared. `a[:, 0, :]` and `a[:, 1, :]` match each other, so one of
        >>> # them will be removed.
        >>> (a[:, 0, :] == a[:, 1, :]).all()
        tensor(True)
        >>> torch.unique(a, dim=1)
        tensor([[[0, 0, 1, 1],
                 [1, 1, 0, 0]],
                [[1, 1, 1, 1],
                 [0, 0, 1, 1]],
                [[0, 0, 1, 1],
                 [1, 1, 0, 0]]])

        >>> # For `torch.unique(a, dim=2)`, the tensors `a[:, :, idx]` are compared.
        >>> # `a[:, :, 0]` and `a[:, :, 1]` match each other. Also, `a[:, :, 2]` and
        >>> # `a[:, :, 3]` match each other as well. So in this case, two of the
        >>> # sub-tensors will be removed.
        >>> (a[:, :, 0] == a[:, :, 1]).all()
        tensor(True)
        >>> (a[:, :, 2] == a[:, :, 3]).all()
        tensor(True)
        >>> torch.unique(a, dim=2)
        tensor([[[0, 1],
                 [0, 1],
                 [1, 0]],
                [[1, 0],
                 [1, 0],
                 [1, 1]],
                [[0, 1],
                 [0, 1],
                 [1, 0]]])
    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            unique,
            (input,),
            input,
            sorted=sorted,
            return_inverse=return_inverse,
            return_counts=return_counts,
            dim=dim,
        )

    if dim is not None:
        output, inverse_indices, counts = _VF.unique_dim(
            input,
            dim,
            sorted=sorted,
            return_inverse=return_inverse,
            return_counts=return_counts,
        )
    else:
        output, inverse_indices, counts = torch._unique2(
            input,
            sorted=sorted,
            return_inverse=return_inverse,
            return_counts=return_counts,
        )
    return output, inverse_indices, counts


def _unique_consecutive_impl(
    input: Tensor,
    return_inverse: bool = False,
    return_counts: bool = False,
    dim: Optional[int] = None,
) -> _unique_impl_out:
    r"""Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`torch.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique`
        in C++.

    Args:
        input (Tensor): the input tensor
        return_inverse (bool): Whether to also return the indices for where
            elements in the original input ended up in the returned unique list.
        return_counts (bool): Whether to also return the counts for each unique
            element.
        dim (int): the dimension to apply unique. If ``None``, the unique of the
            flattened input is returned. default: ``None``

    Returns:
        (Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing

            - **output** (*Tensor*): the output list of unique scalar elements.
            - **inverse_indices** (*Tensor*): (optional) if
              :attr:`return_inverse` is True, there will be an additional
              returned tensor (same shape as input) representing the indices
              for where elements in the original input map to in the output;
              otherwise, this function will only return a single tensor.
            - **counts** (*Tensor*): (optional) if
              :attr:`return_counts` is True, there will be an additional
              returned tensor (same shape as output or output.size(dim),
              if dim was specified) representing the number of occurrences
              for each unique value or tensor.

    Example::

        >>> x = torch.tensor([1, 1, 2, 2, 3, 1, 1, 2])
        >>> output = torch.unique_consecutive(x)
        >>> output
        tensor([1, 2, 3, 1, 2])

        >>> output, inverse_indices = torch.unique_consecutive(x, return_inverse=True)
        >>> output
        tensor([1, 2, 3, 1, 2])
        >>> inverse_indices
        tensor([0, 0, 1, 1, 2, 3, 3, 4])

        >>> output, counts = torch.unique_consecutive(x, return_counts=True)
        >>> output
        tensor([1, 2, 3, 1, 2])
        >>> counts
        tensor([2, 2, 1, 2, 1])
    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            unique_consecutive,
            (input,),
            input,
            return_inverse=return_inverse,
            return_counts=return_counts,
            dim=dim,
        )
    output, inverse_indices, counts = _VF.unique_consecutive(  # type: ignore[attr-defined]
        input, return_inverse=return_inverse, return_counts=return_counts, dim=dim
    )
    return output, inverse_indices, counts


def _return_counts(
    input,
    sorted=True,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, bool, Optional[int]) -> tuple[Tensor, Tensor]

    if has_torch_function_unary(input):
        return _unique_impl(input, sorted, return_inverse, return_counts, dim)

    output, _, counts = _unique_impl(input, sorted, return_inverse, return_counts, dim)
    return output, counts


def _return_output(
    input,
    sorted=True,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, bool, Optional[int]) -> Tensor

    if has_torch_function_unary(input):
        return _unique_impl(input, sorted, return_inverse, return_counts, dim)

    output, _, _ = _unique_impl(input, sorted, return_inverse, return_counts, dim)
    return output


def _return_inverse(
    input,
    sorted=True,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, bool, Optional[int]) -> tuple[Tensor, Tensor]

    if has_torch_function_unary(input):
        return _unique_impl(input, sorted, return_inverse, return_counts, dim)

    output, inverse_indices, _ = _unique_impl(
        input, sorted, return_inverse, return_counts, dim
    )
    return output, inverse_indices


_return_inverse_false = boolean_dispatch(
    arg_name="return_counts",
    arg_index=3,
    default=False,
    if_true=_return_counts,
    if_false=_return_output,
    module_name=__name__,
    func_name="unique",
)

_return_inverse_true = boolean_dispatch(
    arg_name="return_counts",
    arg_index=3,
    default=False,
    if_true=_unique_impl,
    if_false=_return_inverse,
    module_name=__name__,
    func_name="unique",
)

# The return type of unique depends on `return_inverse`, and `return_counts` so in order to
# resolve the output type in TorchScript we need to statically know the value of both parameters

unique = boolean_dispatch(
    arg_name="return_inverse",
    arg_index=2,
    default=False,
    if_true=_return_inverse_true,
    if_false=_return_inverse_false,
    module_name=__name__,
    func_name="unique",
)
unique.__doc__ = _unique_impl.__doc__


def _consecutive_return_counts(
    input,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, Optional[int]) -> tuple[Tensor, Tensor]

    if has_torch_function_unary(input):
        return _unique_consecutive_impl(input, return_inverse, return_counts, dim)

    output, _, counts = _unique_consecutive_impl(
        input, return_inverse, return_counts, dim
    )
    return output, counts


def _consecutive_return_output(
    input,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, Optional[int]) -> Tensor

    if has_torch_function_unary(input):
        return _unique_consecutive_impl(input, return_inverse, return_counts, dim)

    output, _, _ = _unique_consecutive_impl(input, return_inverse, return_counts, dim)
    return output


def _consecutive_return_inverse(
    input,
    return_inverse=False,
    return_counts=False,
    dim=None,
):
    # type: (Tensor, bool, bool, Optional[int]) -> tuple[Tensor, Tensor]

    if has_torch_function_unary(input):
        return _unique_consecutive_impl(input, return_inverse, return_counts, dim)

    output, inverse_indices, _ = _unique_consecutive_impl(
        input, return_inverse, return_counts, dim
    )
    return output, inverse_indices


_consecutive_return_inverse_false = boolean_dispatch(
    arg_name="return_counts",
    arg_index=1,
    default=False,
    if_true=_consecutive_return_counts,
    if_false=_consecutive_return_output,
    module_name=__name__,
    func_name="unique_consecutive",
)

_consecutive_return_inverse_true = boolean_dispatch(
    arg_name="return_counts",
    arg_index=1,
    default=False,
    if_true=_unique_consecutive_impl,
    if_false=_consecutive_return_inverse,
    module_name=__name__,
    func_name="unique_consecutive",
)

# The return type of unique depends on `return_inverse`, and `return_counts` so in order to
# resolve the output type in TorchScript we need to statically know the value of both parameters

unique_consecutive = boolean_dispatch(
    arg_name="return_inverse",
    arg_index=2,
    default=False,
    if_true=_consecutive_return_inverse_true,
    if_false=_consecutive_return_inverse_false,
    module_name=__name__,
    func_name="unique_consecutive",
)
unique_consecutive.__doc__ = _unique_consecutive_impl.__doc__

if TYPE_CHECKING:
    pass
    # There's no good way to use this type annotation without breaking JIT
    # overloads. So leave untyped for mypy for now.
else:

    @overload
    def tensordot(
        a,
        b,
        dims: int = 2,
        out: Optional[torch.Tensor] = None,
    ):
        pass

    @overload
    def tensordot(  # noqa: F811
        a,
        b,
        dims: tuple[list[int], list[int]],
        out: Optional[torch.Tensor] = None,
    ):
        pass

    @overload
    def tensordot(  # noqa: F811
        a,
        b,
        dims: list[list[int]],
        out: Optional[torch.Tensor] = None,
    ):
        pass

    @overload
    def tensordot(  # noqa: F811
        a,
        b,
        dims: torch.Tensor,
        out: Optional[torch.Tensor] = None,
    ):
        pass


def tensordot(  # noqa: F811
    a,
    b,
    dims=2,
    out: Optional[torch.Tensor] = None,
):
    r"""Returns a contraction of a and b over multiple dimensions.

    :attr:`tensordot` implements a generalized matrix product.

    Args:
      a (Tensor): Left tensor to contract
      b (Tensor): Right tensor to contract
      dims (int or Tuple[List[int], List[int]] or List[List[int]] containing two lists or Tensor): number of dimensions to
         contract or explicit lists of dimensions for :attr:`a` and
         :attr:`b` respectively

    When called with a non-negative integer argument :attr:`dims` = :math:`d`, and
    the number of dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`,
    respectively, :func:`~torch.tensordot` computes

    .. math::
        r_{i_0,...,i_{m-d}, i_d,...,i_n}
          = \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}.

    When called with :attr:`dims` of the list form, the given dimensions will be contracted
    in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes
    in these dimensions must match, but :func:`~torch.tensordot` will deal with broadcasted
    dimensions.

    Examples::

        >>> a = torch.arange(60.).reshape(3, 4, 5)
        >>> b = torch.arange(24.).reshape(4, 3, 2)
        >>> torch.tensordot(a, b, dims=([1, 0], [0, 1]))
        tensor([[4400., 4730.],
                [4532., 4874.],
                [4664., 5018.],
                [4796., 5162.],
                [4928., 5306.]])

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> a = torch.randn(3, 4, 5, device='cuda')
        >>> b = torch.randn(4, 5, 6, device='cuda')
        >>> c = torch.tensordot(a, b, dims=2).cpu()
        tensor([[ 8.3504, -2.5436,  6.2922,  2.7556, -1.0732,  3.2741],
                [ 3.3161,  0.0704,  5.0187, -0.4079, -4.3126,  4.8744],
                [ 0.8223,  3.9445,  3.2168, -0.2400,  3.4117,  1.7780]])

        >>> a = torch.randn(3, 5, 4, 6)
        >>> b = torch.randn(6, 4, 5, 3)
        >>> torch.tensordot(a, b, dims=([2, 1, 3], [1, 2, 0]))
        tensor([[  7.7193,  -2.4867, -10.3204],
                [  1.5513, -14.4737,  -6.5113],
                [ -0.2850,   4.2573,  -3.5997]])
    """
    if has_torch_function_variadic(a, b):
        return handle_torch_function(tensordot, (a, b), a, b, dims=dims, out=out)

    if not isinstance(dims, (tuple, list, torch.Tensor, int, torch.SymInt)):
        raise RuntimeError(
            "tensordot expects dims to be int or "
            + "tuple[list[int], list[int]] or "
            + "list[list[int]] containing two lists, but got "
            + f"dims={dims}"
        )

    dims_a: list[int] = []
    dims_b: list[int] = []

    if isinstance(dims, (tuple, list)):
        dims_a, dims_b = dims

    if isinstance(dims, torch.Tensor):
        num_elements = dims.numel()
        if num_elements > 1:
            assert dims.size()[0] == 2
            dims_a = torch.jit.annotate(list[int], dims[0].tolist())
            dims_b = torch.jit.annotate(list[int], dims[1].tolist())
        else:
            dims_val = int(dims.item())
            if dims_val < 0:
                raise RuntimeError(f"tensordot expects dims >= 0, but got dims={dims}")
            dims_a = list(range(-dims_val, 0))
            dims_b = list(range(dims_val))

    if isinstance(dims, (int, torch.SymInt)):
        if dims < 0:
            raise RuntimeError(f"tensordot expects dims >= 0, but got dims={dims}")
        if dims > min(a.dim(), b.dim()):
            raise RuntimeError(
                f"tensordot expects dims < ndim_a or ndim_b, but got dims={dims}"
            )
        dims_a = list(range(-dims, 0))
        dims_b = list(range(dims))

    if out is None:
        return _VF.tensordot(a, b, dims_a, dims_b)  # type: ignore[attr-defined]
    else:
        return _VF.tensordot(a, b, dims_a, dims_b, out=out)  # type: ignore[attr-defined]


def cartesian_prod(*tensors: Tensor) -> Tensor:
    """Do cartesian product of the given sequence of tensors. The behavior is similar to
    python's `itertools.product`.

    Args:
        *tensors: any number of 1 dimensional tensors.

    Returns:
        Tensor: A tensor equivalent to converting all the input tensors into lists,
        do `itertools.product` on these lists, and finally convert the resulting list
        into tensor.

    Example::

        >>> import itertools
        >>> a = [1, 2, 3]
        >>> b = [4, 5]
        >>> list(itertools.product(a, b))
        [(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]
        >>> tensor_a = torch.tensor(a)
        >>> tensor_b = torch.tensor(b)
        >>> torch.cartesian_prod(tensor_a, tensor_b)
        tensor([[1, 4],
                [1, 5],
                [2, 4],
                [2, 5],
                [3, 4],
                [3, 5]])
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(cartesian_prod, tensors, *tensors)
    return _VF.cartesian_prod(tensors)  # type: ignore[attr-defined]


def block_diag(*tensors):
    """Create a block diagonal matrix from provided tensors.

    Args:
        *tensors: One or more tensors with 0, 1, or 2 dimensions.

    Returns:
        Tensor: A 2 dimensional tensor with all the input tensors arranged in
        order such that their upper left and lower right corners are
        diagonally adjacent. All other elements are set to 0.

    Example::

        >>> import torch
        >>> A = torch.tensor([[0, 1], [1, 0]])
        >>> B = torch.tensor([[3, 4, 5], [6, 7, 8]])
        >>> C = torch.tensor(7)
        >>> D = torch.tensor([1, 2, 3])
        >>> E = torch.tensor([[4], [5], [6]])
        >>> torch.block_diag(A, B, C, D, E)
        tensor([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 3, 4, 5, 0, 0, 0, 0, 0],
                [0, 0, 6, 7, 8, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 7, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 1, 2, 3, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0, 4],
                [0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
                [0, 0, 0, 0, 0, 0, 0, 0, 0, 6]])
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(block_diag, tensors, *tensors)
    return torch._C._VariableFunctions.block_diag(tensors)  # type: ignore[attr-defined]


def cdist(x1, x2, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary"):
    # type: (Tensor, Tensor, float, str) -> (Tensor)
    r"""Computes batched the p-norm distance between each pair of the two collections of row vectors.

    Args:
        x1 (Tensor): input tensor of shape :math:`B \times P \times M`.
        x2 (Tensor): input tensor of shape :math:`B \times R \times M`.
        p: p value for the p-norm distance to calculate between each vector pair
            :math:`\in [0, \infty]`.
        compute_mode:
            'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate
            euclidean distance (p = 2) if P > 25 or R > 25
            'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate
            euclidean distance (p = 2)
            'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate
            euclidean distance (p = 2)
            Default: use_mm_for_euclid_dist_if_necessary.

    If x1 has shape :math:`B \times P \times M` and x2 has shape :math:`B \times R \times M` then the
    output will have shape :math:`B \times P \times R`.

    This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)`
    if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to
    `scipy.spatial.distance.cdist(input, 'hamming') * M`. When :math:`p = \infty`, the closest
    scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`.

    Example:

        >>> a = torch.tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]])
        >>> a
        tensor([[ 0.9041,  0.0196],
                [-0.3108, -2.4423],
                [-0.4821,  1.0590]])
        >>> b = torch.tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]])
        >>> b
        tensor([[-2.1763, -0.4713],
                [-0.6986,  1.3702]])
        >>> torch.cdist(a, b, p=2)
        tensor([[3.1193, 2.0959],
                [2.7138, 3.8322],
                [2.2830, 0.3791]])
    """
    if has_torch_function_variadic(x1, x2):
        return handle_torch_function(
            cdist, (x1, x2), x1, x2, p=p, compute_mode=compute_mode
        )
    if compute_mode == "use_mm_for_euclid_dist_if_necessary":
        return _VF.cdist(x1, x2, p, None)  # type: ignore[attr-defined]
    elif compute_mode == "use_mm_for_euclid_dist":
        return _VF.cdist(x1, x2, p, 1)  # type: ignore[attr-defined]
    elif compute_mode == "donot_use_mm_for_euclid_dist":
        return _VF.cdist(x1, x2, p, 2)  # type: ignore[attr-defined]
    else:
        raise ValueError(f"{compute_mode} is not a valid value for compute_mode")


def atleast_1d(*tensors):
    r"""
    Returns a 1-dimensional view of each input tensor with zero dimensions.
    Input tensors with one or more dimensions are returned as-is.

    Args:
        input (Tensor or list of Tensors)

    Returns:
        output (Tensor or tuple of Tensors)

    Example::

        >>> x = torch.arange(2)
        >>> x
        tensor([0, 1])
        >>> torch.atleast_1d(x)
        tensor([0, 1])
        >>> x = torch.tensor(1.)
        >>> x
        tensor(1.)
        >>> torch.atleast_1d(x)
        tensor([1.])
        >>> x = torch.tensor(0.5)
        >>> y = torch.tensor(1.)
        >>> torch.atleast_1d((x, y))
        (tensor([0.5000]), tensor([1.]))
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(atleast_1d, tensors, *tensors)
    if len(tensors) == 1:
        tensors = tensors[0]
    return _VF.atleast_1d(tensors)  # type: ignore[attr-defined]


def atleast_2d(*tensors):
    r"""
    Returns a 2-dimensional view of each input tensor with zero dimensions.
    Input tensors with two or more dimensions are returned as-is.

    Args:
        input (Tensor or list of Tensors)

    Returns:
        output (Tensor or tuple of Tensors)

    Example::

        >>> x = torch.tensor(1.)
        >>> x
        tensor(1.)
        >>> torch.atleast_2d(x)
        tensor([[1.]])
        >>> x = torch.arange(4).view(2, 2)
        >>> x
        tensor([[0, 1],
                [2, 3]])
        >>> torch.atleast_2d(x)
        tensor([[0, 1],
                [2, 3]])
        >>> x = torch.tensor(0.5)
        >>> y = torch.tensor(1.)
        >>> torch.atleast_2d((x, y))
        (tensor([[0.5000]]), tensor([[1.]]))
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(atleast_2d, tensors, *tensors)
    if len(tensors) == 1:
        tensors = tensors[0]
    return _VF.atleast_2d(tensors)  # type: ignore[attr-defined]


def atleast_3d(*tensors):
    r"""
    Returns a 3-dimensional view of each input tensor with zero dimensions.
    Input tensors with three or more dimensions are returned as-is.

    Args:
        input (Tensor or list of Tensors)

    Returns:
        output (Tensor or tuple of Tensors)

    Example:

        >>> x = torch.tensor(0.5)
        >>> x
        tensor(0.5000)
        >>> torch.atleast_3d(x)
        tensor([[[0.5000]]])
        >>> y = torch.arange(4).view(2, 2)
        >>> y
        tensor([[0, 1],
                [2, 3]])
        >>> torch.atleast_3d(y)
        tensor([[[0],
                 [1]],
                <BLANKLINE>
                [[2],
                 [3]]])
        >>> x = torch.tensor(1).view(1, 1, 1)
        >>> x
        tensor([[[1]]])
        >>> torch.atleast_3d(x)
        tensor([[[1]]])
        >>> x = torch.tensor(0.5)
        >>> y = torch.tensor(1.0)
        >>> torch.atleast_3d((x, y))
        (tensor([[[0.5000]]]), tensor([[[1.]]]))
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(tensors):
        return handle_torch_function(atleast_3d, tensors, *tensors)
    if len(tensors) == 1:
        tensors = tensors[0]
    return _VF.atleast_3d(tensors)  # type: ignore[attr-defined]


if TYPE_CHECKING:
    pass
    # There's no good way to use this type annotation; cannot rename norm() to
    # _norm_impl() in a way that doesn't break JIT overloads. So leave untyped
    # for mypy for now.
    #    def norm(input: Tensor,
    #             p: Optional[Union[str, Number]] = "fro",
    #             dim: Optional[Union[int, List[int]]] = None,
    #             keepdim: bool = False,
    #             out: Optional[Tensor] = None,
    #             dtype: _dtype = None) -> Tensor:
    #        return _norm_impl(input, p, dim, keepdim, out, dtype)
else:
    # TODO: type dim as BroadcastingList when
    # https://github.com/pytorch/pytorch/issues/33782 is fixed
    @overload
    def norm(
        input,
        p="fro",
        dim=None,
        keepdim=False,
        out=None,
        dtype=None,
    ):
        # type: (Tensor, str, Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor
        pass

    @overload
    def norm(  # noqa: F811
        input,
        p="fro",
        dim=None,
        keepdim=False,
        out=None,
        dtype=None,
    ):
        # type: (Tensor, Optional[number], Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor
        pass

    @overload
    def norm(  # noqa: F811
        input,
        p="fro",
        dim=None,
        keepdim=False,
        out=None,
        dtype=None,
    ):
        # type: (Tensor, Optional[number], Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor
        pass

    @overload
    def norm(  # noqa: F811
        input,
        p="fro",
        dim=None,
        keepdim=False,
        out=None,
        dtype=None,
    ):
        # type: (Tensor, str, Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor
        pass


def norm(  # noqa: F811
    input,
    p: Optional[Union[float, str]] = "fro",
    dim=None,
    keepdim=False,
    out=None,
    dtype=None,
):
    r"""Returns the matrix norm or vector norm of a given tensor.

    .. warning::

        torch.norm is deprecated and may be removed in a future PyTorch release.
        Its documentation and behavior may be incorrect, and it is no longer
        actively maintained.

        Use :func:`torch.linalg.vector_norm` when computing vector norms and
        :func:`torch.linalg.matrix_norm` when computing matrix norms.
        For a function with a similar behavior as this one see :func:`torch.linalg.norm`.
        Note, however, the signature for these functions is slightly different than the
        signature for ``torch.norm``.

    Args:
        input (Tensor): The input tensor. Its data type must be either a floating
            point or complex type. For complex inputs, the norm is calculated using the
            absolute value of each element. If the input is complex and neither
            :attr:`dtype` nor :attr:`out` is specified, the result's data type will
            be the corresponding floating point type (e.g. float if :attr:`input` is
            complexfloat).

        p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'``
            The following norms can be calculated:

            ======  ==============  ==========================
            ord     matrix norm     vector norm
            ======  ==============  ==========================
            'fro'   Frobenius norm  --
            'nuc'   nuclear norm    --
            Number  --              sum(abs(x)**ord)**(1./ord)
            ======  ==============  ==========================

            The vector norm can be calculated across any number of dimensions.
            The corresponding dimensions of :attr:`input` are flattened into
            one dimension, and the norm is calculated on the flattened
            dimension.

            Frobenius norm produces the same result as ``p=2`` in all cases
            except when :attr:`dim` is a list of three or more dims, in which
            case Frobenius norm throws an error.

            Nuclear norm can only be calculated across exactly two dimensions.

        dim (int, tuple of ints, list of ints, optional):
            Specifies which dimension or dimensions of :attr:`input` to
            calculate the norm across. If :attr:`dim` is ``None``, the norm will
            be calculated across all dimensions of :attr:`input`. If the norm
            type indicated by :attr:`p` does not support the specified number of
            dimensions, an error will occur.
        keepdim (bool, optional): whether the output tensors have :attr:`dim`
            retained or not. Ignored if :attr:`dim` = ``None`` and
            :attr:`out` = ``None``. Default: ``False``
        out (Tensor, optional): the output tensor. Ignored if
            :attr:`dim` = ``None`` and :attr:`out` = ``None``.
        dtype (:class:`torch.dtype`, optional): the desired data type of
            returned tensor. If specified, the input tensor is casted to
            :attr:`dtype` while performing the operation. Default: None.

    .. note::
        Even though ``p='fro'`` supports any number of dimensions, the true
        mathematical definition of Frobenius norm only applies to tensors with
        exactly two dimensions. :func:`torch.linalg.matrix_norm` with ``ord='fro'``
        aligns with the mathematical definition, since it can only be applied across
        exactly two dimensions.

    Example::

        >>> import torch
        >>> a = torch.arange(9, dtype= torch.float) - 4
        >>> b = a.reshape((3, 3))
        >>> torch.norm(a)
        tensor(7.7460)
        >>> torch.norm(b)
        tensor(7.7460)
        >>> torch.norm(a, float('inf'))
        tensor(4.)
        >>> torch.norm(b, float('inf'))
        tensor(4.)
        >>> c = torch.tensor([[ 1, 2, 3], [-1, 1, 4]] , dtype=torch.float)
        >>> torch.norm(c, dim=0)
        tensor([1.4142, 2.2361, 5.0000])
        >>> torch.norm(c, dim=1)
        tensor([3.7417, 4.2426])
        >>> torch.norm(c, p=1, dim=1)
        tensor([6., 6.])
        >>> d = torch.arange(8, dtype=torch.float).reshape(2, 2, 2)
        >>> torch.norm(d, dim=(1, 2))
        tensor([ 3.7417, 11.2250])
        >>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :])
        (tensor(3.7417), tensor(11.2250))
    """

    if has_torch_function_unary(input):
        return handle_torch_function(
            norm, (input,), input, p=p, dim=dim, keepdim=keepdim, out=out, dtype=dtype
        )

    # NB. All the repeated code and weird python is to please TorchScript.
    #     For a more compact implementation see the relevant function in `_refs/__init__.py`

    # We don't do this for MPS or sparse tensors
    if input.layout == torch.strided and input.device.type in (
        "cpu",
        "cuda",
        "meta",
        torch.utils.backend_registration._privateuse1_backend_name,
    ):
        if dim is not None:
            if isinstance(dim, (int, torch.SymInt)):
                _dim = [dim]
            else:
                _dim = dim
        else:
            _dim = None  # type: ignore[assignment]

        if isinstance(p, str):
            if p == "fro" and (
                dim is None or isinstance(dim, (int, torch.SymInt)) or len(dim) <= 2
            ):
                if out is None:
                    return torch.linalg.vector_norm(
                        input, 2, _dim, keepdim, dtype=dtype
                    )
                else:
                    return torch.linalg.vector_norm(
                        input, 2, _dim, keepdim, dtype=dtype, out=out
                    )

            # Here we either call the nuclear norm, or we call matrix_norm with some arguments
            # that will throw an error
            if _dim is None:
                _dim = list(range(input.ndim))
            if out is None:
                return torch.linalg.matrix_norm(input, p, _dim, keepdim, dtype=dtype)
            else:
                return torch.linalg.matrix_norm(
                    input, p, _dim, keepdim, dtype=dtype, out=out
                )
        else:
            # NB. p should be Union[str, number], not Optional!
            _p = 2.0 if p is None else p
            if out is None:
                return torch.linalg.vector_norm(input, _p, _dim, keepdim, dtype=dtype)
            else:
                return torch.linalg.vector_norm(
                    input, _p, _dim, keepdim, dtype=dtype, out=out
                )

    ndim = input.dim()

    # catch default case
    if dim is None and out is None and dtype is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
                return _VF.frobenius_norm(input, dim=(), keepdim=keepdim)
        if not isinstance(p, str):
            _dim = list(range(ndim))
            return _VF.norm(input, p, dim=_dim, keepdim=keepdim)  # type: ignore[attr-defined]

    # TODO: when https://github.com/pytorch/pytorch/issues/33782 is fixed
    # remove the overloads where dim is an int and replace with BraodcastingList1
    # and remove next four lines, replace _dim with dim
    if dim is not None:
        if isinstance(dim, (int, torch.SymInt)):
            _dim = [dim]
        else:
            _dim = dim
    else:
        _dim = None  # type: ignore[assignment]

    if isinstance(p, str):
        if p == "fro":
            if dtype is not None:
                raise ValueError("dtype argument is not supported in frobenius norm")

            if _dim is None:
                _dim = list(range(ndim))
            if out is None:
                return _VF.frobenius_norm(input, _dim, keepdim=keepdim)  # type: ignore[arg-type]
            else:
                return _VF.frobenius_norm(input, _dim, keepdim=keepdim, out=out)  # type: ignore[arg-type]
        elif p == "nuc":
            if dtype is not None:
                raise ValueError("dtype argument is not supported in nuclear norm")
            if _dim is None:
                if out is None:
                    return _VF.nuclear_norm(input, keepdim=keepdim)  # type: ignore[arg-type]
                else:
                    return _VF.nuclear_norm(input, keepdim=keepdim, out=out)  # type: ignore[arg-type]
            else:
                if out is None:
                    return _VF.nuclear_norm(input, _dim, keepdim=keepdim)  # type: ignore[arg-type]
                else:
                    return _VF.nuclear_norm(input, _dim, keepdim=keepdim, out=out)  # type: ignore[arg-type]
        raise RuntimeError(f"only valid string values are 'fro' and 'nuc', found {p}")
    else:
        if _dim is None:
            _dim = list(range(ndim))

        if out is None:
            if dtype is None:
                return _VF.norm(input, p, _dim, keepdim=keepdim)  # type: ignore[attr-defined]
            else:
                return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype)  # type: ignore[attr-defined]
        else:
            if dtype is None:
                return _VF.norm(input, p, _dim, keepdim=keepdim, out=out)  # type: ignore[attr-defined]
            else:
                return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype, out=out)  # type: ignore[attr-defined]


def unravel_index(
    indices: Tensor,
    shape: Union[int, Sequence[int], torch.Size],
) -> tuple[Tensor, ...]:
    r"""Converts a tensor of flat indices into a tuple of coordinate tensors that
    index into an arbitrary tensor of the specified shape.

    Args:
        indices (Tensor): An integer tensor containing indices into the
            flattened version of an arbitrary tensor of shape :attr:`shape`.
            All elements must be in the range ``[0, prod(shape) - 1]``.

        shape (int, sequence of ints, or torch.Size): The shape of the arbitrary
            tensor. All elements must be non-negative.

    Returns:
        tuple of Tensors: Each ``i``-th tensor in the output corresponds with
        dimension ``i`` of :attr:`shape`. Each tensor has the same shape as
        ``indices`` and contains one index into dimension ``i`` for each of the
        flat indices given by ``indices``.

    Example::

        >>> import torch
        >>> torch.unravel_index(torch.tensor(4), (3, 2))
        (tensor(2),
         tensor(0))

        >>> torch.unravel_index(torch.tensor([4, 1]), (3, 2))
        (tensor([2, 0]),
         tensor([0, 1]))

        >>> torch.unravel_index(torch.tensor([0, 1, 2, 3, 4, 5]), (3, 2))
        (tensor([0, 0, 1, 1, 2, 2]),
         tensor([0, 1, 0, 1, 0, 1]))

        >>> torch.unravel_index(torch.tensor([1234, 5678]), (10, 10, 10, 10))
        (tensor([1, 5]),
         tensor([2, 6]),
         tensor([3, 7]),
         tensor([4, 8]))

        >>> torch.unravel_index(torch.tensor([[1234], [5678]]), (10, 10, 10, 10))
        (tensor([[1], [5]]),
         tensor([[2], [6]]),
         tensor([[3], [7]]),
         tensor([[4], [8]]))

        >>> torch.unravel_index(torch.tensor([[1234], [5678]]), (100, 100))
        (tensor([[12], [56]]),
         tensor([[34], [78]]))
    """
    if has_torch_function_unary(indices):
        return handle_torch_function(unravel_index, (indices,), indices, shape=shape)
    res_tensor = _unravel_index(indices, shape)
    return res_tensor.unbind(-1)


def _unravel_index(indices: Tensor, shape: Union[int, Sequence[int]]) -> Tensor:
    torch._check_type(
        not indices.is_complex()
        and not indices.is_floating_point()
        and not indices.dtype == torch.bool,
        lambda: f"expected 'indices' to be integer dtype, but got {indices.dtype}",
    )

    torch._check_type(
        isinstance(shape, (int, torch.SymInt, Sequence)),
        lambda: f"expected 'shape' to be int or sequence of ints, but got {type(shape)}",
    )

    if isinstance(shape, (int, torch.SymInt)):
        shape = torch.Size([shape])
    else:
        for dim in shape:
            torch._check_type(
                isinstance(dim, (int, torch.SymInt)),
                lambda: f"expected 'shape' sequence to only contain ints, but got {type(dim)}",
            )
        shape = torch.Size(shape)

    torch._check_value(
        all(dim >= 0 for dim in shape),
        lambda: f"'shape' cannot have negative values, but got {tuple(shape)}",
    )

    coefs = list(
        reversed(
            list(
                itertools.accumulate(
                    reversed(shape[1:] + torch.Size([1])), func=operator.mul
                )
            )
        )
    )
    return indices.unsqueeze(-1).floor_divide(
        torch.tensor(coefs, device=indices.device, dtype=torch.int64)
    ) % torch.tensor(shape, device=indices.device, dtype=torch.int64)


def chain_matmul(*matrices, out=None):
    r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed
    using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms
    of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N`
    needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned.
    If :math:`N` is 1, then this is a no-op - the original matrix is returned as is.

    .. warning::

        :func:`torch.chain_matmul` is deprecated and will be removed in a future PyTorch release.
        Use :func:`torch.linalg.multi_dot` instead, which accepts a list of two or more tensors
        rather than multiple arguments.

    Args:
        matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined.
        out (Tensor, optional): the output tensor. Ignored if :attr:`out` = ``None``.

    Returns:
        Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product
        would be of dimensions :math:`p_{1} \times p_{N + 1}`.

    Example::

        >>> # xdoctest: +SKIP
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> a = torch.randn(3, 4)
        >>> b = torch.randn(4, 5)
        >>> c = torch.randn(5, 6)
        >>> d = torch.randn(6, 7)
        >>> # will raise a deprecation warning
        >>> torch.chain_matmul(a, b, c, d)
        tensor([[ -2.3375,  -3.9790,  -4.1119,  -6.6577,   9.5609, -11.5095,  -3.2614],
                [ 21.4038,   3.3378,  -8.4982,  -5.2457, -10.2561,  -2.4684,   2.7163],
                [ -0.9647,  -5.8917,  -2.3213,  -5.2284,  12.8615, -12.2816,  -2.5095]])

    .. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition
    """
    # This wrapper exists to support variadic args.
    if has_torch_function(matrices):
        return handle_torch_function(chain_matmul, matrices, *matrices)

    if out is None:
        return _VF.chain_matmul(matrices)  # type: ignore[attr-defined]
    else:
        return _VF.chain_matmul(matrices, out=out)  # type: ignore[attr-defined]


def _lu_impl(A, pivot=True, get_infos=False, out=None):
    # type: (Tensor, bool, bool, Any) -> tuple[Tensor, Tensor, Tensor]
    r"""Computes the LU factorization of a matrix or batches of matrices
    :attr:`A`. Returns a tuple containing the LU factorization and
    pivots of :attr:`A`.  Pivoting is done if :attr:`pivot` is set to
    ``True``.

    .. warning::

        :func:`torch.lu` is deprecated in favor of :func:`torch.linalg.lu_factor`
        and :func:`torch.linalg.lu_factor_ex`. :func:`torch.lu` will be removed in a
        future PyTorch release.
        ``LU, pivots, info = torch.lu(A, compute_pivots)`` should be replaced with

        .. code:: python

            LU, pivots = torch.linalg.lu_factor(A, compute_pivots)

        ``LU, pivots, info = torch.lu(A, compute_pivots, get_infos=True)`` should be replaced with

        .. code:: python

            LU, pivots, info = torch.linalg.lu_factor_ex(A, compute_pivots)

    .. note::
        * The returned permutation matrix for every matrix in the batch is
          represented by a 1-indexed vector of size ``min(A.shape[-2], A.shape[-1])``.
          ``pivots[i] == j`` represents that in the ``i``-th step of the algorithm,
          the ``i``-th row was permuted with the ``j-1``-th row.
        * LU factorization with :attr:`pivot` = ``False`` is not available
          for CPU, and attempting to do so will throw an error. However,
          LU factorization with :attr:`pivot` = ``False`` is available for
          CUDA.
        * This function does not check if the factorization was successful
          or not if :attr:`get_infos` is ``True`` since the status of the
          factorization is present in the third element of the return tuple.
        * In the case of batches of square matrices with size less or equal
          to 32 on a CUDA device, the LU factorization is repeated for
          singular matrices due to the bug in the MAGMA library
          (see magma issue 13).
        * ``L``, ``U``, and ``P`` can be derived using :func:`torch.lu_unpack`.

    .. warning::
        The gradients of this function will only be finite when :attr:`A` is full rank.
        This is because the LU decomposition is just differentiable at full rank matrices.
        Furthermore, if :attr:`A` is close to not being full rank,
        the gradient will be numerically unstable as it depends on the computation of :math:`L^{-1}` and :math:`U^{-1}`.

    Args:
        A (Tensor): the tensor to factor of size :math:`(*, m, n)`
        pivot (bool, optional): controls whether pivoting is done. Default: ``True``
        get_infos (bool, optional): if set to ``True``, returns an info IntTensor.
                                    Default: ``False``
        out (tuple, optional): optional output tuple. If :attr:`get_infos` is ``True``,
                               then the elements in the tuple are Tensor, IntTensor,
                               and IntTensor. If :attr:`get_infos` is ``False``, then the
                               elements in the tuple are Tensor, IntTensor. Default: ``None``

    Returns:
        (Tensor, IntTensor, IntTensor (optional)): A tuple of tensors containing

            - **factorization** (*Tensor*): the factorization of size :math:`(*, m, n)`

            - **pivots** (*IntTensor*): the pivots of size :math:`(*, \text{min}(m, n))`.
              ``pivots`` stores all the intermediate transpositions of rows.
              The final permutation ``perm`` could be reconstructed by
              applying ``swap(perm[i], perm[pivots[i] - 1])`` for ``i = 0, ..., pivots.size(-1) - 1``,
              where ``perm`` is initially the identity permutation of :math:`m` elements
              (essentially this is what :func:`torch.lu_unpack` is doing).

            - **infos** (*IntTensor*, *optional*): if :attr:`get_infos` is ``True``, this is a tensor of
              size :math:`(*)` where non-zero values indicate whether factorization for the matrix or
              each minibatch has succeeded or failed

    Example::

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> A = torch.randn(2, 3, 3)
        >>> A_LU, pivots = torch.lu(A)
        >>> A_LU
        tensor([[[ 1.3506,  2.5558, -0.0816],
                 [ 0.1684,  1.1551,  0.1940],
                 [ 0.1193,  0.6189, -0.5497]],

                [[ 0.4526,  1.2526, -0.3285],
                 [-0.7988,  0.7175, -0.9701],
                 [ 0.2634, -0.9255, -0.3459]]])
        >>> pivots
        tensor([[ 3,  3,  3],
                [ 3,  3,  3]], dtype=torch.int32)
        >>> A_LU, pivots, info = torch.lu(A, get_infos=True)
        >>> if info.nonzero().size(0) == 0:
        ...     print('LU factorization succeeded for all samples!')
        LU factorization succeeded for all samples!
    """
    # If get_infos is True, then we don't need to check for errors and vice versa
    return torch._lu_with_info(A, pivot=pivot, check_errors=(not get_infos))


if TYPE_CHECKING:
    _ListOrSeq = Sequence[Tensor]
else:
    _ListOrSeq = list[Tensor]


def _check_list_size(out_len: int, get_infos: bool, out: _ListOrSeq) -> None:
    get_infos_int = 1 if get_infos else 0
    if out_len - get_infos_int != 2:
        raise TypeError(
            f"expected tuple of {2 + int(get_infos)} elements but got {out_len}"
        )
    if not isinstance(out, (tuple, list)):
        raise TypeError(
            f"argument 'out' must be tuple of Tensors, not {type(out).__name__}"
        )


def _lu_with_infos(A, pivot=True, get_infos=False, out=None):
    # type: (Tensor, bool, bool, Optional[tuple[Tensor, Tensor, Tensor]]) -> tuple[Tensor, Tensor, Tensor]
    if has_torch_function_unary(A):
        return handle_torch_function(
            lu, (A,), A, pivot=pivot, get_infos=get_infos, out=out
        )
    result = _lu_impl(A, pivot, get_infos, out)
    if out is not None:
        _check_list_size(len(out), get_infos, out)
        for i in range(len(out)):
            out[i].resize_as_(result[i]).copy_(result[i])
        return out
    else:
        return result  # A_LU, pivots, infos


def _lu_no_infos(A, pivot=True, get_infos=False, out=None):
    # type: (Tensor, bool, bool, Optional[tuple[Tensor, Tensor]]) -> tuple[Tensor, Tensor]
    # need to check for torch_function here so that we exit if
    if has_torch_function_unary(A):
        return handle_torch_function(
            lu, (A,), A, pivot=pivot, get_infos=get_infos, out=out
        )
    result = _lu_impl(A, pivot, get_infos, out)
    if out is not None:
        _check_list_size(len(out), get_infos, out)
        for i in range(len(out)):
            out[i].resize_as_(result[i]).copy_(result[i])
        return out
    else:
        return result[0], result[1]  # A_LU, pivots


# The return type of lu depends on `get_infos`, so in order to resolve the output type
# of lu in TorchScript we need to statically know the value of `get_infos`
lu = boolean_dispatch(
    arg_name="get_infos",
    arg_index=2,
    default=False,
    if_true=_lu_with_infos,
    if_false=_lu_no_infos,
    module_name=__name__,
    func_name="lu",
)
lu.__doc__ = _lu_impl.__doc__


def align_tensors(*tensors):
    raise RuntimeError("`align_tensors` not yet implemented.")