File size: 66,412 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 |
# mypy: allow-untyped-defs
import abc
import copy
import logging
import operator
import re
from collections import defaultdict
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass
from enum import Enum
from typing import Any, Callable, cast, Optional, Union
import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch._library.fake_class_registry import FakeScriptObject
from torch.export._tree_utils import reorder_kwargs
from torch.export.exported_program import (
ConstantArgument,
ExportedProgram,
ExportGraphSignature,
InputKind,
ModuleCallSignature,
SymBoolArgument,
SymFloatArgument,
SymIntArgument,
TensorArgument,
)
from torch.fx._symbolic_trace import is_fx_tracing
from torch.fx.graph_module import _get_attr, _get_attr_via_attr_list, _print_readable
from torch.utils._pytree import GetAttrKey, SequenceKey
from ._remove_effect_tokens_pass import _remove_effect_tokens
log = logging.getLogger(__name__)
__all__ = [
"FlatArgsAdapter",
"InterpreterModule",
"InterpreterModuleDispatcher",
"UnflattenedModule",
"unflatten",
]
class _AttrKind(Enum):
PARAMETER = "parameter"
BUFFER = "buffer"
CONSTANT = "constant"
MODULE = "module"
RUN_WITH_INTERPRETER = True
@contextmanager
def _disable_interpreter():
global RUN_WITH_INTERPRETER
old_flag = RUN_WITH_INTERPRETER
RUN_WITH_INTERPRETER = False
try:
yield
finally:
RUN_WITH_INTERPRETER = old_flag
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
# This installs empty Modules where none exist yet if they are subpaths of target
def _assign_attr(
from_obj: Union[torch.Tensor, torch.ScriptObject, torch.nn.Module],
to_module: torch.nn.Module,
target: str,
attr_kind: _AttrKind,
persistent: bool = True,
):
*prefix, field = target.split(".")
# We need to generate all submodules of `to_module` that are at `prefix` and
# variants of `prefix` that differ only by call name. All of these submodules
# will then be assigned `from_obj` at `field` so that they can share this attribute.
# For example, if target is foo.bar.f, foo has another call name foo@1,
# and bar has other call names bar@1, bar@2, then we will assign f to
# foo.bar, foo.bar@1, foo.bar@2, foo@1.bar, foo@1.bar@1, foo@1.bar@2.
to_modules = {to_module}
for item in prefix:
ts: set[torch.nn.Module] = set()
for to_module in to_modules:
if not hasattr(to_module, item):
setattr(to_module, item, torch.nn.Module())
ts.update(
t_call # type: ignore[misc]
for k, t_call in to_module._modules.items()
if _is_call_name(k, item)
)
to_modules = ts
for to_module in to_modules:
if attr_kind == _AttrKind.PARAMETER:
assert isinstance(from_obj, torch.nn.Parameter)
to_module.register_parameter(field, from_obj)
elif attr_kind == _AttrKind.BUFFER:
assert isinstance(from_obj, torch.Tensor)
to_module.register_buffer(field, from_obj, persistent=persistent)
elif attr_kind == _AttrKind.CONSTANT:
assert not isinstance(
from_obj, FakeScriptObject
), "FakeScriptObject should only exist during tracing."
assert isinstance(
from_obj,
(
torch.Tensor,
torch.ScriptObject,
),
)
setattr(to_module, field, from_obj)
elif attr_kind == _AttrKind.MODULE:
assert isinstance(from_obj, torch.nn.Module)
setattr(to_module, field, from_obj)
class _SubmoduleBase:
_ty: Optional[str]
def type_name(self) -> Optional[str]:
return self._ty
class InterpreterModule(_SubmoduleBase, torch.nn.Module):
"""A module that uses torch.fx.Interpreter to execute instead of the usual
codegen that GraphModule uses. This provides better stack trace information
and makes it easier to debug execution.
"""
graph_module: Optional[torch.fx.GraphModule]
def __init__(
self,
graph: torch.fx.Graph,
ty: Optional[str] = None,
):
super().__init__()
self.graph = graph
self._ty = ty
self.graph.owning_module = self
self._run_with_interpreter = RUN_WITH_INTERPRETER
def forward(self, *args, **kwargs):
assert self.graph_module is not None, "Didn't finalize this InterpreterModule"
if not is_fx_tracing() and (
torch.compiler.is_dynamo_compiling() or not self._run_with_interpreter
):
# Dynamo cannot trace through torch.fx.Interpreter, so fall back to
# GraphModule codegen in this instance.
# Patch the codegened forward to run with this InterpreterModule,
# so attribute accesses, etc. are on this module instead.
return type(self.graph_module).forward(self, *args, **kwargs)
else:
if kwargs:
# Handle **kwargs. FX only natively supports positional
# arguments (through placeholders). So in order to pass in
# kwargs, we must correspond the names of the placeholders with
# the keys in the kwarg dict.
arg_list = list(args)
kwarg_names = self.arg_names[len(arg_list) :]
arg_list.extend(
kwargs[kwarg_name]
for kwarg_name in kwarg_names
if kwarg_name in kwargs
)
# Assert that the kwargs passed in exactly match the positional
# arguments specified by the GraphModule. This should be
# guaranteed by the unflattening process.
assert len(kwarg_names) == len(kwargs)
assert len(arg_list) == len(self.arg_names)
args = tuple(arg_list)
return torch.fx.Interpreter(self, graph=self.graph).run(
*args, enable_io_processing=False
)
def finalize(self):
# We need to "finalize" because GraphModule populates its own state_dict
# based on the get_attrs observed in the graph. So we need to fully
# construct the graph and call _sink_params before generating this
# GraphModule.
# need to set `graph_module` directly on the dict to avoid it getting
# registered as a submodule.
self.__dict__["graph_module"] = torch.fx.GraphModule(self, self.graph)
self.graph.lint()
# Cache arg names for kwarg handling (see forward())
self.arg_names = []
for node in self.graph.nodes:
if node.op == "placeholder":
self.arg_names.append(node.target)
def print_readable(
self,
print_output=True,
include_stride=False,
include_device=False,
colored=False,
):
return _print_readable(
self,
"InterpreterModule",
print_output,
include_stride,
include_device,
colored,
)
class InterpreterModuleDispatcher(_SubmoduleBase, torch.nn.Module):
"""
A module that carries a sequence of InterpreterModules corresponding to
a sequence of calls of that module. Each call to the module dispatches
to the next InterpreterModule, and wraps back around after the last.
"""
def __init__(self, attrs: set[str], call_modules: list[InterpreterModule]):
super().__init__()
assert call_modules
self._modules = call_modules[0]._modules
for accessor in attrs:
setattr(self, accessor, getattr(call_modules[0], accessor))
self._ty = call_modules[0]._ty
self._call_modules = call_modules
self._num_calls = 0
def forward(self, *args, **kwargs):
call_module = self._call_modules[self._num_calls]
self._num_calls = (self._num_calls + 1) % len(self._call_modules)
try:
return call_module(*args, **kwargs)
except Exception:
self._num_calls = 0
raise
def call_modules(self):
return self._call_modules
def print_readable(
self,
print_output=True,
include_stride=False,
include_device=False,
colored=False,
):
outputs = [
mod.print_readable(
print_output,
include_stride,
include_device,
colored,
)
for mod in self._call_modules
]
return "\n".join(outputs)
class FlatArgsAdapter(abc.ABC):
"""
Adapts input arguments with ``input_spec`` to align ``target_spec``.
"""
@abc.abstractmethod
def adapt(
self,
target_spec: pytree.TreeSpec,
input_spec: pytree.TreeSpec,
input_args: list[Any],
metadata: Optional[dict[str, Any]] = None,
) -> list[Any]:
"""NOTE: This adapter may mutate given ``input_args_with_path``."""
...
class UnflattenedModule(torch.nn.Module):
def __init__(
self,
export_module: ExportedProgram,
flat_args_adapter: Optional[FlatArgsAdapter] = None,
):
super().__init__()
if export_module.graph_signature.backward_signature is not None:
raise ValueError("Unflattening on JointExportModule NYI")
fqn_list = [entry.fqn for entry in export_module.module_call_graph]
assert fqn_list[0] == ""
export_graph = deepcopy(export_module.graph)
self.graph_signature = deepcopy(export_module.graph_signature)
self.graph = torch.fx.Graph()
self.graph.owning_module = self
self.module_call_graph = deepcopy(export_module.module_call_graph)
self.flat_args_adapter = flat_args_adapter
self.meta = export_module.graph_module.meta
self.meta["unflattened_module"] = self
# Flag to indicate whether args have been adapted.
self.adapted = False
self._run_with_interpreter = RUN_WITH_INTERPRETER
_inplace_buffer_mutations(export_graph, self.graph_signature)
self.ivals = _IVals()
# record any intermediate value x that is used, with the modules that used it,
# and generate instructions to read the corresponding attribute
seen_modules, seen_attrs = _outline_submodules(export_graph, self)
# for each read intermediate value x, find the module that created it,
# and generate instructions to update the corresponding attribute;
# finally, initialize all these attributes
self.ivals.create(seen_modules.values(), self)
# move attributes that correspond to graph arguments for HOPs
# from exported program to unflattened submodules
_copy_graph_attrs(export_module._graph_module, self, seen_attrs)
self.range_constraints = export_module.range_constraints
self.equality_constraints: list = []
# aliasing/unused param or buffer issues:
# in strict-mode export, dynamo export will deduplicate aliased tensors,
# and ignore unused tensors. For aliasing, this causes issues when some aliases
# are unused, and we're unable to match the placeholder node to the correct FQN.
# This leads to the graph signature potentially having the wrong target FQN,
# and downstream issues where parameters are assigned to the wrong target attribute,
# mismatching the relevant placeholder node in the unflattened module.
# To resolve this we restore (_assign_attr) all aliased/unused tensors in
# the state_dict as module attributes, but only keep the used tensors in the
# graph's forward pass (_sink_params).
state_dict = export_module.state_dict
assigned_params: set[str] = set() # tracking unused params
id_to_param: dict[int, torch.nn.Parameter] = {} # handling weight-sharing
for name in self.graph_signature.parameters: # this loop adds used params
param = state_dict[name]
if id(param) not in id_to_param:
id_to_param[id(param)] = torch.nn.Parameter(
param.clone(), requires_grad=param.requires_grad
)
_assign_attr(
id_to_param[id(param)],
self,
name,
attr_kind=_AttrKind.PARAMETER,
)
assigned_params.add(name)
non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
assigned_buffers: set[str] = set() # tracking unused buffers
id_to_buffer: dict[int, tuple[torch.nn.Parameter, bool]] = {}
for name in self.graph_signature.buffers: # this loop adds used buffers
if name in non_persistent_buffers:
persistent = False
buffer = export_module.constants[name]
else:
persistent = True
buffer = state_dict[name]
if id(buffer) not in id_to_buffer:
id_to_buffer[id(buffer)] = (buffer.clone(), persistent)
_assign_attr(
id_to_buffer[id(buffer)][0],
self,
name,
attr_kind=_AttrKind.BUFFER,
persistent=persistent,
)
assigned_buffers.add(name)
# restore aliased/unused params and buffers
# these appear in state dict but not graph signature
for name, tensor in state_dict.items():
if name in assigned_params or name in assigned_buffers: # already assigned
continue
is_buffer = False
if id(tensor) in id_to_buffer or not isinstance(
tensor, torch.nn.Parameter
): # aliased buffer
is_buffer = True
if is_buffer:
if (
id(tensor) not in id_to_buffer
): # this is completely unused (not weight-sharing)
id_to_buffer[id(tensor)] = (
tensor,
True,
) # assign to respect original model
_assign_attr(
id_to_buffer[id(tensor)][0],
self,
name,
attr_kind=_AttrKind.BUFFER,
persistent=True,
)
else:
if id(tensor) not in id_to_param: # this is unused
id_to_param[id(tensor)] = tensor
_assign_attr(
id_to_param[id(tensor)],
self,
name,
attr_kind=_AttrKind.PARAMETER,
)
# use id map so we don't double-clone aliased constants
id_to_const: dict[int, Union[torch.Tensor, torch._C.ScriptObject]] = {}
for fqn, constant in export_module.constants.items():
if id(constant) not in id_to_const:
if isinstance(constant, torch.Tensor):
constant = constant.clone()
id_to_const[id(constant)] = constant
_constant = id_to_const[id(constant)]
_assign_attr(
_constant,
self,
fqn,
attr_kind=_AttrKind.CONSTANT,
)
# This is to handle parameters/buffers that point to the same tensor
# object id -> list of (node_name, target_name)
consts_map: dict[int, list[tuple[str, str]]] = defaultdict(list)
consts_targets: set[str] = set()
def add_to_consts_map(obj_id, node_name, target_name):
name_list = consts_map[obj_id]
name_list.append((node_name, target_name))
added_params_buffers: set[str] = set() # track aliased/unused params, buffers
for s in self.graph_signature.input_specs:
if s.kind == InputKind.PARAMETER or (
s.kind == InputKind.BUFFER and s.persistent
):
assert hasattr(s.arg, "name")
assert isinstance(s.target, str)
add_to_consts_map(
id(export_module.state_dict[s.target]), s.arg.name, s.target
)
consts_targets.add(s.target)
added_params_buffers.add(s.target)
elif (
(s.kind == InputKind.BUFFER and not s.persistent)
or s.kind == InputKind.CONSTANT_TENSOR
or s.kind == InputKind.CUSTOM_OBJ
):
assert hasattr(s.arg, "name")
assert isinstance(s.target, str)
add_to_consts_map(
id(export_module.constants[s.target]), s.arg.name, s.target
)
consts_targets.add(s.target)
# add constants that are aliased and don't appear in graph signature
for const_name, const in export_module.constants.items():
if const_name not in consts_targets:
assert (
id(const) in consts_map
), "Constants should be either aliased or appear in graph signature"
ph_name, _ = consts_map[id(const)][0]
add_to_consts_map(id(const), ph_name, const_name)
added_params_buffers.add(s.target)
# add aliased/unused params and buffers that don't appear in graph signature
for fqn, tensor in export_module.state_dict.items():
if fqn not in added_params_buffers:
if id(tensor) not in consts_map:
# completely unused (no weight-sharing), ignore.
# this weight doesn't appear in graph module,
# so won't cause FQN assignment issues
continue
ph_name, _ = consts_map[id(tensor)][0]
add_to_consts_map(id(tensor), ph_name, fqn)
# node name -> list of possible targets
inputs_to_state: dict[str, list[str]] = {}
for node_target in consts_map.values():
targets = [t[1] for t in node_target]
for n, _ in node_target:
inputs_to_state[n] = targets
_sink_params(self, inputs_to_state, [])
redirected_call_indices = _deduplicate_modules(seen_modules.values())
fqn_list = [fqn for fqn in fqn_list if fqn not in redirected_call_indices]
self._dispatch_modules(redirected_call_indices, consts_targets)
fqn_list = [fqn for fqn in fqn_list if "@" not in fqn]
# Cache so we don't have to compute this every time.
# NOTE: this needs to be kept in sync with the placeholders in
# self.graph, but currently we have no way to guarantee that.
self.input_placeholders = [
node for node in self.graph.nodes if node.op == "placeholder"
]
self.check_input_constraints = True
# TODO(zhxchen17) We can register modules ahead of time instead of reorder later.
fqn_order = {fqn: i for i, fqn in enumerate(fqn_list)}
# In the case of legacy IR, we might be missing some modules from metadata.
for name, _ in self.named_modules(remove_duplicate=False):
if name not in fqn_order:
fqn_order[name] = len(fqn_order)
_reorder_submodules(self, fqn_order)
self.graph.lint()
def _print_graph(self):
for fqn, mod in self.named_modules():
print(fqn + ":")
if hasattr(mod, "graph") and isinstance(mod.graph, torch.fx.Graph):
print(mod.graph)
def _adapt_flat_args(self, flat_args, in_spec):
signature = self.module_call_graph[0].signature
if in_spec == signature.in_spec:
return flat_args
if self.flat_args_adapter is None:
raise TypeError(
"There is no flat args adapter sepcified. "
"Are you sure you are calling this with the right arguments? "
)
else:
flat_args = self.flat_args_adapter.adapt(
target_spec=signature.in_spec,
input_spec=in_spec,
input_args=flat_args,
metadata=self.meta,
)
if len(flat_args) != signature.in_spec.num_leaves:
raise TypeError(
f"Flat args adaption failed, number of args mismatch "
f"Adatped: {len(flat_args)} \n"
f"Exported module: {signature.in_spec.num_leaves}"
)
return flat_args
def process_forward_inputs(self, *args, **kwargs):
signature = self.module_call_graph[0].signature
reordered_kwargs = reorder_kwargs(kwargs, signature.in_spec)
flat_args_with_path, in_spec = pytree.tree_flatten_with_path(
(args, reordered_kwargs)
)
flat_args = [x[1] for x in flat_args_with_path]
if is_fx_tracing():
return flat_args
if in_spec != signature.in_spec:
if not self.adapted:
print(
"Input treespec does not match with exported module's: \n"
f"Input treespec: {in_spec}. ",
f"Exported module treespec: {signature.in_spec}",
)
print("Adapting flat arg to match exported module's treespec")
flat_args = self._adapt_flat_args(flat_args, in_spec)
self.adapted = True
if self.check_input_constraints:
# Import here to avoid an unfortunate circular dependency.
# TODO(suo): untangle this.
from torch._export.utils import _check_input_constraints_for_graph
if self.adapted is True:
# TODO(suo): The FlatArgsAdapter returns a list of flat args,
# which we don't have keypaths for. For now, just create a dummy
# keypath to associate with the arg.
new_flat_args_with_path = [ # type: ignore[var-annotated]
((SequenceKey(idx=0), GetAttrKey(name="<unknown location>")), arg)
for arg in flat_args
]
else:
new_flat_args_with_path = flat_args_with_path # type: ignore[assignment]
_check_input_constraints_for_graph(
self.input_placeholders, new_flat_args_with_path, self.range_constraints
)
return flat_args
def forward(self, *args, **kwargs):
flat_args = torch._dynamo.disable(self.process_forward_inputs)(*args, **kwargs)
signature = self.module_call_graph[0].signature
if is_fx_tracing():
return_val = torch.fx.Interpreter(self, graph=self.graph).run(
*flat_args, enable_io_processing=False
)
# For scalar return value, fx.Graph wraps in a tuple
if isinstance(return_val, tuple) and len(return_val) == 1:
return return_val[0]
return return_val
if torch.compiler.is_dynamo_compiling() and not self._run_with_interpreter:
tree_out = torch.fx.GraphModule(self, self.graph)(*flat_args)
else:
tree_out = torch.fx.Interpreter(self, graph=self.graph).run(
*flat_args, enable_io_processing=False
)
return pytree.tree_unflatten(tree_out, signature.out_spec)
def _dispatch_modules(self, redirected_call_indices, consts_targets):
"""For a module whose call signatures are preserved, replace
multiple modules corresponding to multiple calls to that module
with a single dispatcher module that tracks which module to call.
"""
# for each fqn whose module call signature is preserved,
# map that fqn to a list of called modules
called_modules = defaultdict(list)
for entry in self.module_call_graph:
if entry.fqn and entry.signature:
# some modules were removed and their fqns redirected to other
# fqns during deduplication
fqn = entry.fqn
mod = _get_attr(self, redirected_call_indices.get(fqn, fqn))
base, idx = fqn.split("@") if "@" in fqn else [fqn, "0"]
called_modules[base].append((int(idx), mod))
attrs_map = defaultdict(set)
for target in consts_targets:
if "." in target:
orig_fqn, name = target.rsplit(".", 1)
attrs_map[orig_fqn].add(name)
else:
attrs_map[""].add(target)
# replace multiple call modules with a single dispatcher module
for orig_fqn, indexed_call_modules in called_modules.items():
call_modules = [mod for _, mod in sorted(indexed_call_modules)]
if len(call_modules) > 1:
for i in range(len(call_modules)):
fqn = _call_name(orig_fqn, i + 1)
if fqn not in redirected_call_indices:
*prefix, name = fqn.split(".")
_get_attr_via_attr_list(self, prefix)._modules.pop(name)
self.set_submodule(
orig_fqn,
InterpreterModuleDispatcher(attrs_map[orig_fqn], call_modules),
)
# elide call indices in call modules because they are
# tracked automatically inside the dispatcher module
def elide_call_indices(prefix, graph):
for node in graph.nodes:
if node.op == "call_module":
fqn = node.target.split("@")[0]
path = f"{prefix}.{fqn}" if prefix else fqn
if path in called_modules:
node.target = fqn
for fqn, mod in self.named_modules(remove_duplicate=False):
if hasattr(mod, "graph"):
elide_call_indices(fqn, mod.graph)
elif hasattr(mod, "_call_modules"):
for mod_ in mod._call_modules:
assert hasattr(mod_, "graph")
elide_call_indices(fqn, mod_.graph)
def print_readable(
self,
print_output=True,
include_stride=False,
include_device=False,
colored=False,
):
return _print_readable(
self,
"UnflattenedModule",
print_output,
include_stride,
include_device,
colored,
)
def unflatten(
module: ExportedProgram, flat_args_adapter: Optional[FlatArgsAdapter] = None
) -> UnflattenedModule:
"""Unflatten an ExportedProgram, producing a module with the same module
hierarchy as the original eager module. This can be useful if you are trying
to use :mod:`torch.export` with another system that expects a module
hierachy instead of the flat graph that :mod:`torch.export` usually produces.
.. note:: The args/kwargs of unflattened modules will not necessarily match
the eager module, so doing a module swap (e.g. :code:`self.submod =
new_mod`) will not necessarily work. If you need to swap a module out, you
need to set the :code:`preserve_module_call_signature` parameter of
:func:`torch.export.export`.
Args:
module (ExportedProgram): The ExportedProgram to unflatten.
flat_args_adapter (Optional[FlatArgsAdapter]): Adapt flat args if input TreeSpec does not match with exported module's.
Returns:
An instance of :class:`UnflattenedModule`, which has the same module
hierarchy as the original eager module pre-export.
"""
module = _remove_effect_tokens(module)
return UnflattenedModule(module, flat_args_adapter)
def _inplace_buffer_mutations(
graph: torch.fx.Graph,
graph_signature: ExportGraphSignature,
) -> None:
"""Transform buffer mutations from their functionalized form into a copy_
node in the graph.
Functionalization represents buffer mutation by passing the buffer as an input and output. So for example, the eager code:
def forward(self, x):
self.buffer += x
return x * x
Will become a graph that looks like:
def forward(self, buffer, x):
mutated_buffer = aten.add(buffer, x)
mul = aten.mul(x, x)
return (mutated_buffer, mul)
We want to inplace this into something that looks like the original eager code:
def forward(self, buffer, x):
mutated_buffer = aten.add(buffer, x)
buffer.copy_(mutated_buffer)
mul = aten.mul(x, x)
return (mul,)
"""
output_node = next(iter(reversed(graph.nodes)))
assert output_node.op == "output" and len(output_node.args) == 1
return_args = output_node.args[0]
mutation_node_to_buffer = graph_signature.buffers_to_mutate
mutations = return_args[: len(mutation_node_to_buffer)]
buffers_to_inputs = {v: k for k, v in graph_signature.inputs_to_buffers.items()}
input_name_to_node = {
node.name: node for node in graph.nodes if node.op == "placeholder"
}
for mutation in mutations:
buffer_name = mutation_node_to_buffer[mutation.name]
input_name = buffers_to_inputs[buffer_name]
input_node = input_name_to_node[input_name]
with graph.inserting_after(mutation):
new_node = graph.create_node(
"call_function", torch.ops.aten.copy_, (input_node, mutation)
)
for k, v in mutation.meta.items():
new_node.meta[k] = v
# Replace all uses of the previously functional mutation with our copy_ output.
mutation.replace_all_uses_with(new_node, lambda x: x is not new_node)
# Remove the mutated buffer from the graph outputs, since we don't need to
# thread it through anymore. We don't need to handle the inputs, which will
# be handled by _sink_params.
user_outputs = tuple(
return_args[len(mutation_node_to_buffer) :],
)
output_node.args = ((user_outputs),)
def _is_prefix(candidate, target):
"""Check whether `candidate` is a prefix of `target`."""
return len(candidate) < len(target) and target[: len(candidate)] == candidate
def _compute_accessor(parent_fqn: str, child_fqn: str) -> str:
if parent_fqn == "":
# Handle the root module correctly.
return child_fqn
parent_split = parent_fqn.split(".")
child_split = child_fqn.split(".")
# TODO: support skip connection by inlining the child module.
if child_split[: len(parent_split)] != parent_split:
raise RuntimeError(
f"Child module '{child_fqn}' is not a descendant of parent module '{parent_fqn}'."
"This is currently unsupported."
"Please try to make child module attach to parent module directly."
)
return ".".join(child_split[len(parent_split) :])
def _check_graph_equivalence(x: torch.nn.Module, y: torch.nn.Module):
def graph_dump(graph: torch.fx.Graph) -> str:
ret = []
nodes_idx: dict[int, int] = {}
def arg_dump(arg) -> str:
if isinstance(arg, torch.fx.Node):
return "%" + str(nodes_idx[id(arg)])
return str(arg)
for i, node in enumerate(graph.nodes):
args_dump = [str(arg) for arg in pytree.tree_map(arg_dump, node.args)]
args_dump += [
f"{key}={value}"
for key, value in pytree.tree_map(arg_dump, node.kwargs).items()
]
target = node.target if node.op in ("call_function", "get_attr") else ""
ret.append(f"{i}: {node.op}[{target}]({', '.join(args_dump)})")
nodes_idx[id(node)] = i
return "\n".join(ret)
assert isinstance(x.graph, torch.fx.Graph)
assert isinstance(y.graph, torch.fx.Graph)
return graph_dump(x.graph) == graph_dump(y.graph)
def _add_spec(gm: torch.nn.Module, spec) -> str:
i = 0
while hasattr(gm, f"_spec_{i}"):
i += 1
name = f"_spec_{i}"
setattr(gm, name, spec)
return name
def _generate_flatten(gm: torch.fx.GraphModule, node) -> torch.fx.Node:
flatten = gm.graph.call_function(pytree.tree_flatten, (node,))
getitem_0 = gm.graph.call_function(operator.getitem, (flatten, 0))
return getitem_0
def _generate_flatten_spec(
gm: Union[torch.fx.GraphModule, InterpreterModule, UnflattenedModule], node, spec
) -> torch.fx.Node:
name = _add_spec(gm, spec)
spec_node = gm.graph.get_attr(name)
return gm.graph.call_function(fx_pytree.tree_flatten_spec, (node, spec_node))
def _generate_unflatten(
gm: Union[torch.fx.GraphModule, InterpreterModule, UnflattenedModule], nodes, spec
) -> torch.fx.Node:
name = _add_spec(gm, spec)
spec_node = gm.graph.get_attr(name)
return gm.graph.call_function(pytree.tree_unflatten, (nodes, spec_node))
def _get_submodule(mod: torch.nn.Module, target: str):
*prefix, field = target.split(".")
for item in prefix:
submod = getattr(mod, item, None)
if submod is None:
return None
if not isinstance(submod, torch.nn.Module):
return None
mod = submod
return getattr(mod, field, None)
def _add_submodule(
mod: torch.nn.Module,
target: str,
module_to_add: torch.nn.Module,
create_module: Optional[Callable[[str], torch.nn.Module]] = None,
):
*prefix, field = target.split(".")
for i, item in enumerate(prefix):
submod = getattr(mod, item, None)
if submod is None:
if create_module is not None:
submod = create_module(".".join(prefix[: i + 1]))
else:
submod = torch.nn.Module()
setattr(mod, item, submod)
if not isinstance(submod, torch.nn.Module):
return False
mod = submod
mod.add_module(field, module_to_add)
def _call_name(base: str, n: int) -> str:
# Given n >= 0, generate call names to a submodule `base` of the form
# `base`, `base@1`, `base@2`, etc.
return base if n == 1 else f"{base}@{n - 1}"
def _is_call_name(call_name: str, base: str) -> bool:
# Recognize when call_name = _call_name(base, n) for some n >= 0.
return re.match(re.escape(base) + r"(@\d+)?$", call_name) is not None
class _ModuleFrame:
def __init__(
self,
flat_graph: torch.fx.Graph,
nodes: tuple[torch.fx.Node, ...],
seen_nodes,
seen_modules,
seen_attrs,
created_modules,
parent,
module_stack: list[tuple[str, Optional[str], int]],
module_id,
module_call_graph: dict[str, ModuleCallSignature],
module: Optional[Union[torch.fx.GraphModule, UnflattenedModule]] = None,
):
self.flat_graph = flat_graph
self.nodes = nodes
self.seen_nodes = seen_nodes
self.seen_modules = seen_modules
self.seen_attrs = seen_attrs
self.created_modules = created_modules
self.parent = parent
self.module_stack = module_stack
self.module_id = module_id
self.module_call_graph = module_call_graph
self.verbose = False
self.fqn, ty, num_calls = self.module_stack[-1]
# generate call name for self.fqn
self.child_fqn = _call_name(self.fqn, num_calls + 1)
self.module: Union[torch.fx.GraphModule, UnflattenedModule, InterpreterModule]
if module is not None:
self.module = module
self.ivals = module.ivals if hasattr(module, "ivals") else {} # type: ignore[var-annotated]
else:
self.module = self.created_modules.get(
self.fqn,
InterpreterModule(torch.fx.Graph(), ty=ty),
)
self.ivals = parent.ivals
self.graph = self.module.graph
# Mapping of nodes in the flat graph to nodes in this graph.
self.node_map: dict[torch.fx.Node, torch.fx.Node] = {}
self.node_to_placeholder = {}
self.parent_call_module: Optional[torch.fx.Node] = None
if parent is not None:
accessor = _compute_accessor(parent.fqn, self.child_fqn)
def create_module(fqn):
path = f"{parent.fqn}.{fqn}" if parent.fqn else fqn
if path in self.created_modules:
return self.created_modules[path]
submod = InterpreterModule(torch.fx.Graph(), ty=ty)
self.created_modules[path] = submod
return submod
_add_submodule(parent.module, accessor, self.module, create_module)
self.parent_call_module = parent.graph.call_module(accessor)
if self.seen_modules[self.module_id]:
base_module_frame = self.seen_modules[self.module_id][0]
self.module._modules = base_module_frame.module._modules
self.seen_modules[self.module_id].append(
_SubmoduleEntry(
parent_fqn=self.parent.fqn,
parent_module=self.parent.module,
parent_call_module=self.parent_call_module,
fqn=self.fqn,
call_idx=num_calls + 1,
module=self.module,
)
)
signature = module_call_graph.get(self.child_fqn)
if signature is not None and self.parent is not None:
assert signature.in_spec.num_children == 2
args_spec = signature.in_spec.children_specs[0]
kwargs_spec = signature.in_spec.children_specs[1]
assert args_spec.context is None
assert kwargs_spec.context is not None
with self.graph.inserting_after(None):
arg_nodes = [
self.graph.placeholder(f"_positional_arg_{idx}")
for idx in range(args_spec.num_children)
]
kwarg_nodes = {}
for name in kwargs_spec.context:
kwarg_nodes[name] = self.graph.placeholder(name)
flat_args = _generate_flatten_spec(
self.module,
(tuple(arg_nodes), kwarg_nodes),
signature.in_spec,
)
for idx, arg in enumerate(signature.inputs):
flat_arg_node = self.graph.create_node(
op="call_function",
target=operator.getitem,
args=(flat_args, idx),
name=(
arg.name
if not isinstance(arg, ConstantArgument)
else f"_constant_{idx}"
),
)
if isinstance(arg, ConstantArgument):
continue
if arg.name in self.seen_nodes:
flat_arg_node.meta = copy.copy(self.seen_nodes[arg.name].meta)
self.node_to_placeholder[
self.seen_nodes[arg.name]
] = flat_arg_node
with self.parent.graph.inserting_before(self.parent_call_module):
input_nodes: list[Optional[torch.fx.Node]] = []
for input in signature.inputs:
if isinstance(input, ConstantArgument):
input_nodes.append(input.value) # type: ignore[arg-type]
elif input.name not in self.seen_nodes:
input_nodes.append(None)
else:
assert isinstance(
input,
(
TensorArgument,
SymIntArgument,
SymBoolArgument,
SymFloatArgument,
),
)
input_nodes.append(
self.parent.remap_input(self.seen_nodes[input.name])
)
inputs_node = _generate_unflatten(
self.parent.module,
input_nodes,
signature.in_spec,
)
args_node = self.parent.graph.call_function(
operator.getitem, (inputs_node, 0)
)
kwargs_node = self.parent.graph.call_function(
operator.getitem, (inputs_node, 1)
)
arg_nodes = [
self.parent.graph.call_function(operator.getitem, (args_node, i))
for i in range(args_spec.num_children)
]
kwarg_nodes = {
k: self.parent.graph.call_function(
operator.getitem, (kwargs_node, k)
)
for k in kwargs_spec.context
}
assert self.parent_call_module is not None
self.parent_call_module.args = tuple(arg_nodes)
self.parent_call_module.kwargs = kwarg_nodes # type: ignore[assignment]
def add_placeholder(self, x):
assert self.fqn != "", f"Cannot add placeholder {x} to root module"
assert x.graph is self.flat_graph
# x is not in subgraph, create a new placeholder for subgraph
with self.graph.inserting_before(None):
placeholder_node = self.graph.placeholder(x.name, type_expr=x.type)
# copy all meta fields, even if some fields might be irrelevant for
# the placeholder node
placeholder_node.meta = copy.copy(x.meta)
self.node_to_placeholder[x] = placeholder_node
def copy_sym_call_function(self, x):
# This only exists because we deduplicate sym_size nodes in the flat export graph,
# and if preserve_module_call_signature is set, we may not be able to pass sym_size
# nodes, or their downstream users, as inputs to submodule calls.
# To avoid this we copy these call_function nodes with sym_type results.
# This should however only be done for sym_type nodes - call_function nodes on tensors
# should not be deduplicated in the first place.
args = pytree.tree_map_only(torch.fx.Node, self.remap_input, x.args)
kwargs = pytree.tree_map_only(torch.fx.Node, self.remap_input, x.kwargs)
node = self.graph.call_function(x.target, args, kwargs)
node.meta = copy.copy(x.meta)
self.node_map[x] = node
return node
def remap_input(self, x):
assert x.graph is self.flat_graph
if x in self.node_map:
return self.node_map[x]
self.print(f"remap_input({x})")
if x in self.node_to_placeholder:
return self.node_to_placeholder[x]
elif (
x.op == "placeholder"
or self.module_call_graph.get(self.fqn) is None
# allow placeholder creation if we are not preserving module call signature
):
self.add_placeholder(x)
if self.parent_call_module is not None:
# Important to *prepend* the output to match how we are
# inserting placeholder nodes.
with self.parent.graph.inserting_before(self.parent_call_module):
self.parent_call_module.insert_arg(0, self.parent.remap_input(x))
return self.node_to_placeholder[x]
elif x.op == "call_function" and (
x.target
in (
torch.ops.aten.sym_size.int,
torch.ops.aten.item.default,
torch.ops.aten.unbind.int,
torch.ops.aten.sum.dim_IntList,
torch.ops.aten.view.default,
torch.ops.aten.diff.default,
)
or (hasattr(x.target, "__module__") and x.target.__module__ == "_operator")
):
# export deduplicates sym_size nodes, and may need to re-copy them
# if module call signature needs to be preserved
self.copy_sym_call_function(x)
return self.node_map[x]
elif self.module_call_graph.get(self.fqn) is not None:
# x is an ival that is not in placeholders, so create a
# get_attr node corresponding to attribute __ival__x
return self.ivals.read(self.fqn, self.graph, x) # type: ignore[operator, union-attr]
else:
raise RuntimeError(
f"Could not run remap_input() on op type: {x.op} for node {x}"
)
def finalize_outputs(self):
self.created_modules.pop(self.fqn, None)
orig_outputs = []
signature = self.module_call_graph.get(self.child_fqn)
if signature is not None and self.parent is not None:
for output in signature.outputs:
if isinstance(
output,
(TensorArgument, SymIntArgument, SymBoolArgument, SymFloatArgument),
):
if output.name in self.seen_nodes:
orig_outputs.append(self.seen_nodes[output.name])
else:
orig_outputs.append(None)
else:
raise RuntimeError(
f"Unsupported data type for output node: {output}"
)
def get_actual_output_node(output):
if output is None:
return None
seen_node = self.seen_nodes[output.name]
if seen_node in self.node_map:
return self.node_map[seen_node]
elif seen_node in self.node_to_placeholder:
return self.node_to_placeholder[seen_node]
else:
raise RuntimeError(
f"Could not find output node {output}. Graph: {self.graph}"
)
tree_out_node = _generate_unflatten(
self.module,
tuple(get_actual_output_node(output) for output in orig_outputs),
signature.out_spec,
)
parent_out: Optional[torch.fx.Node] = _generate_flatten_spec(
self.parent.module, self.parent_call_module, signature.out_spec
)
graph_outputs: Union[torch.fx.Node, list[torch.fx.Node]] = tree_out_node
else:
graph_outputs = []
# Iterate through nodes we have copied into self.graph.
for orig_node in self.node_map.keys():
for user_node in orig_node.users:
if user_node.name not in self.seen_nodes:
# external user node, need to expose as an output
orig_outputs.append(orig_node)
graph_outputs.append(self.node_map[orig_node])
break
parent_out = self.parent_call_module
if len(graph_outputs) == 1:
graph_outputs = graph_outputs[0]
assert isinstance(graph_outputs, (list, torch.fx.Node))
self.graph.output(graph_outputs)
# Rewrite outputs in parent module
if parent_out is None:
return
parent_out.meta["val"] = (
graph_outputs.meta.get("val")
if isinstance(graph_outputs, torch.fx.Node)
else [o.meta.get("val") for o in graph_outputs]
)
if len(orig_outputs) == 1 and signature is None:
self.parent.node_map[orig_outputs[0]] = parent_out
else:
for i, orig_output in enumerate(orig_outputs):
if orig_output is None:
continue
# Use Proxy to record getitem access.
proxy_out = torch.fx.Proxy(parent_out)[i].node # type: ignore[index]
proxy_out.meta["val"] = orig_output.meta.get("val")
self.parent.node_map[orig_output] = proxy_out
def copy_node(self, node):
self.print("copying", node.format_node())
self.node_map[node] = self.graph.node_copy(node, self.remap_input)
self.seen_nodes[node.name] = node
def run_outer(self):
for i, node in enumerate(self.flat_graph.nodes):
self.print(i, node.meta.get("nn_module_stack"), node.format_node())
# Copy all graph inputs
node_idx: int = 0
node = self.nodes[node_idx]
while node.op == "placeholder":
self.copy_node(node)
node_idx += 1
node = self.nodes[node_idx]
self.run_from(node_idx)
# Copy graph outputs
for node in self.flat_graph.nodes:
if node.op == "output":
self.copy_node(node)
def print(self, *args, **kwargs):
if self.verbose:
print(*args, **kwargs)
def run_from(self, node_idx):
module_idx = 0
# Walk through the graph, building up a new graph with the right submodules
while node_idx < len(self.nodes):
node = self.nodes[node_idx]
assert node.op != "placeholder"
self.print()
self.print("STEP", node_idx, node.format_node())
self.print(self.module_stack)
depth = len(self.module_stack)
if node.op == "output":
if depth == 1:
# We want the output node of the original graph to be handled
# specially by the outermost stack frame (in run_outer). So
# skip finalization here.
return node_idx
# We've reached the end of the graph. Wrap up all the existing stack frames.
self.finalize_outputs()
return node_idx
if len(node.meta.get("nn_module_stack", {})) == 0:
raise RuntimeError(f"Unable to find nn_module_stack for node {node}")
nn_module_stack = node.meta["nn_module_stack"]
from torch._export.passes._node_metadata_hook import (
_EMPTY_NN_MODULE_STACK_KEY,
)
if (
len(nn_module_stack) == 1
and _EMPTY_NN_MODULE_STACK_KEY in nn_module_stack
):
# Empty case from the node_metadata_hook
node_module_stack = self.module_stack
else:
node_module_stack = [
(
path,
ty if path else None,
int(k.split("@")[-1]) if "@" in k else 0,
)
for k, (path, ty) in node.meta["nn_module_stack"].items()
]
if node_module_stack[:depth] != self.module_stack:
# This means that the current module is done executing and the
# current node is the beginning of a new module.
#
# In this case, we should finalize this module and return without
# incrementing the node counter.
self.finalize_outputs()
self.print("outlining", self.fqn)
self.print(self.graph)
return node_idx
assert node_module_stack is not None
if _is_prefix(self.module_stack, node_module_stack):
# This means that the current node represents the execution of a new
# module.
next_module = node_module_stack[depth]
self.print("Creating new stack frame for", next_module)
# Run a nested version of module outliner from the current node
# counter. Once it is complete, continue from that point.
next_module_key = list(node.meta["nn_module_stack"].keys())[depth]
node_idx = _ModuleFrame(
self.flat_graph,
self.nodes,
self.seen_nodes,
self.seen_modules,
self.seen_attrs,
self.created_modules,
self,
self.module_stack + [next_module],
next_module_key.split("@")[0],
self.module_call_graph,
).run_from(node_idx)
module_idx += 1
continue
# The only remaining possibility is that we are in the right stack
# frame. Copy the node into this frame's graph and increment the node counter.
assert node_module_stack == self.module_stack
if node.op == "get_attr":
# this must be a graph argument for a HOP
self.seen_attrs[self.child_fqn].add(node.target)
self.copy_node(node)
node_idx += 1
@dataclass
class _SubmoduleEntry:
parent_fqn: str
parent_module: torch.nn.Module
parent_call_module: torch.fx.Node
fqn: str
call_idx: int
module: torch.nn.Module
def _outline_submodules(orig_graph: torch.fx.Graph, root_module: UnflattenedModule):
seen_nodes: dict[str, torch.fx.Node] = {}
seen_modules: dict[int, list[_SubmoduleEntry]] = defaultdict(list)
seen_attrs: dict[str, set[str]] = defaultdict(set)
created_modules: dict[str, torch.nn.Module] = {}
_ModuleFrame(
orig_graph,
tuple(orig_graph.nodes),
seen_nodes,
seen_modules,
seen_attrs,
created_modules,
None,
[("", None, 0)],
"",
{
entry.fqn: entry.signature
for entry in root_module.module_call_graph
if entry.signature
},
module=root_module,
).run_outer()
return seen_modules, seen_attrs
def _reorder_submodules(
parent: torch.nn.Module, fqn_order: dict[str, int], prefix: str = ""
):
# TODO Can be optimized by adding submodules ahead of time.
if prefix == "":
for fqn in list(fqn_order.keys())[1:]:
if _get_submodule(parent, fqn) is None:
_add_submodule(parent, fqn, torch.nn.Module())
children = []
for name, child in list(parent._modules.items()):
if child is None:
continue
fqn = prefix + name
_reorder_submodules(child, fqn_order, prefix=fqn.split("@")[0] + ".")
delattr(parent, name)
children.append((fqn_order[fqn], name, child))
children.sort(key=operator.itemgetter(0))
for _, name, child in children:
parent.register_module(name, child)
class _IVals:
"""
Collect the intermediate values of buffer mutations in a graph,
along with the module call fqns that create and use them. Later,
in each fqn associated with an intermediate value we will install
a corresponding attribute, so that it can be updated and read.
Example: in the following graph, suppose that buf_in and buf_out
are the input and output values of a buffer.
buf_in = placeholder()
...
ival1 = f0(buf_in, ...) # inside self.n0(...)
...
ival2 = f1(ival1, ...) # inside self.n1(...)
...
buf_out = f2(ival2, ...) # inside self.n2(...)
return buf_out, ...
Here ival1 and ival2 are intermediate values created inside
calls to n0 and n1 respectively, and used inside calls to
n1 and n2 respectively.
Thus our analysis will produce {ival1: {n0, n1}, ival2: {n1, n2}}.
"""
def __init__(self):
# ival node name -> set of fqns that create and use it
self.fqns = defaultdict(set)
# ival node name -> tensor storage for corresponding attribute
self.storage = {}
def read(self, fqn, graph, node):
"""
Read attribute corresponding to a given intermediate value.
"""
# to read ival x, get attribute __ival__x
with graph.inserting_before(None):
ival_node = graph.get_attr("__ival__" + node.name, type_expr=node.type)
ival_node.meta = copy.copy(node.meta)
if node.name not in self.storage:
# create empty tensor matching fake, using a cache
# to ensure the same tensor is returned per ival_name
fake = node.meta["val"]
self.storage[node.name] = torch.empty(fake.shape, dtype=fake.dtype)
self.fqns[node.name].add(fqn)
return ival_node
def update(self, fqn, graph, node):
"""
Update attribute corresponding to a given intermediate value.
"""
self.fqns[node.name].add(fqn)
# to update ival x, get attribute __ival__x and copy x to __ival__x
with graph.inserting_after(node):
ival_node = graph.get_attr("__ival__" + node.name, type_expr=node.type)
ival_node.meta = copy.copy(node.meta)
with graph.inserting_after(ival_node):
new_ival_node = graph.create_node(
"call_function", torch.ops.aten.copy_, (ival_node, node)
)
new_ival_node.meta = copy.copy(node.meta)
def create(self, partitions, root_module):
"""
Update attributes corresponding to intermediate values that were read.
Finally, initialize attributes in all modules that read or update
corresponding intermediate values.
"""
entries = [("", root_module)]
for shared_submodules in partitions:
for entry in shared_submodules:
entries.append((entry.fqn, entry.module))
graph = entry.module.graph
for node in graph.nodes:
if node.name in self.storage:
self.update(entry.fqn, graph, node)
# fqn -> list of ival node names read or updated through it
ivals = defaultdict(list)
for name, fqns in self.fqns.items():
for fqn in fqns:
ivals[fqn].append(name)
for fqn, mod in entries:
for name in ivals[fqn]:
ival_name = f"__ival__{name}"
# for a ival named x created in module call m,
# create attribute m.__ival__x, initially empty
setattr(mod, ival_name, self.storage[name])
def _copy_graph_attrs(
gm: torch.fx.GraphModule,
root_module: UnflattenedModule,
seen_attrs: dict[str, set[str]],
):
for child_fqn, names in seen_attrs.items():
module = _get_attr(root_module, child_fqn) if child_fqn else root_module
for name in names:
val = getattr(gm, name)
setattr(module, name, val)
def _deduplicate_modules(partitions):
redirected_call_indices = {}
for shared_submodules in partitions:
for i, entry in enumerate(shared_submodules):
child_fqn = _call_name(entry.fqn, entry.call_idx)
target = _compute_accessor(entry.parent_fqn, child_fqn)
deduplicated = False
# Iterate over all previously seen modules, and deduplicate if possible
for seen in shared_submodules[:i]:
if _check_graph_equivalence(seen.module, entry.module):
parent = entry.parent_module
# Since graphs are equivalent, we can deduplicate.
# There are two cases.
if seen.fqn == entry.fqn:
# Case 1: The current module has the same fqn as the seen module.
# In this case we have generated a call name that can be optimized away.
# So we remove the current module from the hierarchy and replace
# the current call name with the seen call name in the parent graph.
*prefix, name = target.split(".")
_get_attr_via_attr_list(parent, prefix)._modules.pop(name)
seen_child_fqn = _call_name(seen.fqn, seen.call_idx)
seen_target = _compute_accessor(
entry.parent_fqn, seen_child_fqn
)
entry.parent_call_module.target = seen_target
redirected_call_indices[child_fqn] = seen_child_fqn
break
elif not deduplicated:
# Case 2: The current module has a different fqn than the seen module.
# In this case we replace the current module with the seen module.
# There should be nothing pointing to the current module any more,
# so it can be garbage collected.
# NOTE: We *do not* replace the current call name with the seen call name
# in the parent graph, because this will lose information on which fqn
# was actually called. However, it is possible that the current call name
# will be optimized away when we find another seen module with the same fqn,
# so we do not break out of the loop yet.
parent.set_submodule(target, seen.module)
deduplicated = True
return redirected_call_indices
def _sink_params(
module: torch.nn.Module,
inputs_to_state: dict[str, list[str]],
scope: list[str],
module_id_to_inputs_removed: Optional[dict[int, set[str]]] = None,
):
"""Sink params, buffers, and constants from graph inputs into get_attr nodes.
Exported modules are purely functional, so they pass their parameters and
buffers in as inputs to the graph.
To replicate eager's semantics, we need to get them from the module state
via get_attr instead.
module: GraphModule, potentially containing nested submodules.
inputs_to_state: mapping graph input names to the corresponding key in the state_dict.
scope: tracks where we are in the module hierarchy, so that we can emit the
right `getattr(self, "foo.bar")` calls, etc.
module_id_to_inputs_removed: records inputs removed by child modules, mapping
the module object id to the list of placeholder node names in the child module
that were removed.
"""
if module_id_to_inputs_removed is None:
module_id_to_inputs_removed = defaultdict(set)
if id(module) in module_id_to_inputs_removed:
return {id(module): module_id_to_inputs_removed[id(module)]}
# We need to use _modules here instead of named_children(), because we
# explicitly want duplicate modules to show up in the traversal.
for name, submodule in module._modules.items():
submod_id_to_inputs_removed = _sink_params(
cast(torch.nn.Module, submodule),
inputs_to_state,
scope + [name],
module_id_to_inputs_removed,
)
for k, v in submod_id_to_inputs_removed.items():
module_id_to_inputs_removed[k].update(v)
graph = getattr(module, "graph", None)
if graph is None or len(graph.nodes) == 0:
# Not all modules have graphs defined, if they are empty modules with no operations (like ParameterList)
return module_id_to_inputs_removed
assert isinstance(graph, torch.fx.Graph)
inputs = list(filter(lambda n: n.op == "placeholder", graph.nodes))
the_last_input = inputs[-1]
# Also remove from call_module nodes
call_module_nodes = filter(lambda n: n.op == "call_module", graph.nodes)
for node in call_module_nodes:
submodule = _get_attr(module, node.target)
# remove placeholder from call_module node arguments, only if we've
# erased the placeholder node in the corresponding _sink_params() call
if submodule is not None and id(submodule) in module_id_to_inputs_removed:
node.args = tuple(
filter(
lambda n: n.name not in module_id_to_inputs_removed[id(submodule)],
node.args,
)
)
# Filter out inputs_to_state corresponding to current scope.
inputs_to_state_of_scope: dict[torch.fx.Node, list[str]] = {}
for node in inputs:
if node.name not in inputs_to_state:
continue
state_name = None
for sn in inputs_to_state[node.name]:
sn_split = sn.split(".")
if sn_split[: len(scope)] == [x.split("@")[0] for x in scope]:
state_name = sn_split
break
# If there's a mismatch between scope name and state name, then
# there must be multiple scopes pointing to the same state name,
# meaning some modules are shared. In such case, we can simply skip
# updating the current node because another later iteration will
# take care of this input node when the unique match between scope
# and state name occurs. To make sure this always happen, we should
# enforce the invariant that no placeholder node in the unflattened
# graph appears in inputs_to_state dict, which means all the extra
# input nodes have been handled.
if state_name is None:
continue
inputs_to_state_of_scope[node] = state_name
# Record name of remove inputs for return purpose.
inputs_removed: set[str] = set()
for node, state_name in inputs_to_state_of_scope.items():
if len(node.users) > 0:
attr_path = state_name[len(scope) :]
state_attr = _get_attr_via_attr_list(module, attr_path)
assert isinstance(state_attr, (torch.Tensor, torch.ScriptObject))
# Make sure the newly created get_attr node is placed after the last placeholder node
with graph.inserting_after(the_last_input):
new_node = graph.create_node("get_attr", ".".join(attr_path))
node.replace_all_uses_with(new_node, propagate_meta=True)
graph.erase_node(node)
inputs_removed.add(node.name)
if isinstance(module, InterpreterModule):
module.finalize()
return {id(module): inputs_removed}
|