File size: 108,915 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 |
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import copy
import csv
import itertools
import logging
import re
from abc import ABC, abstractmethod
from collections import Counter, defaultdict
from enum import Enum
from typing import Any, Callable, NamedTuple, Optional, TYPE_CHECKING, Union
import torch
import torch.distributed as dist
from torch._dynamo import OptimizedModule
from torch.distributed.fsdp import FSDPModule, UnshardHandle
from torch.nn.modules.loss import _Loss
from torch.profiler import record_function
from ._utils import generate_stage_to_rank_mapping
from .microbatch import merge_chunks, split_args_kwargs_into_chunks, TensorChunkSpec
from .stage import _PipelineStageBase
if TYPE_CHECKING:
from torch.distributed import Work
__all__ = [
"get_schedule_class",
"PipelineScheduleSingle",
"PipelineScheduleMulti",
"Schedule1F1B",
"ScheduleGPipe",
"ScheduleInterleaved1F1B",
"ScheduleLoopedBFS",
"ScheduleInterleavedZeroBubble",
"ScheduleZBVZeroBubble",
]
logger = logging.getLogger(__name__)
class _ComputationType(Enum):
# TODO(whc) rename to _ActType?
FORWARD = 1
BACKWARD_INPUT = 2
BACKWARD_WEIGHT = 3
UNSHARD = 4
RESHARD = 5
SEND_F = 6
RECV_F = 7
SEND_B = 8
RECV_B = 9
FULL_BACKWARD = 10
def __str__(self):
str_map = {
_ComputationType.FORWARD: "F",
_ComputationType.BACKWARD_INPUT: "I",
_ComputationType.BACKWARD_WEIGHT: "W",
_ComputationType.UNSHARD: "UNSHARD",
_ComputationType.RESHARD: "RESHARD",
_ComputationType.SEND_F: "SEND_F",
_ComputationType.RECV_F: "RECV_F",
_ComputationType.SEND_B: "SEND_B",
_ComputationType.RECV_B: "RECV_B",
_ComputationType.FULL_BACKWARD: "B",
}
return str_map[self]
@staticmethod
def from_str(action):
if action == "F":
return _ComputationType.FORWARD
elif action == "I":
return _ComputationType.BACKWARD_INPUT
elif action == "W":
return _ComputationType.BACKWARD_WEIGHT
elif action == "UNSHARD":
return _ComputationType.UNSHARD
elif action == "RESHARD":
return _ComputationType.RESHARD
elif action == "SEND_F":
return _ComputationType.SEND_F
elif action == "RECV_F":
return _ComputationType.RECV_F
elif action == "SEND_B":
return _ComputationType.SEND_B
elif action == "RECV_B":
return _ComputationType.RECV_B
elif action == "B":
return _ComputationType.FULL_BACKWARD
else:
raise RuntimeError(f"Invalid computation type {action}")
FORWARD = _ComputationType.FORWARD
BACKWARD_INPUT = _ComputationType.BACKWARD_INPUT
BACKWARD_WEIGHT = _ComputationType.BACKWARD_WEIGHT
UNSHARD = _ComputationType.UNSHARD
RESHARD = _ComputationType.RESHARD
SEND_F = _ComputationType.SEND_F
RECV_F = _ComputationType.RECV_F
SEND_B = _ComputationType.SEND_B
RECV_B = _ComputationType.RECV_B
FULL_BACKWARD = _ComputationType.FULL_BACKWARD
# Convenience shorthand for compute actions only since they are used in 'simple schedule format'
F = FORWARD
I = BACKWARD_INPUT
W = BACKWARD_WEIGHT
B = FULL_BACKWARD
# Helper to parse an action string like 1F0 into a tuple of (stage_index, computation_type, microbatch_index)
_action_regex = re.compile(
r"(\d+)(F|I|B|W|UNSHARD|RESHARD|SEND_F|RECV_F|SEND_B|RECV_B)(\d*)"
)
class _Action(NamedTuple):
stage_index: int
computation_type: _ComputationType
microbatch_index: Optional[int] = None
def __repr__(self):
repr = str(self.stage_index)
repr += str(self.computation_type)
if self.microbatch_index is not None:
repr += str(self.microbatch_index)
return repr
@staticmethod
def from_str(action_string: str):
"""
Reverse of __repr__
String should be formatted as [stage][action type][(microbatch)]
e.g. `2F0`, `1UNSHARD`, `3SEND_F1`
"""
action_string = action_string.strip()
if match := _action_regex.match(action_string):
stage_index, computation_type, microbatch_index = match.groups()
return _Action(
int(stage_index),
_ComputationType.from_str(computation_type),
int(microbatch_index) if len(microbatch_index) else None,
)
elif action_string == "":
return None
raise RuntimeError(
f"Invalid action string: {action_string}, should be formatted as [stage][action type][(microbatch)] e.g. 2F0"
)
def _format_pipeline_order(
pipeline_order: dict[int, list[Optional[_Action]]],
error_step_number: Optional[int] = None,
) -> str:
"""
Formats the pipeline order in a timestep (row) x rank (column) grid of actions
and returns the formatted string.
If `error_step_number` is passed in, an additional label will be added to signify which step
that it is erroring on.
"""
# don't mutate the original
pipeline_order = copy.deepcopy(pipeline_order)
# Replace None with ""
for rank in pipeline_order:
for i in range(len(pipeline_order[rank])):
if pipeline_order[rank][i] is None:
# TODO make a real 'None action' that prints as empty string and make mypy happy
pipeline_order[rank][i] = "" # type: ignore[call-overload]
# Calculate the maximum number of steps across all ranks
num_steps = max(len(actions) for actions in pipeline_order.values())
step_labels = [
"Step " + str(i).zfill(len(str(num_steps - 1))) for i in range(num_steps)
]
# Sorting the dictionary by keys and retrieving values in that order
rank_actions = [
pipeline_order.get(key, [""] * num_steps) for key in sorted(pipeline_order)
]
# Transpose the list of lists (rows to columns)
transposed_actions = list(itertools.zip_longest(*rank_actions, fillvalue=""))
# Generate column labels for ranks
num_ranks = len(pipeline_order)
rank_labels = ["Rank " + str(i) for i in range(num_ranks)]
# Calculate the maximum length of each column, considering labels
max_lengths = [
max(len(str(item)) if item is not None else 0 for item in col)
for col in zip(step_labels, *transposed_actions)
]
# Format the header row with rank labels
header_row = " " * (len(step_labels[0]) + 2) + " ".join(
f"{label:<{max_lengths[i]}}" for i, label in enumerate(rank_labels)
)
# Format each row with its corresponding label
formatted_rows = [
f"{label}: "
+ " ".join(f"{str(item):<{max_lengths[i]}}" for i, item in enumerate(row))
+ (
" <-- ERROR HERE"
if error_step_number is not None
and int(label.split()[1]) == error_step_number
else ""
)
for label, row in zip(step_labels, transposed_actions)
]
# Join the rows into a single string
formatted_table = header_row + "\n" + "\n".join(formatted_rows) + "\n"
return formatted_table
class _PipelineSchedule(ABC):
def __init__(
self,
n_microbatches: int,
loss_fn: Optional[Callable[..., torch.Tensor]] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
# From arguments
self._n_microbatches = n_microbatches
self._loss_fn = loss_fn
# See documentation in `PipelineScheduleSingle` / `PipelineScheduleMulti`
self.scale_grads = scale_grads
# Chunking specification for positional inputs. (default: `None`)
self._args_chunk_spec = args_chunk_spec
# Chunking specification for keyword inputs. (default: `None`)
self._kwargs_chunk_spec = kwargs_chunk_spec
self._output_merge_spec = output_merge_spec
"""
# args_chunk_spec and kwargs_chunk_spec specify how to chunk inputs.
# They are used to convert batch to microbatches in `step(x)`. See
# `TensorChunkSpec` for helper methods for creating them.
"""
# Derived
self._has_backward = self._loss_fn is not None
# Holds the losses for each microbatch.
self._internal_losses: list[torch.Tensor] = []
logger.info("Using %s", self.__class__.__name__)
def _maybe_compute_loss(self, stage, output, target_mbs, mb_index):
if stage.is_last and self._has_backward:
loss = self._compute_loss(output, target_mbs[mb_index]) # type: ignore[index]
self._internal_losses.append(loss)
def _maybe_get_loss(self, stage, mb_index):
valid_index = 0 <= mb_index < len(self._internal_losses)
if stage.is_last and self._has_backward and valid_index:
return self._internal_losses[mb_index]
elif len(self._internal_losses) != 0 and not valid_index:
raise RuntimeError(
f"Loss for microbatch {mb_index} is not available. "
f"Available losses for microbatches: {self._internal_losses}"
)
else:
return None
def _update_losses(self, stages, losses):
"""
Update the losses to those in the internal state
"""
# if stages not a list turn into a list
if not isinstance(stages, list):
stages = [stages]
contains_last_stage = any(stage.is_last for stage in stages)
# Return losses if there is a container passed in
if contains_last_stage and losses is not None:
if len(self._internal_losses) != self._n_microbatches:
raise RuntimeError(
f"Expecting {self._n_microbatches} losses but got {len(self._internal_losses)}"
)
# Clean external container first
losses.clear()
# Copy internal losses to external container
losses.extend(self._internal_losses)
self._internal_losses.clear()
@abstractmethod
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Run one iteration of the pipeline schedule with list of microbatches.
Will go through all the microbatches according to the schedule
implementation.
Args:
microbatches: list of microbatch args.
"""
raise NotImplementedError
@abstractmethod
def step(self, *args, target=None, losses: Optional[list] = None, **kwargs):
"""
Run one iteration of the pipeline schedule with *whole-batch* input.
Will chunk the input into microbatches automatically, and go through the
microbatches according to the schedule implementation.
args: positional arguments to the model (as in non-pipeline case).
kwargs: keyword arguments to the model (as in non-pipeline case).
target: target for the loss function.
losses: a list to store the losses for each microbatch.
"""
raise NotImplementedError
def _check_inputs(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Pre-process/check inputs
"""
def check_type_and_len(mbs, name: str):
if not isinstance(mbs, list):
raise TypeError(f"{name} must be a list but got a {type(mbs)}")
if len(mbs) != self._n_microbatches:
raise ValueError(
f"Expecting {self._n_microbatches} {name} but got {len(mbs)}"
)
if arg_mbs is not None:
check_type_and_len(arg_mbs, "arg_mbs")
else:
arg_mbs = [()] * self._n_microbatches
if kwarg_mbs is not None:
check_type_and_len(kwarg_mbs, "kwarg_mbs")
else:
kwarg_mbs = [{}] * self._n_microbatches
if target_mbs is not None:
check_type_and_len(target_mbs, "target_mbs")
if losses is not None:
if not isinstance(losses, list):
raise TypeError(f"losses must be a list but got a {type(losses)}")
return arg_mbs, kwarg_mbs
def _compute_loss(self, output, target):
return self._loss_fn(output, target) # type: ignore[misc]
def _split_inputs(
self,
args: tuple[Any, ...],
kwargs: Optional[dict[str, Any]] = None,
):
"""
Splits a full-batch input into chunks (i.e. microbatches) and returns
the chunks
"""
if args or kwargs:
args_split, kwargs_split = split_args_kwargs_into_chunks(
args,
kwargs,
self._n_microbatches,
self._args_chunk_spec,
self._kwargs_chunk_spec,
)
return args_split, kwargs_split
else:
# Empty inputs (e.g. when called on middle stages)
# Return a list of empty tuples/dicts with matching length as chunks
return [()] * self._n_microbatches, [{}] * self._n_microbatches
def _merge_outputs(self, output_chunks: list[Any]) -> Any:
"""
Merge output chunks back to a batch state.
If output_merge_spec is None, the utility will merge output chunks by dimension 0 (batch dim).
"""
return merge_chunks(
output_chunks,
self._output_merge_spec,
)
def _batch_p2p(p2p_ops: list[dist.P2POp], desc: Optional[str] = None):
"""
Simple wrapper over batch_isend_irecv from torch.distributed, which just adds a descriptive logger on top.
"""
if len(p2p_ops) == 0:
return None
desc_str = f"{desc}, " if desc else ""
logger.debug("batch_p2p %s%s", desc_str, p2p_ops)
return dist.batch_isend_irecv(p2p_ops).pop()
def _sorted_batch_p2p(
p2p_ops: list[dist.P2POp], desc: Optional[str] = None
) -> dict[int, dist.Work]:
"""
Sorts the list of P2P ops by the peer rank, and then calls
batch_isend_irecv. Return a dictionary of works by peer rank. This function
helps us avoid hangs in case of skip connections.
"""
# Arrange p2p_ops by peer rank:
# int is the peer rank;
# List is the list of ops towards the peer
ops_by_peer: dict[int, list[dist.P2POp]] = defaultdict(list)
work_by_peer: dict[int, dist.Work] = {}
if len(p2p_ops) == 0:
return work_by_peer
# Classify the ops by peer rank
for op in p2p_ops:
ops_by_peer[op.peer].append(op)
# Call batch_isend_irecv per peer, in sorted order of the peers (to avoid hangs)
for peer, ops in sorted(ops_by_peer.items()):
work_by_peer[peer] = _batch_p2p(ops, desc=desc)
return work_by_peer
class PipelineScheduleSingle(_PipelineSchedule):
"""
Base class for single-stage schedules.
Implements the `step` method.
Derived classes should implement `_step_microbatches`.
Gradients are scaled by num_microbatches depending on the `scale_grads` argument, defaulting to True. This setting
should match the configuration of your loss_fn, which may either average losses (scale_grads=True)
or sum losses (scale_grads=False).
"""
def __init__(
self,
stage: _PipelineStageBase,
n_microbatches: int,
loss_fn: Optional[Callable] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
# Init parent
super().__init__(
n_microbatches=n_microbatches,
loss_fn=loss_fn,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
# Self attributes
self._stage = stage
self._num_stages = stage.num_stages
# Set the same has_backward flag for stage object
self._stage.has_backward = self._has_backward
self._stage_initialized = False
if n_microbatches < self._num_stages:
raise ValueError(
f"Number of microbatches ({n_microbatches}) must be greater than \
or equal to the number of stages ({self._num_stages})."
)
def _initialize_stage(self, args, kwargs):
self._stage._prepare_forward_infra(self._n_microbatches, args, kwargs)
if self._has_backward:
self._stage._prepare_backward_infra(self._n_microbatches)
self._stage_initialized = True
def step(self, *args, target=None, losses: Optional[list] = None, **kwargs):
"""
Run one iteration of the pipeline schedule with *whole-batch* input.
Will chunk the input into microbatches automatically, and go through the
microbatches according to the schedule implementation.
args: positional arguments to the model (as in non-pipeline case).
kwargs: keyword arguments to the model (as in non-pipeline case).
target: target for the loss function.
losses: a list to store the losses for each microbatch.
"""
# Clean per iteration
self._stage.clear_runtime_states()
# Split inputs into microbatches
args_split, kwargs_split = self._split_inputs(args, kwargs)
# Split target into microbatches
if target is not None:
targets_split = list(torch.tensor_split(target, self._n_microbatches))
else:
targets_split = None
# Run microbatches
self._step_microbatches(args_split, kwargs_split, targets_split, losses)
# Return merged results per original format
if self._stage.is_last:
return self._merge_outputs(self._stage.output_chunks)
else:
return None
class _ScheduleForwardOnly(PipelineScheduleSingle):
"""
The forward-only schedule.
Will go through all the microbatches and perform only the forward pass
"""
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Run one iteration of the pipeline schedule
"""
if target_mbs is not None or losses is not None:
raise RuntimeError(
"Forward-only schedule does not support loss computation"
)
arg_mbs, kwarg_mbs = self._check_inputs(arg_mbs, kwarg_mbs, target_mbs, losses)
if not self._stage_initialized:
self._initialize_stage(arg_mbs[0], kwarg_mbs[0])
# Delay send waits
fwd_sends_to_wait: list[dist.Work] = []
# Run microbatches
for i in range(self._n_microbatches):
with record_function(f"Forward {i}"):
ops = self._stage.get_fwd_recv_ops(i)
works = _sorted_batch_p2p(ops, desc="fwd_recv")
for work in works.values():
work.wait()
self._stage.forward_one_chunk(i, arg_mbs[i], kwarg_mbs[i]) # type: ignore[index]
ops = self._stage.get_fwd_send_ops(i)
works = _sorted_batch_p2p(ops, desc="fwd_send")
fwd_sends_to_wait.extend(works.values())
logger.debug("[%s] Forwarded microbatch %s", self._stage.stage_index, i)
# Wait for all forward sends to finish
# This should not have performance impact because by the time the first
# backward arrives all the forward sends should have been finished.
for work in fwd_sends_to_wait:
work.wait()
class ScheduleGPipe(PipelineScheduleSingle):
"""
The GPipe schedule.
Will go through all the microbatches in a fill-drain manner.
"""
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Run one iteration of the pipeline schedule with list of microbatches.
Will go through all the microbatches according to the GPipe schedule.
Args:
microbatches: list of microbatch args.
"""
arg_mbs, kwarg_mbs = self._check_inputs(arg_mbs, kwarg_mbs, target_mbs, losses)
if not self._stage_initialized:
self._initialize_stage(arg_mbs[0], kwarg_mbs[0])
# Delay send waits
fwd_sends_to_wait: list[dist.Work] = []
# Run microbatches
for i in range(self._n_microbatches):
with record_function(f"Forward {i}"):
ops = self._stage.get_fwd_recv_ops(i)
works = _sorted_batch_p2p(ops, desc="fwd_recv")
for work in works.values():
work.wait()
output = self._stage.forward_one_chunk(i, arg_mbs[i], kwarg_mbs[i]) # type: ignore[index]
ops = self._stage.get_fwd_send_ops(i)
works = _sorted_batch_p2p(ops, desc="fwd_send")
fwd_sends_to_wait.extend(works.values())
logger.debug("[%s] Forwarded microbatch %s", self._stage.stage_index, i)
self._maybe_compute_loss(self._stage, output, target_mbs, i)
# Wait for all forward sends to finish
# This should not have performance impact because by the time the first
# backward arrives all the forward sends should have been finished.
for work in fwd_sends_to_wait:
work.wait()
# No loss function, no need to run backward
if not self._has_backward:
return
# Run backward
# Delay send waits
bwd_sends_to_wait: list[dist.Work] = []
for i in range(self._n_microbatches):
with record_function(f"Backward {i}"):
ops = self._stage.get_bwd_recv_ops(i)
works = _sorted_batch_p2p(ops, desc="bwd_recv")
for work in works.values():
work.wait()
loss = self._maybe_get_loss(self._stage, i)
self._stage.backward_one_chunk(
i,
loss=loss,
last_backward=i == self._n_microbatches - 1,
)
ops = self._stage.get_bwd_send_ops(i)
works = _sorted_batch_p2p(ops, desc="bwd_send")
bwd_sends_to_wait.extend(works.values())
logger.debug("[%s] Backwarded microbatch %s", self._stage.stage_index, i)
self._stage.scale_grads(
grad_scale_factor=self._n_microbatches if self.scale_grads else 1
)
# Return losses if there is a container passed in
self._update_losses(self._stage, losses)
# Wait for all backward sends to finish
for work in bwd_sends_to_wait:
work.wait()
class Schedule1F1B(PipelineScheduleSingle):
"""
The 1F1B schedule.
Will perform one forward and one backward on the microbatches in steady state.
"""
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Run one iteration of the pipeline schedule with list of microbatches.
Will go through all the microbatches according to the 1F1B schedule.
Args:
microbatches: list of microbatch args.
"""
arg_mbs, kwarg_mbs = self._check_inputs(arg_mbs, kwarg_mbs, target_mbs, losses)
if not self._stage_initialized:
self._initialize_stage(arg_mbs[0], kwarg_mbs[0])
# Last stage has 1 warmup, second-to-last 2 warmups, ...
# first stage `num_stages` warmups
warmup_chunks = min(
self._n_microbatches,
self._num_stages - self._stage.stage_index,
)
# Chunk counters
fwd_mb_index = 0
bwd_mb_index = 0
# Warmup phase
send_work = None
fwd_sends = []
for _ in range(warmup_chunks):
# Receive activations
fwd_recvs = self._stage.get_fwd_recv_ops(fwd_mb_index)
if recv_work := _batch_p2p(fwd_recvs, desc="fwd_recv"):
recv_work.wait()
# Compute
output = self._stage.forward_one_chunk(
fwd_mb_index, arg_mbs[fwd_mb_index], kwarg_mbs[fwd_mb_index]
) # type: ignore[index]
# Clear previous chunk's forward sends (hopefully they have well
# finished, otherwise, we are heavily communication bound, in which
# case it doesn't create a lot of benefit to compute next chunk
# eagerly either)
if send_work:
send_work.wait()
# Send activations
fwd_sends = self._stage.get_fwd_send_ops(fwd_mb_index)
if fwd_mb_index != warmup_chunks - 1:
# Safe to fire
send_work = _batch_p2p(fwd_sends, desc="fwd_send")
# otherwise:
# The last foward send is left for fuse with first 1B in 1B1F below
# Compute loss
self._maybe_compute_loss(self._stage, output, target_mbs, fwd_mb_index)
fwd_mb_index += 1
# Now we should have send ops left over, to be fused with first 1B of 1B1F phase below.
# 1B1F phase
while True: # Don't worry, we have a break inside
# We actually do 1B first as the `1B1F` name indicates, so prepare its recv ops
bwd_recvs = self._stage.get_bwd_recv_ops(bwd_mb_index)
# Now, we need to fire the fwd_sends and bwd_recvs together
if fuse_work := _batch_p2p(fwd_sends + bwd_recvs, desc="fwd_send_bwd_recv"):
fuse_work.wait()
# Backward one chunk
loss = self._maybe_get_loss(self._stage, bwd_mb_index)
self._stage.backward_one_chunk(
bwd_mb_index,
loss=loss,
last_backward=bwd_mb_index == self._n_microbatches - 1,
)
# Get the bwd send ops, but don't fire, to be fused with the 1F below
bwd_sends = self._stage.get_bwd_send_ops(bwd_mb_index)
bwd_mb_index += 1
if fwd_mb_index == self._n_microbatches:
# We are done with 1B1F, so break with some left-over bwd_sends
break
# We prepare 1F of the `1B1F`
fwd_recvs = self._stage.get_fwd_recv_ops(fwd_mb_index)
# Fuse it with bwd_sends above
if fuse_work := _batch_p2p(bwd_sends + fwd_recvs, desc="bwd_send_fwd_recv"):
fuse_work.wait()
# Now do the fwd
output = self._stage.forward_one_chunk(
fwd_mb_index, arg_mbs[fwd_mb_index], kwarg_mbs[fwd_mb_index]
) # type: ignore[index]
# Compute loss
self._maybe_compute_loss(self._stage, output, target_mbs, fwd_mb_index)
# Get the fwd send ops, but don't fire, leave it for the next iter (wrap-around)
fwd_sends = self._stage.get_fwd_send_ops(fwd_mb_index)
fwd_mb_index += 1
# Remember we still have some bwd_sends left over after the break? Now it is time to fire it
send_work = _batch_p2p(bwd_sends, desc="bwd_send")
# Cooldown
while bwd_mb_index < self._n_microbatches:
# prepare bwd recv ops
bwd_recvs = self._stage.get_bwd_recv_ops(bwd_mb_index)
if recv_work := _batch_p2p(bwd_recvs, desc="bwd_recv"):
recv_work.wait()
# Backward one chunk
loss = self._maybe_get_loss(self._stage, bwd_mb_index)
self._stage.backward_one_chunk(
bwd_mb_index,
loss=loss,
last_backward=bwd_mb_index == self._n_microbatches - 1,
)
# Clear previous chunk's backward sends (hopefully they have well finished)
if send_work:
send_work.wait()
# Get the bwd send ops, fire it
bwd_sends = self._stage.get_bwd_send_ops(bwd_mb_index)
send_work = _batch_p2p(bwd_sends, desc="bwd_send")
bwd_mb_index += 1
self._stage.scale_grads(
grad_scale_factor=self._n_microbatches if self.scale_grads else 1
)
# Wait for the last backward send to finish
if send_work:
send_work.wait()
# Return losses if there is a container passed in
self._update_losses(self._stage, losses)
def _add_unshard_reshard(
compute_actions: list[Optional[_Action]],
max_active_stages: int = 3,
) -> list[_Action]:
"""Given a basic schedule involving only compute actions (F,B,W), add UNSHARD/RESHARD actions for FSDP.
UNSHARD refers to fetching the full contents of an FSDP-sharded layer, requiring an all-gather operation.
RESHARD does the opposite, releasing memory (but doing no commmunication)
We abandon the "timestep lock" during lowering
max_active_stages controls how many prefetches we allow. It should be measured in mb and tuneable but in practice
3 stages is probably the thing we want?
(to account for having one f and one b active, and something else prefetching?)
"""
def next_stage_indices(
count: int, next_actions: list[Optional[_Action]]
) -> list[int]:
"""Remove duplicates (same stage, different microbatch), find next 'count' stages that will do compute."""
seen: set[int] = set()
ret: list[int] = []
for a in next_actions:
if a is not None and a.stage_index not in seen:
seen.add(a.stage_index)
ret.append(a.stage_index)
if len(ret) == count:
break
return ret
active_stages: set[int] = set()
fsdp_aware_actions: list[_Action] = []
def _unshard(stage_index: int):
active_stages.add(stage_index)
fsdp_aware_actions.append(_Action(stage_index, UNSHARD, None))
def _reshard(stage_index: int):
active_stages.remove(stage_index)
fsdp_aware_actions.append(_Action(stage_index, RESHARD, None))
for i, action in enumerate(compute_actions):
if action is None:
continue
# We prefetch the next N stages we'll see, dropping existing stages to make room
next_n = next_stage_indices(max_active_stages, compute_actions[i:])
# Fetch needs to be ordered correctly, so don't use a set
fetch = list(filter(lambda s: s not in active_stages, next_n))
# Unclear what the best policy is for eviction, but we can maintain order so we do
evict = list(filter(lambda s: s not in next_n, active_stages))
# logger.debug(
# "_add_unshard_reshard Step %d active: %s fetch %s, evict %s",
# i,
# active_stages,
# fetch,
# evict,
# )
for stage in evict:
_reshard(stage)
for stage in fetch:
_unshard(stage)
fsdp_aware_actions.append(action)
return fsdp_aware_actions
def _merge_bw(
compute_actions: list[Optional[_Action]],
) -> list[_Action]:
"""Given a basic schedule involving only compute actions (F,I,W), merge adjacent I and W ops into B ops.
(note: I = BACKWARD_INPUT, W = BACKWARD_WEIGHT, B = FULL_BACKWARD)
B refers to running the whole backward (not separating grad_input and grad_weight), which can be more efficient
in some cases.
"""
merged_actions = []
while compute_actions:
action = compute_actions.pop(0)
if action is None:
continue
while len(compute_actions) and (next_action := compute_actions[0]) is None:
# remove any None actions between 'action' and 'next_action'
compute_actions.pop(0)
if (
action.computation_type == BACKWARD_INPUT
and next_action is not None
and next_action.computation_type == BACKWARD_WEIGHT
and action.stage_index == next_action.stage_index
and action.microbatch_index == next_action.microbatch_index
):
merged_actions.append(
_Action(action.stage_index, FULL_BACKWARD, action.microbatch_index)
)
compute_actions.pop(0)
else:
merged_actions.append(action)
return merged_actions
def _add_send_recv(
compute_actions: dict[int, list[_Action]],
stage_to_rank: Callable[[int], int],
num_stages: int,
) -> dict[int, list[_Action]]:
comm_actions: dict[int, list[_Action]] = {rank: [] for rank in compute_actions}
prev_actions: dict[int, set[_Action]] = {rank: set() for rank in compute_actions}
def _has_comms(action: _Action) -> bool:
if action.computation_type == F:
return action.stage_index != num_stages - 1 and stage_to_rank(
action.stage_index + 1
) != stage_to_rank(action.stage_index)
elif action.computation_type in (BACKWARD_INPUT, FULL_BACKWARD):
return action.stage_index != 0 and stage_to_rank(
action.stage_index - 1
) != stage_to_rank(action.stage_index)
return False
def _get_comms(action: _Action) -> tuple[_Action, _Action]:
assert _has_comms(action), f"{action} is not a valid comm action"
stage_idx = action.stage_index
ctype = action.computation_type
mb_idx = action.microbatch_index
send = _Action(stage_idx, SEND_F if ctype == F else SEND_B, mb_idx)
recv_stage_idx = stage_idx + 1 if ctype == F else stage_idx - 1
recv = _Action(recv_stage_idx, RECV_F if ctype == F else RECV_B, mb_idx)
return send, recv
def _ready_to_schedule(
action: Optional[_Action], prev_actions: set[_Action]
) -> bool:
"""We don't put our own recv ops in the schedule, we let a sender on another rank put our recv ops in place.
This helps ensure a sane (non-hanging) ordering of sends and recvs.
But it also means we might not be able to schedule our next compute action yet.
"""
if action is None:
return True
elif action.computation_type == F and not action.stage_index == 0:
if (
_Action(action.stage_index, RECV_F, action.microbatch_index)
in prev_actions
):
return True
elif (
_Action(action.stage_index - 1, F, action.microbatch_index)
in prev_actions
):
return True
return False
elif (
action.computation_type in (BACKWARD_INPUT, FULL_BACKWARD)
and not action.stage_index == num_stages - 1
):
if (
_Action(action.stage_index, RECV_B, action.microbatch_index)
in prev_actions
):
return True
elif (
_Action(action.stage_index + 1, BACKWARD_INPUT, action.microbatch_index)
in prev_actions
):
return True
elif (
_Action(action.stage_index + 1, FULL_BACKWARD, action.microbatch_index)
in prev_actions
):
return True
return False
else:
return True
while compute_actions:
progress = False
# go in order of ranks even if dict keys aren't ordered
for rank in sorted(compute_actions):
assert len(compute_actions[rank]) > 0, (
f"{rank=}, {len(compute_actions[rank])=}"
)
action = compute_actions[rank][0]
if not _ready_to_schedule(action, prev_actions[rank]):
continue
if action is not None:
comm_actions[rank].append(action)
prev_actions[rank].add(action)
if _has_comms(action):
send, recv = _get_comms(action)
# TODO we can avoid send/recv if the 2 stages are on the same rank.
# should we avoid that in the runtime or here?
comm_actions[rank].append(send)
prev_actions[rank].add(send)
comm_actions[stage_to_rank(recv.stage_index)].append(recv)
prev_actions[stage_to_rank(recv.stage_index)].add(recv)
compute_actions[rank].pop(0)
if len(compute_actions[rank]) == 0:
del compute_actions[rank]
progress = True
assert progress, "Malformed compute schedule, can't schedule sends/recvs"
return comm_actions
def _validate_schedule(
actions: dict[int, list[Optional[_Action]]],
pp_group_size: int,
num_stages: int,
num_microbatches: int,
) -> dict[int, int]:
assert len(actions) == pp_group_size, (
f"Schedule has incorrect number of ranks - expected {pp_group_size}, actual {len(actions)}"
)
for rank in range(pp_group_size):
assert rank in actions, f"Schedule is missing actions for rank {rank}"
# We will count all the actions per stage and ensure they happen in a valid order
# (e.g. F before (B, I) before W for a given microbatch)
stage_actions: dict[int, dict[_ComputationType, set]] = {
stage_id: {
F: set(),
B: set(),
I: set(),
W: set(),
}
for stage_id in range(num_stages)
}
stage_index_to_rank_mapping = {}
for rank in actions:
for action in actions[rank]:
if action is None:
continue
assert isinstance(action, _Action), (
f"Got an invalid action: {action}, expected instance of _Action"
)
s_id = action.stage_index
ctype = action.computation_type
mb_id = action.microbatch_index
if ctype == F:
stage_actions[s_id][F].add(mb_id)
elif ctype == B:
assert mb_id in stage_actions[s_id][F], (
f"Running Full Backward for stage {s_id}, microbatch {mb_id} without first running Forward"
)
stage_actions[s_id][B].add(mb_id)
elif ctype == I:
assert mb_id in stage_actions[s_id][F], (
f"Running Backward Input for stage {s_id}, microbatch {mb_id} without first running Forward"
)
stage_actions[s_id][I].add(mb_id)
elif ctype == W:
assert mb_id in stage_actions[s_id][I], (
f"Running Backward Weight for stage {s_id}, microbatch {mb_id} without first running Backward Input"
)
stage_actions[s_id][W].add(mb_id)
if s_id not in stage_index_to_rank_mapping:
stage_index_to_rank_mapping[s_id] = rank
else:
existing_rank = stage_index_to_rank_mapping[s_id]
assert rank == existing_rank, (
f"Stage {s_id} is assigned to both rank {rank} and rank {existing_rank}"
)
for s_id in stage_actions:
f_mb = len(stage_actions[s_id][F])
b_mb = len(stage_actions[s_id][B])
i_mb = len(stage_actions[s_id][I])
w_mb = len(stage_actions[s_id][W])
assert f_mb == num_microbatches, (
f"Got {f_mb} {F} microbatches for stage {s_id}, expected {num_microbatches}"
)
assert b_mb + (i_mb + w_mb) // 2 == num_microbatches, (
f"Invalid backward microbatches for stage {s_id}: expected {num_microbatches} total backwards, \
but got B={b_mb}, I={i_mb}, W={w_mb}"
)
return stage_index_to_rank_mapping
class PipelineScheduleMulti(_PipelineSchedule):
"""
Base class for multi-stage schedules.
Implements the `step` method.
Gradients are scaled by num_microbatches depending on the `scale_grads` argument, defaulting to True. This setting
should match the configuration of your loss_fn, which may either average losses (scale_grads=True)
or sum losses (scale_grads=False).
"""
def __init__(
self,
stages: list[_PipelineStageBase],
n_microbatches: int,
loss_fn: Optional[Callable] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
use_full_backward: Optional[bool] = None,
scale_grads: bool = True,
):
# Init parent
super().__init__(
n_microbatches=n_microbatches,
loss_fn=loss_fn,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
# Self attributes
self._stages = stages
self._num_stages = stages[0].num_stages
self.pp_group_size = stages[0].group_size
self.rank = stages[0].group_rank
# Set the pipeline stage states
self.stage_index_to_group_rank = generate_stage_to_rank_mapping(
self.pp_group_size, self._num_stages
)
for stage in self._stages:
stage.stage_index_to_group_rank = self.stage_index_to_group_rank
# Set the same has_backward flag for stage object
for stage in self._stages:
stage.has_backward = self._has_backward
self._stages_initialized = False
# avoid putting a reference to 'self' inside the lambda, it creates a ref cycle
has_loss: bool = self._loss_fn is not None
self._should_compute_loss = lambda stage: stage.is_last and has_loss
# This will be set during init of derived schedules
self.pipeline_order: dict[int, list[Optional[_Action]]] = {}
if use_full_backward is not None:
logger.warning(
"Deprecation warning: 'use_full_backward' is no longer supported. "
"Simply stop passing it, and everything should still work fine."
)
def _initialize_stages(self, args: tuple[Any, ...], kwargs):
# may be 'none' value (if this stage sends its output shapes to the next stage via P2P)
# or real value (if this stage and next stage are on the same device)
next_stage_args: tuple[Any, ...] = tuple()
for stage in self._stages:
if stage.is_first:
next_stage_args = stage._prepare_forward_infra(
self._n_microbatches, args, kwargs
)
else:
next_stage_args = stage._prepare_forward_infra(
self._n_microbatches, next_stage_args, kwargs
)
if self._has_backward:
stage._prepare_backward_infra(self._n_microbatches)
self._stages_initialized = True
def _validate_and_set_stage_mapping(
self, actions: dict[int, list[Optional[_Action]]]
) -> None:
"""
Allocates the stage index to rank mapping which is needed for communication
"""
self.stage_index_to_group_rank = _validate_schedule(
actions,
self.pp_group_size,
self._num_stages,
self._n_microbatches,
)
for stage in self._stages:
stage.stage_index_to_group_rank = self.stage_index_to_group_rank
def _dump_csv(self, filename):
"""Dump a CSV representation of the schedule into a file with the provided filename."""
with open(filename, "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for rank in self.pipeline_order:
writer.writerow(self.pipeline_order[rank])
def _load_csv(self, filename, format="compute_only"):
"""Load a CSV representation of the schedule from a file with the provided filename.
This API will most likely get renamed/refactored so is marked as internal for now.
format must be "compute_only" for PipelineScheduleMulti.
"""
assert format == "compute_only"
with open(filename, newline="") as csvfile:
reader = csv.reader(csvfile)
for rank, row in enumerate(reader):
self.pipeline_order[rank] = [_Action.from_str(s) for s in row]
# Validates the order of the pipeline actions and infers the stage_to_rank_mapping.
# This will overwrite the default stage_to_rank_mapping created in the constructor
self._validate_and_set_stage_mapping(self.pipeline_order)
def step(self, *args, target=None, losses: Optional[list] = None, **kwargs):
"""
Run one iteration of the pipeline schedule with *whole-batch* input.
Will chunk the input into microbatches automatically, and go through the
microbatches according to the schedule implementation.
args: positional arguments to the model (as in non-pipeline case).
kwargs: keyword arguments to the model (as in non-pipeline case).
target: target for the loss function.
losses: a list to store the losses for each microbatch.
"""
# Clean per iteration
for stage in self._stages:
stage.clear_runtime_states()
# Split inputs into microbatches
args_split, kwargs_split = self._split_inputs(args, kwargs)
# Split target into microbatches
if target is not None:
targets_split = list(torch.tensor_split(target, self._n_microbatches))
else:
targets_split = None
# Run microbatches
self._step_microbatches(args_split, kwargs_split, targets_split, losses)
# Return merged results per original format
for stage in self._stages:
if stage.is_last:
return self._merge_outputs(stage.output_chunks)
# Does not contain the last stage
return None
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Operate on the microbatches for looped schedules (multiple stages on each rank).
TODO: Does not use sorted_batch_isend_irecv(). As a result, this schedule does
not support models with skip connections.
"""
arg_mbs, kwarg_mbs = self._check_inputs(arg_mbs, kwarg_mbs, target_mbs, losses)
if not self._stages_initialized:
self._initialize_stages(arg_mbs[0], kwarg_mbs[0])
# Based on the plan in Step 1 created in __init__:
# 2. Perform communication based on the pipeline_order
stage_index_to_stage: dict[int, _PipelineStageBase] = {
stage.stage_index: stage for stage in self._stages
}
# determine prev_rank and next_rank based on which ranks are next to
# the stages in the pipeline_order
all_prev_ranks: set[int] = set()
all_next_ranks: set[int] = set()
for stage_index in stage_index_to_stage.keys():
# TODO: assumption that stages only communicate from distances of +1/-1 (no skip connections)
if stage_index > 0:
all_prev_ranks.add(self.stage_index_to_group_rank[stage_index - 1])
if stage_index < self._num_stages - 1:
all_next_ranks.add(self.stage_index_to_group_rank[stage_index + 1])
# count either full_backward or backward_weight together, to determine when to sync DP grads
backward_counter: Counter[int] = Counter()
for time_step, action in enumerate(self.pipeline_order[self.rank]):
try:
ops: list[dist.P2POp] = []
if action is not None:
computation_type = action.computation_type
mb_index = action.microbatch_index
stage_index = action.stage_index
assert mb_index is not None, (
"All currently supported action types require valid microbatch_index"
)
if computation_type == _ComputationType.FORWARD:
# perform forward computation
stage = stage_index_to_stage[stage_index]
output = stage.forward_one_chunk(
mb_index, arg_mbs[mb_index], kwarg_mbs[mb_index]
)
self._maybe_compute_loss(stage, output, target_mbs, mb_index)
ops.extend(stage.get_fwd_send_ops(mb_index))
elif computation_type == _ComputationType.FULL_BACKWARD:
# perform backward computation
stage = stage_index_to_stage[stage_index]
loss = self._maybe_get_loss(stage, mb_index)
backward_counter[stage_index] += 1
last_backward = (
backward_counter[stage_index] == self._n_microbatches
)
grad_scale_factor = (
self._n_microbatches if self.scale_grads else 1
)
stage.backward_one_chunk(
mb_index,
loss=loss,
full_backward=True,
last_backward=last_backward,
)
if last_backward:
stage.scale_grads(grad_scale_factor)
ops.extend(stage.get_bwd_send_ops(mb_index))
elif computation_type == _ComputationType.BACKWARD_INPUT:
# perform backward computation
stage = stage_index_to_stage[stage_index]
loss = self._maybe_get_loss(stage, mb_index)
stage.backward_one_chunk(
mb_index,
loss=loss,
full_backward=False,
last_backward=False,
)
ops.extend(stage.get_bwd_send_ops(mb_index))
elif computation_type == _ComputationType.BACKWARD_WEIGHT:
# perform weight update
stage = stage_index_to_stage[stage_index]
backward_counter[stage_index] += 1
last_backward = (
backward_counter[stage_index] == self._n_microbatches
)
grad_scale_factor = (
self._n_microbatches if self.scale_grads else 1
)
stage.backward_weight_one_chunk(
mb_index,
last_backward=last_backward,
)
if last_backward:
stage.scale_grads(grad_scale_factor)
else:
raise ValueError(f"Unknown computation type {computation_type}")
# Look at the neighboring ranks for this current timestep and determine whether
# this current rank needs to do any recv communication
for prev_rank in all_prev_ranks:
prev_rank_ops = self.pipeline_order[prev_rank]
prev_rank_action = None
if time_step < len(prev_rank_ops):
prev_rank_action = prev_rank_ops[time_step]
if prev_rank_action is not None:
computation_type = prev_rank_action.computation_type
mb_index = prev_rank_action.microbatch_index
stage_index = prev_rank_action.stage_index
assert mb_index is not None, (
"All currently supported action types require valid microbatch_index"
)
# Only handle sends for the forward from a previous rank
if computation_type == _ComputationType.FORWARD:
# If not the last stage, then receive fwd activations
if stage_index + 1 in stage_index_to_stage:
# TODO: We are assuming that stage will always receive from stage-1
# however that is not necessarily true of get_fwd_recv_ops
stage = stage_index_to_stage[stage_index + 1]
ops.extend(stage.get_fwd_recv_ops(mb_index))
elif computation_type in (
FULL_BACKWARD,
BACKWARD_INPUT,
BACKWARD_WEIGHT,
):
# Previous rank doing backward has no influence for the current rank forward recv
pass
else:
raise ValueError(
f"Unknown computation type {computation_type}"
)
for next_rank in all_next_ranks:
next_rank_ops = self.pipeline_order[next_rank]
next_rank_action = None
if time_step < len(next_rank_ops):
next_rank_action = next_rank_ops[time_step]
if next_rank_action is not None:
computation_type = next_rank_action.computation_type
mb_index = next_rank_action.microbatch_index
stage_index = next_rank_action.stage_index
assert mb_index is not None, (
"All currently supported action types require valid microbatch_index"
)
# Only handle receives for the backwards from a next rank
if computation_type in (FORWARD, BACKWARD_WEIGHT):
# Next rank doing forward or weight update has no influence for the current rank backward recv
pass
elif computation_type in (BACKWARD_INPUT, FULL_BACKWARD):
# If not the first stage, then receive bwd gradients
if stage_index - 1 in stage_index_to_stage:
# TODO: We are assuming that stage will always receive from stage+1
# however that is not necessarily true of get_bwd_recv_ops
stage = stage_index_to_stage[stage_index - 1]
ops.extend(stage.get_bwd_recv_ops(mb_index))
else:
raise ValueError(
f"Unknown computation type {computation_type}"
)
# do the communication
if ops:
_batch_p2p(ops).wait()
except Exception as e:
logger.error(
"[Rank %s] pipeline schedule %s caught the following exception \
at time_step %s when running action %s",
self.rank,
self.__class__.__name__,
time_step,
action,
)
logger.error(
"%s",
_format_pipeline_order(
self.pipeline_order, error_step_number=time_step
),
)
raise e
# Return losses if there is a container passed in
self._update_losses(self._stages, losses)
class _PipelineScheduleRuntime(PipelineScheduleMulti):
"""
Provides a simple runtime that requires a 'schedule IR' including specified communication operations.
Can be instantiated directly by creating _PipelineScheduleRuntime and calling load_csv, or can be
subclassed and the subclass can be responsible for creating a schedule IR.
"""
def _load_actions(
self,
actions: dict[int, list[Optional[_Action]]],
format: str = "compute_only",
):
"""
Given an in-memory representation for a simple compute-only schedule, lower it to a complex schedule including
communication actions. Stores the schedule in self, and must be called before running step_mo()
"""
# validate the provided actions are valid and overrides the default stage_index_to_group_rank
super()._validate_and_set_stage_mapping(actions)
self.pipeline_order_with_comms: dict[int, list[_Action]] = {}
if format == "compute_comms":
for rank in actions:
self.pipeline_order_with_comms[rank] = []
for action in actions[rank]:
assert action is not None
self.pipeline_order_with_comms[rank].append(action)
# TODO what level of validation should we offer for compute+comms schedule?
elif format == "compute_only":
# Perform schedule lowering
for rank in actions:
self.pipeline_order_with_comms[rank] = _add_unshard_reshard(
actions[rank]
)
self.pipeline_order_with_comms = _add_send_recv(
self.pipeline_order_with_comms,
stage_to_rank=lambda s: self.stage_index_to_group_rank[s],
num_stages=self._num_stages,
)
else:
raise NotImplementedError(f"{format=} is not implemented")
def _load_csv(self, filename: str, format: str = "compute_only"):
"""Loads a csv in simple format and then lowers it to include comunication actions
format must be either "compute_only" or "compute_comms". If compute_only, the lowering passes
will automatically be run to generate a compute_comms schedule.
"""
if format == "compute_only":
# this will populate self.pipeline_order
super()._load_csv(filename)
# this will populate self.pipeline_order_with_comms
self._load_actions(self.pipeline_order)
elif format == "compute_comms":
actions = {}
with open(filename, newline="") as csvfile:
reader = csv.reader(csvfile)
for rank, row in enumerate(reader):
actions[rank] = [_Action.from_str(s) for s in row]
self._load_actions(actions, format=format)
else:
raise NotImplementedError(f"{format=} is not implemented")
def _dump_csv(self, filename: str):
"""Dump a CSV representation of the compute + comms schedule into a file with the provided filename."""
# TODO should there be an option to dump the compute_only schedule from PipelineScheduleRuntime? It's possible
# that it does not exist if it was created from a compute_comms schedule.
assert self.pipeline_order_with_comms is not None, (
"Must initialize compute_comms schedule before dump_csv"
)
with open(filename, "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for rank in self.pipeline_order_with_comms:
writer.writerow(self.pipeline_order_with_comms[rank])
def _simulate(self):
return _simulate_comms_compute(
self.pipeline_order_with_comms,
lambda s: self.stage_index_to_group_rank[s],
self._num_stages,
)
def _step_microbatches(
self,
arg_mbs: Optional[list] = None,
kwarg_mbs: Optional[list] = None,
target_mbs: Optional[list] = None,
losses: Optional[list] = None,
):
"""
Operate on the microbatches for looped schedules (multiple stages on each rank).
TODO: Does not use sorted_batch_isend_irecv(). As a result, this schedule does
not support models with skip connections.
"""
arg_mbs, kwarg_mbs = self._check_inputs(arg_mbs, kwarg_mbs, target_mbs, losses)
if not self._stages_initialized:
self._initialize_stages(arg_mbs[0], kwarg_mbs[0])
# Based on the plan in Step 1 created in __init__:
# 2. Perform communication based on the pipeline_order
stage_index_to_stage: dict[int, _PipelineStageBase] = {
stage.stage_index: stage for stage in self._stages
}
assert self.pipeline_order_with_comms is not None, (
"Must call _load_actions() before calling _step_microbatches()"
)
# recv ops indexed by (stage_idx, mb_idx) need to be waited on before use
bwd_recv_ops: dict[tuple[int, int], Work] = {}
fwd_recv_ops: dict[tuple[int, int], Work] = {}
# send ops should be waited on before step() exists, mainly for hygeine
send_ops: list[Work] = []
# we track which stages are 'active' when used with FSDP, and wait on unshard ops before computing on stages
unshard_ops: dict[int, UnshardHandle] = {}
unsharded_stages = set()
def _assert_unsharded(stage_idx: int):
"""If an unshard is active for `stage_idx`, wait() it and mark `stage_idx` unshared."""
if stage_idx in unshard_ops:
unshard_ops[stage_idx].wait()
del unshard_ops[stage_idx]
unsharded_stages.add(stage_idx)
assert stage_idx in unsharded_stages, (
f"Attempted to compute on sharded {stage_idx=}"
)
# count either full_backward or backward_weight together, to determine when to sync DP grads
backward_counter: Counter[int] = Counter()
for time_step, action in enumerate(self.pipeline_order_with_comms[self.rank]):
try:
comp_type = action.computation_type
mb_index: int = (
action.microbatch_index
if action.microbatch_index is not None
else -1
)
assert mb_index >= 0 or comp_type in (
UNSHARD,
RESHARD,
), f"{action=} missing mb_index"
stage_idx = action.stage_index
stage = stage_index_to_stage[stage_idx]
stage_uses_fsdp = isinstance(stage.submod, FSDPModule)
# see [Note: V-schedule special case]
is_next_stage_on_this_rank = stage_idx + 1 in stage_index_to_stage
is_prev_stage_on_this_rank = stage_idx - 1 in stage_index_to_stage
logger.debug(
"_PipelineScheduleRuntime running time_step %d, action %s",
time_step,
action,
)
# TODO(whc) it's not actually safe to use _batch_p2p here in the uncommon case the model has skip-connections,
# since we do not want to batch up ops between more than a pair of ranks. _sorted_batch_p2p would be
# safe to use instead.
# However, I was wondering if I should avoid calling batched operators at all in the case that there is
# only one operator per batch. I could iterate through the 'fwd_send_ops' one by one and run them.
if comp_type == SEND_F:
send_ops.append(_batch_p2p(stage.get_fwd_send_ops(mb_index)))
elif comp_type == SEND_B:
send_ops.append(_batch_p2p(stage.get_bwd_send_ops(mb_index)))
elif comp_type == RECV_F:
assert (
stage_idx,
mb_index,
) not in fwd_recv_ops, (
"Recv twice for {stage_idx=} {mb_index=} without executing forward"
)
fwd_recv_ops[(stage_idx, mb_index)] = _batch_p2p(
stage.get_fwd_recv_ops(mb_index)
)
elif comp_type == RECV_B:
assert (
stage_idx,
mb_index,
) not in bwd_recv_ops, (
"Recv twice for {stage_idx=} {mb_index=} without executing backward"
)
bwd_recv_ops[(stage_idx, mb_index)] = _batch_p2p(
stage.get_bwd_recv_ops(mb_index)
)
elif comp_type == UNSHARD:
if stage_uses_fsdp:
assert (
stage_idx not in unsharded_stages
and stage_idx not in unshard_ops
), f"Unsharding the same {stage_idx=} twice"
unshard_ops[stage_idx] = stage.submod.unshard(async_op=True) # type: ignore[operator]
elif comp_type == RESHARD:
if stage_uses_fsdp:
assert stage_idx in unsharded_stages, (
f"Resharding {stage_idx=} without unsharding"
)
assert stage_idx not in unshard_ops, (
f"Resharding {stage_idx=} before finishing unshard"
)
stage.submod.reshard() # type: ignore[operator]
elif comp_type == FORWARD:
if stage_uses_fsdp:
_assert_unsharded(stage_idx)
if (
not stage.is_first
# no recv op expected for V-schedule special case (see [Note: V-schedule special case])
and not is_prev_stage_on_this_rank
):
assert (
stage_idx,
mb_index,
) in fwd_recv_ops, f"Computing {action=} before receiving input"
fwd_recv_ops.pop((stage_idx, mb_index)).wait()
output = stage.forward_one_chunk(
mb_index, arg_mbs[mb_index], kwarg_mbs[mb_index]
)
self._maybe_compute_loss(stage, output, target_mbs, mb_index)
# SEND/RECV op are avoided for special case with 2 adjacent stages on same rank
# see [Note: V-schedule special case]
if is_next_stage_on_this_rank:
stage_index_to_stage[stage_idx + 1].set_local_fwd_input(
output, mb_index
)
elif comp_type == FULL_BACKWARD:
if stage_uses_fsdp:
_assert_unsharded(stage_idx)
if (
not stage.is_last
# no recv op expected for V-schedule special case (see [Note: V-schedule special case])
and not is_next_stage_on_this_rank
):
assert (
stage_idx,
mb_index,
) in bwd_recv_ops, (
f"Attempted to run compute {action=} before receiving input"
)
bwd_recv_ops.pop((stage_idx, mb_index)).wait()
loss = self._maybe_get_loss(stage, mb_index)
backward_counter[stage_idx] += 1
last_backward = backward_counter[stage_idx] == self._n_microbatches
grad_scale_factor = self._n_microbatches if self.scale_grads else 1
stage.backward_one_chunk(
mb_index,
loss=loss,
full_backward=True,
last_backward=last_backward,
)
if last_backward:
stage.scale_grads(grad_scale_factor)
# SEND/RECV op are avoided for special case with 2 adjacent stages on same rank
# see [Note: V-schedule special case]
if is_prev_stage_on_this_rank:
stage_index_to_stage[stage_idx - 1].set_local_bwd_input(
stage.get_local_bwd_output(mb_index), mb_index
)
elif comp_type == BACKWARD_INPUT:
if stage_uses_fsdp:
_assert_unsharded(stage_idx)
if not stage.is_last and not is_next_stage_on_this_rank:
assert (
stage_idx,
mb_index,
) in bwd_recv_ops, (
f"Attempted to run compute {action=} before receiving input"
)
bwd_recv_ops.pop((stage_idx, mb_index)).wait()
loss = self._maybe_get_loss(stage, mb_index)
stage.backward_one_chunk(
mb_index,
loss=loss,
full_backward=False,
last_backward=False,
)
# SEND/RECV op are avoided for special case with 2 adjacent stages on same rank
# see [Note: V-schedule special case]
if is_prev_stage_on_this_rank:
stage_index_to_stage[stage_idx - 1].set_local_bwd_input(
stage.get_local_bwd_output(mb_index), mb_index
)
elif comp_type == BACKWARD_WEIGHT:
if stage_uses_fsdp:
_assert_unsharded(stage_idx)
backward_counter[stage_idx] += 1
stage.backward_weight_one_chunk(
mb_index,
last_backward=backward_counter[stage_idx]
== self._n_microbatches,
)
else:
raise ValueError(f"{action=} is unknown or unsupported")
except Exception as e:
logger.error(
"_PipelineScheduleRuntime caught exception at step %s when running action %s. Full Schedule:",
time_step,
action,
)
# TODO(whc) what is the best practice for printing a multiline log?
# logger will split it into multiple log lines, but this makes it hard to read (too wide)
print(
_format_pipeline_order(
self.pipeline_order_with_comms, # type: ignore[arg-type]
error_step_number=time_step,
)
)
raise e
# Mostly these operations should have finished long ago, but there isn't an obvious time when to wait for them
while len(send_ops):
send_ops.pop().wait()
assert len(unshard_ops) == 0, "Unused unshard operations"
# Return losses if there is a container passed in
self._update_losses(self._stages, losses)
class ScheduleLoopedBFS(PipelineScheduleMulti):
"""
Breadth-First Pipeline Parallelism.
See https://arxiv.org/abs/2211.05953 for details.
Simliar to Interleaved 1F1B, Looped BFS supports multiple stages per rank.
What is different is that when microbatches are ready for multiple local
stages, Loops BFS will prioritizes the earlier stage, running all available
microbatches at once.
"""
def __init__(
self,
stages: list[_PipelineStageBase],
n_microbatches: int,
loss_fn: Optional[Union[Callable, _Loss]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
super().__init__(
stages=stages,
n_microbatches=n_microbatches,
loss_fn=loss_fn,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
# 1. Create the pipeline_order (all ranks do this calculation)
# This will be used to keep track of the current state of the entire pipeline
# pipeline_order[rank] = [Action(computation_type, microbatch_index, stage_index), ...]
self.pipeline_order: dict[int, list[Optional[_Action]]] = {}
# ========================================================================
for rank in range(self.pp_group_size):
rank_ops = self._calculate_single_rank_operations(rank)
self.pipeline_order[rank] = rank_ops
def _calculate_single_rank_operations(self, rank):
n_local_stages = len(self._stages)
stage_indices = range(
rank, self.pp_group_size * n_local_stages, self.pp_group_size
)
# Store the list of operations used for that rank
# Pre-padding, rank starts with no-ops based on the warmup.
rank_ops: list[Optional[_Action]] = [None for _ in range(rank)]
for stage_index in stage_indices:
rank_ops.extend(
_Action(stage_index, _ComputationType.FORWARD, mb_index)
for mb_index in range(self._n_microbatches)
)
# wait for the first backward to trickle up
# which is 2 for every hop away
post_warmup_ops = 2 * (self.pp_group_size - 1 - rank)
rank_ops.extend([None] * post_warmup_ops)
for stage_index in reversed(stage_indices):
rank_ops.extend(
_Action(stage_index, _ComputationType.FULL_BACKWARD, mb_index)
for mb_index in reversed(range(self._n_microbatches))
)
return rank_ops
def _get_1f1b_rank_ops(
n_local_stages,
pp_group_size,
warmup_ops,
fwd_bwd_ops,
cooldown_ops,
rank,
forward_stage_index,
backward_stage_index,
num_1f1b_microbatches=0,
enable_zero_bubble=False,
):
# All stages start with handling microbatch 0
fwd_stage_mb_index: dict[int, int] = defaultdict(int)
bwd_stage_mb_index: dict[int, int] = defaultdict(int)
weight_stage_mb_index: dict[int, int] = defaultdict(int)
# Store the list of operations used for that rank
# Pre-padding, rank starts with no-ops based on the warmup.
rank_ops: list[Optional[_Action]] = [None for _ in range(rank)]
# These are used to calculate the number of slots to fill with no-ops, to account for the delay in warmup
# when we want to wait for the backward to trickle back up and start 1f1b to align all ranks.
# Formula:
# pre-padding + warmup_ops + post_warmup_ops = earliest time step of first backward
# post_warmup_ops = [earliest time step of first backward] - (warmup_ops + pre-padding)
# earliest time step of first backward = [local_stages * group_size + 2 * (group_size - 1 - rank)]
# warmup_ops = calculated above
post_warmup_ops = (
n_local_stages * pp_group_size + 2 * (pp_group_size - 1 - rank)
) - (warmup_ops + rank)
if enable_zero_bubble:
post_warmup_ops = pp_group_size - rank - 1
total_ops = warmup_ops + fwd_bwd_ops + cooldown_ops
backward_op_ids = []
weight_op_count = 0
FULL_BACKWARD_OR_BACKWARD_INPUT = (
BACKWARD_INPUT if enable_zero_bubble else FULL_BACKWARD
)
for op in range(total_ops):
# Warmup phase
if op < warmup_ops:
fwd_stage_index = forward_stage_index(op)
# This will assign the current microbatch index and update it as well
fwd_stage_mb_index[fwd_stage_index] = (
mb_index := fwd_stage_mb_index[fwd_stage_index]
) + 1
rank_ops.append(
_Action(fwd_stage_index, _ComputationType.FORWARD, mb_index)
)
if op == warmup_ops - 1:
# This is the last step in the warmup phase, so we need to wait for the backward to trickle back up
rank_ops.extend([None] * post_warmup_ops)
# 1F1B Phase (forward and backward)
elif warmup_ops <= op < warmup_ops + fwd_bwd_ops:
fwd_stage_index = forward_stage_index(op)
fwd_stage_mb_index[fwd_stage_index] = (
fwd_mb_index := fwd_stage_mb_index[fwd_stage_index]
) + 1
rank_ops.append(
_Action(fwd_stage_index, _ComputationType.FORWARD, fwd_mb_index)
)
bwd_stage_index = backward_stage_index(op)
bwd_stage_mb_index[bwd_stage_index] = (
bwd_mb_index := bwd_stage_mb_index[bwd_stage_index]
) + 1
rank_ops.append(
_Action(bwd_stage_index, FULL_BACKWARD_OR_BACKWARD_INPUT, bwd_mb_index)
)
backward_op_ids.append(op)
if enable_zero_bubble and op - warmup_ops >= num_1f1b_microbatches:
weight_stage_index = backward_stage_index(
backward_op_ids[weight_op_count]
)
weight_stage_mb_index[weight_stage_index] = (
weight_mb_index := weight_stage_mb_index[weight_stage_index]
) + 1
rank_ops.append(
_Action(
weight_stage_index,
_ComputationType.BACKWARD_WEIGHT,
weight_mb_index,
)
)
weight_op_count += 1
# Cooldown phase
else:
# During cooldown phase, we need steps to align with 1f1b happening in other ranks
# TODO: we don't need to always append, after all 1f1b are finished we can stop appending None
if not enable_zero_bubble:
rank_ops.append(None)
bwd_stage_index = backward_stage_index(op)
bwd_stage_mb_index[bwd_stage_index] = (
bwd_mb_index := bwd_stage_mb_index[bwd_stage_index]
) + 1
rank_ops.append(
_Action(bwd_stage_index, FULL_BACKWARD_OR_BACKWARD_INPUT, bwd_mb_index)
)
backward_op_ids.append(op)
if enable_zero_bubble and op - warmup_ops >= num_1f1b_microbatches:
weight_stage_index = backward_stage_index(
backward_op_ids[weight_op_count]
)
weight_stage_mb_index[weight_stage_index] = (
weight_mb_index := weight_stage_mb_index[weight_stage_index]
) + 1
rank_ops.append(
_Action(
weight_stage_index,
_ComputationType.BACKWARD_WEIGHT,
weight_mb_index,
)
)
weight_op_count += 1
while enable_zero_bubble and weight_op_count < len(backward_op_ids):
weight_stage_index = backward_stage_index(backward_op_ids[weight_op_count])
weight_stage_mb_index[weight_stage_index] = (
weight_mb_index := weight_stage_mb_index[weight_stage_index]
) + 1
rank_ops.append(
_Action(
weight_stage_index, _ComputationType.BACKWARD_WEIGHT, weight_mb_index
)
)
weight_op_count += 1
return rank_ops
class ScheduleInterleaved1F1B(PipelineScheduleMulti):
"""
The Interleaved 1F1B schedule.
See https://arxiv.org/pdf/2104.04473 for details.
Will perform one forward and one backward on the microbatches in steady
state and supports multiple stages per rank. When microbatches are ready for
multiple local stages, Interleaved 1F1B prioritizes the earlier microbatch
(also called "depth first").
This schedule is mostly similar to the original paper.
It differs by being relaxing the requirement of num_microbatch % pp_size == 0.
Using the flex_pp schedule, we will have num_rounds = max(1, n_microbatches // pp_group_size) and
it works as long as n_microbatches % num_rounds is 0. As a few examples, support
1. pp_group_size = 4, n_microbatches = 10. We will have num_rounds = 2 and n_microbatches % 2 is 0.
2. pp_group_size = 4, n_microbatches = 3. We will have num_rounds = 1 and n_microbatches % 1 is 0.
"""
def __init__(
self,
stages: list[_PipelineStageBase],
n_microbatches: int,
loss_fn: Optional[Callable] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
self.pp_group_size = stages[0].group_size
super().__init__(
stages=stages,
n_microbatches=n_microbatches,
loss_fn=loss_fn,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
self.n_local_stages = len(stages)
self.rank = stages[0].group_rank
self.number_of_rounds = max(1, n_microbatches // self.pp_group_size)
self.microbatches_per_round = n_microbatches // self.number_of_rounds
if n_microbatches % self.number_of_rounds != 0:
raise ValueError(
"Interleaved 1F1B requires the number of microbatches to be a "
f"multiple of the number of rounds ({self.number_of_rounds}), "
f"but got {n_microbatches}."
)
# 1. Create the pipeline_order (all ranks do this calculation)
# This will be used to keep track of the current state of the entire pipeline
# pipeline_order[rank] = [Action(computation_type, microbatch_index, stage_index), ...]
self.pipeline_order: dict[int, list[Optional[_Action]]] = {}
for rank in range(self.pp_group_size):
rank_ops = self._calculate_single_rank_operations(rank)
self.pipeline_order[rank] = rank_ops
def _calculate_single_rank_operations(self, rank) -> list[Optional[_Action]]:
def get_rank_warmup_ops(rank):
# Warms up operations for last stage
warmups_ops_last_stage = (
self.n_local_stages - 1
) * self.microbatches_per_round
# Increment warmup operations by 2 for each hop away from the last stage
multiply_factor = 2
warmup_ops = warmups_ops_last_stage + multiply_factor * (
(self.pp_group_size - 1) - rank
)
# We cannot have more warmup operations than there are number of microbatches, so cap it there
return min(warmup_ops, self._n_microbatches * self.n_local_stages)
warmup_ops = get_rank_warmup_ops(rank)
microbatch_ops = self.n_local_stages * self._n_microbatches
# fwd_bwd_ops should encompass the remaining forwards
fwd_bwd_ops = microbatch_ops - warmup_ops
# cooldown_ops should encompass the remaining backwards
cooldown_ops = microbatch_ops - fwd_bwd_ops
# total ops encompass both forward and backward ops
total_ops = warmup_ops + fwd_bwd_ops + cooldown_ops
# warmup_ops + fwd_bwd_ops * 2 + cooldown_ops == microbatch_ops * 2
logger.debug(
"rank %s, warmup_ops %s, 1f1b %s, cooldown_ops %s total_ops %s",
rank,
warmup_ops,
fwd_bwd_ops,
cooldown_ops,
total_ops,
)
# Calculates the stage index based on step and pp_group_size
def forward_stage_index(step):
# Get the local index from 0 to n_local_stages-1
local_index = (step // self.microbatches_per_round) % self.n_local_stages
return (local_index * self.pp_group_size) + rank
def backward_stage_index(step):
local_index = (
self.n_local_stages
- 1
- ((step - warmup_ops) // self.microbatches_per_round)
% self.n_local_stages
)
return (local_index * self.pp_group_size) + rank
return _get_1f1b_rank_ops(
self.n_local_stages,
self.pp_group_size,
warmup_ops,
fwd_bwd_ops,
cooldown_ops,
rank,
forward_stage_index,
backward_stage_index,
)
class ScheduleInterleavedZeroBubble(PipelineScheduleMulti):
"""
The Interleaved Zero Bubble schedule.
See https://arxiv.org/pdf/2401.10241 for details.
Will perform one forward and one backward on inputs for the microbatches in steady
state and supports multiple stages per rank. Uses the backward for weights to fill in
the pipeline bubble.
In particular this is implementing the ZB1P schedule in the paper.
"""
def __init__(
self,
stages: list[_PipelineStageBase],
n_microbatches: int,
loss_fn: Optional[Callable] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
# TODO: we don't support Zero Bubble with torch.compile so we
# should disable it for now
for stage in stages:
if isinstance(stage.submod, OptimizedModule):
raise RuntimeError(
"The Zero Bubble schedule is not supported with \
stage modules that have used torch.compile"
)
self.pp_group_size = stages[0].group_size
super().__init__(
stages=stages,
n_microbatches=n_microbatches,
loss_fn=loss_fn,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
self.n_local_stages = len(stages)
self.rank = stages[0].group_rank
self.number_of_rounds = max(1, n_microbatches // self.pp_group_size)
self.microbatches_per_round = n_microbatches // self.number_of_rounds
if n_microbatches % self.number_of_rounds != 0:
raise ValueError(
"Zero bubble requires the number of microbatches to be a "
f"multiple of the number of rounds ({self.number_of_rounds}), "
f"but got {n_microbatches}."
)
# 1. Create the pipeline_order (all ranks do this calculation)
# This will be used to keep track of the current state of the entire pipeline
# pipeline_order[rank] = [Action(computation_type, microbatch_index, stage_index), ...]
self.pipeline_order: dict[int, list[Optional[_Action]]] = {}
for rank in range(self.pp_group_size):
rank_ops = self._calculate_single_rank_operations(rank)
self.pipeline_order[rank] = rank_ops
# This function add bubbles to the generated schedule based on dependencies of actions
# Note that the ZB1P schedule will not require bubbles to be manually added and it is
# only useful when n_microbatches <= microbatches_per_round
self.pipeline_order = self._add_bubbles_to_actions(
self.n_local_stages * self.pp_group_size,
)
def _calculate_single_rank_operations(self, rank) -> list[Optional[_Action]]:
def get_rank_warmup_ops(rank):
# Warms up operations for last stage
warmups_ops_last_stage = (
self.n_local_stages - 1
) * self.microbatches_per_round
# Increment warmup operations by 2 for each hop away from the last stage
multiply_factor = 1
warmup_ops = warmups_ops_last_stage + multiply_factor * (
(self.pp_group_size - 1) - rank
)
# We cannot have more warmup operations than there are number of microbatches, so cap it there
return min(warmup_ops, self._n_microbatches * self.n_local_stages)
warmup_ops = get_rank_warmup_ops(rank)
microbatch_ops = self.n_local_stages * self._n_microbatches
# fwd_bwd_ops should encompass the remaining forwards
fwd_bwd_ops = microbatch_ops - warmup_ops
# cooldown_ops should encompass the remaining backwards
cooldown_ops = microbatch_ops - fwd_bwd_ops
# total ops encompass both forward and backward ops
total_ops = warmup_ops + fwd_bwd_ops + cooldown_ops
# warmup_ops + fwd_bwd_ops * 2 + cooldown_ops == microbatch_ops * 2
logger.debug(
"rank %s, warmup_ops %s, 1f1b %s, cooldown_ops %s total_ops %s",
rank,
warmup_ops,
fwd_bwd_ops,
cooldown_ops,
total_ops,
)
# Calculates the stage index based on step and pp_group_size
def forward_stage_index(step):
# Get the local index from 0 to n_local_stages-1
local_index = (step // self.microbatches_per_round) % self.n_local_stages
return (local_index * self.pp_group_size) + rank
def backward_stage_index(step):
local_index = (
self.n_local_stages
- 1
- ((step - warmup_ops) // self.microbatches_per_round)
% self.n_local_stages
)
return (local_index * self.pp_group_size) + rank
num_1f1b_microbatches = rank
return _get_1f1b_rank_ops(
self.n_local_stages,
self.pp_group_size,
warmup_ops,
fwd_bwd_ops,
cooldown_ops,
rank,
forward_stage_index,
backward_stage_index,
num_1f1b_microbatches,
enable_zero_bubble=True,
)
def _add_bubbles_to_actions(self, num_stages_global):
actions = self.pipeline_order
def need_bubble(stage, op, microbatch, num_stages_global, seen_ops):
if op == _ComputationType.FORWARD:
if stage != 0 and (stage - 1, op, microbatch) not in seen_ops:
return True
elif op == _ComputationType.FULL_BACKWARD:
if stage == num_stages_global - 1:
return (stage, _ComputationType.FORWARD, microbatch) not in seen_ops
return (stage + 1, op, microbatch) not in seen_ops
return False
seen_ops: set[tuple[int, _ComputationType, int]] = set()
result: dict[int, list[Optional[_Action]]] = {}
next_pointer: dict[int, int] = {}
bubbles_added: dict[int, int] = {}
total_bubbles_added = 0
for rank in range(self.pp_group_size):
result[rank] = []
next_pointer[rank] = 0
bubbles_added[rank] = 0
while True:
should_stop = True
temp_seen_ops: set[tuple[int, _ComputationType, int]] = set()
for rank in range(self.pp_group_size):
timestamp = next_pointer[rank]
if timestamp >= len(actions[rank]):
continue
should_stop = False
if actions[rank][timestamp] is not None:
temp_action = actions[rank][timestamp]
assert temp_action is not None
stage_index, op, microbatch = temp_action
if not need_bubble(
stage_index, op, microbatch, num_stages_global, seen_ops
):
result[rank].append(actions[rank][timestamp])
if microbatch is not None:
temp_seen_ops.add((stage_index, op, microbatch))
next_pointer[rank] += 1
else:
result[rank].append(None)
bubbles_added[rank] += 1
else:
next_pointer[rank] += 1
result[rank].append(None)
seen_ops.update(temp_seen_ops)
if should_stop:
break
if total_bubbles_added > 0:
logger.warning(
"Non zero bubbles added: total_bubbles_added=%s bubbles_added=%s",
total_bubbles_added,
bubbles_added,
)
return result
class ScheduleZBVZeroBubble(PipelineScheduleMulti):
"""
The Zero Bubble schedule (ZBV variant).
See https://arxiv.org/pdf/2401.10241 Section 6 for details.
This schedules requires exactly two stages per rank.
This schedule will perform one forward and one backward on inputs for the microbatches in steady
state and supports multiple stages per rank. Uses backward with respect to weights to fill in
the pipeline bubble.
This ZB-V schedule would have the "zero bubble" property only if time forward == time backward input == time backward weights.
In practice, this is not likely true for real models so alternatively
a greedy scheduler could be implemented for unequal/unbalanced time.
"""
def __init__(
self,
stages: list[_PipelineStageBase],
n_microbatches: int,
loss_fn: Optional[Callable] = None,
args_chunk_spec: Optional[tuple[TensorChunkSpec, ...]] = None,
kwargs_chunk_spec: Optional[dict[str, TensorChunkSpec]] = None,
output_merge_spec: Optional[Union[dict[str, Any], tuple[Any]]] = None,
scale_grads: bool = True,
):
self.pp_group_size = stages[0].group_size
super().__init__(
stages=stages,
n_microbatches=n_microbatches,
loss_fn=loss_fn,
args_chunk_spec=args_chunk_spec,
kwargs_chunk_spec=kwargs_chunk_spec,
output_merge_spec=output_merge_spec,
scale_grads=scale_grads,
)
self.stage_index_to_group_rank = generate_stage_to_rank_mapping(
self.pp_group_size, self._num_stages, style="v"
)
for stage in self._stages:
stage.stage_index_to_group_rank = self.stage_index_to_group_rank
self.n_local_stages = len(stages)
if self.n_local_stages != 2:
raise ValueError(
"ZBV requires exactly 2 stages per rank, but got "
f"{self.n_local_stages}."
)
self.rank = stages[0].group_rank
self.num_stages = stages[0].num_stages
# 1. Create the pipeline_order (all ranks do this calculation)
# This will be used to keep track of the current state of the entire pipeline
# pipeline_order[rank] = [Action(computation_type, microbatch_index, stage_index), ...]
self.pipeline_order: dict[int, list[Optional[_Action]]] = {}
for rank in range(self.pp_group_size):
rank_ops = self._calculate_single_rank_operations(rank)
self.pipeline_order[rank] = rank_ops
def _calculate_single_rank_operations(self, rank) -> list[Optional[_Action]]:
# max(2 * self.pp_group_size - 1, ...) ensure the number of microbatches is at least
# as large of the number of microbatches needed to fully utilize the pipeline
n_micro = max(2 * self.pp_group_size - 1, self._n_microbatches)
rank_ops: list[Optional[_Action]] = [None for _ in range(rank)]
# Forward and backward action counts for stage chunk 0 and chunk 1
f0_cnt, f1_cnt, b0_cnt, b1_cnt = 0, 0, 0, 0
# warm-up phase
warmup_n1 = 2 * (self.pp_group_size - rank) - 1
stage_id_chunk0 = rank
stage_id_chunk1 = self.num_stages - 1 - rank
for _ in range(warmup_n1):
rank_ops.append(
_Action(stage_id_chunk0, computation_type=F, microbatch_index=f0_cnt)
)
f0_cnt += 1
warmup_n2 = rank
for _ in range(warmup_n2):
rank_ops.append(
_Action(stage_id_chunk1, computation_type=F, microbatch_index=f1_cnt)
)
f1_cnt += 1
rank_ops.append(
_Action(stage_id_chunk0, computation_type=F, microbatch_index=f0_cnt)
)
f0_cnt += 1
warmup_n3 = self.pp_group_size - rank
for _ in range(warmup_n3):
rank_ops.append(
_Action(stage_id_chunk1, computation_type=F, microbatch_index=f1_cnt)
)
f1_cnt += 1
rank_ops.append(
_Action(stage_id_chunk1, computation_type=I, microbatch_index=b1_cnt)
)
rank_ops.append(
_Action(stage_id_chunk1, computation_type=W, microbatch_index=b1_cnt)
)
b1_cnt += 1
# stable phase
while f1_cnt < f0_cnt or f0_cnt < n_micro:
if f0_cnt < n_micro:
rank_ops.append(
_Action(
stage_id_chunk0, computation_type=F, microbatch_index=f0_cnt
)
)
f0_cnt += 1
rank_ops.append(
_Action(stage_id_chunk0, computation_type=I, microbatch_index=b0_cnt)
)
rank_ops.append(
_Action(stage_id_chunk0, computation_type=W, microbatch_index=b0_cnt)
)
b0_cnt += 1
rank_ops.append(
_Action(stage_id_chunk1, computation_type=F, microbatch_index=f1_cnt)
)
f1_cnt += 1
rank_ops.append(
_Action(stage_id_chunk1, computation_type=I, microbatch_index=b1_cnt)
)
rank_ops.append(
_Action(stage_id_chunk1, computation_type=W, microbatch_index=b1_cnt)
)
b1_cnt += 1
# cool-down phase
w0_cnt, w1_cnt = b0_cnt, b1_cnt
cooldown_n1 = rank
for _ in range(cooldown_n1):
rank_ops.append(
_Action(stage_id_chunk0, computation_type=I, microbatch_index=b0_cnt)
)
b0_cnt += 1
rank_ops.append(
_Action(stage_id_chunk1, computation_type=I, microbatch_index=b1_cnt)
)
b1_cnt += 1
cooldown_n2 = self.pp_group_size - rank
for _ in range(cooldown_n2):
rank_ops.append(
_Action(stage_id_chunk0, computation_type=I, microbatch_index=b0_cnt)
)
b0_cnt += 1
rank_ops.append(
_Action(stage_id_chunk0, computation_type=W, microbatch_index=w0_cnt)
)
w0_cnt += 1
while w1_cnt < b1_cnt:
rank_ops.append(
_Action(stage_id_chunk1, computation_type=W, microbatch_index=w1_cnt)
)
w1_cnt += 1
while w0_cnt < b0_cnt:
rank_ops.append(
_Action(stage_id_chunk0, computation_type=W, microbatch_index=w0_cnt)
)
w0_cnt += 1
assert w0_cnt == b0_cnt and b0_cnt == f0_cnt
assert w1_cnt == b1_cnt and b1_cnt == f1_cnt
# We use max() in the n_micro computation above, so we may need to
# remove redundant microbatches
rank_ops = [
(
action
if action is not None
and action.microbatch_index is not None
and action.microbatch_index < self._n_microbatches
else None
)
for action in rank_ops
]
return rank_ops
def get_schedule_class(schedule_name: str):
"""
Maps a schedule name (case insensitive) to its corresponding class object.
Args:
schedule_name (str): The name of the schedule.
"""
schedule_map = {
"1F1B": Schedule1F1B,
"Interleaved1F1B": ScheduleInterleaved1F1B,
"GPipe": ScheduleGPipe,
"LoopedBFS": ScheduleLoopedBFS,
"InterleavedZeroBubble": ScheduleInterleavedZeroBubble,
"PipelineScheduleSingle": PipelineScheduleSingle,
"PipelineScheduleMulti": PipelineScheduleMulti,
"ZBVZeroBubble": ScheduleZBVZeroBubble,
}
lowercase_keys = {k.lower(): k for k in schedule_map.keys()}
lowercase_schedule_name = schedule_name.lower()
if lowercase_schedule_name not in lowercase_keys:
raise ValueError(
f"Unknown schedule name '{schedule_name}'. The valid options are {list(schedule_map.keys())}"
)
return schedule_map[lowercase_keys[lowercase_schedule_name]]
def _simulate_comms_compute(
pipeline_order, stage_to_rank: Callable[[int], int], num_stages: int
):
"""This function dry-run simulates the actions in the schedule from the perspective of all ranks, and flags
any deadlocks caused by missing or misordered communications. It also simulates any bubbles in time where a rank
can not execute any action due to waiting for unmet dependencies. The total number of simulator steps can be used
as a metric for unit tests involving IR optimization passes as reordering and merging of IR can reduce the number
of simulated steps.
The simulation is not high-fidelity and does not model overlapping of compute and communication, or cuda streams.
Future work may be to enhance this and model the compute time, comms overlap, and even memory.
"""
pipeline_order = {
rank: [a for a in pipeline_order[rank] if a is not None]
for rank in sorted(pipeline_order)
}
_schedule: dict[int, list[_Action | None]] = {
rank: [] for rank in sorted(pipeline_order)
}
_prev_ops_rank: dict[int, set[_Action]] = {rank: set() for rank in _schedule}
def add_to_schedule(rank: int, action: Optional[_Action]):
_schedule[rank].append(action)
if action is not None:
_prev_ops_rank[rank].add(action)
def _ready_to_schedule(action: Optional[_Action]) -> bool:
if action is None:
return True
stage_idx = action.stage_index
prev_ops = _prev_ops_rank[stage_to_rank(stage_idx)]
if action.computation_type == F:
if action.stage_index == 0:
return True
elif (
_Action(action.stage_index, RECV_F, action.microbatch_index) in prev_ops
):
return True
elif (
_Action(action.stage_index - 1, F, action.microbatch_index) in prev_ops
):
return True
return False
elif action.computation_type in (BACKWARD_INPUT, FULL_BACKWARD):
if action.stage_index == num_stages - 1:
return True
if _Action(action.stage_index, RECV_B, action.microbatch_index) in prev_ops:
return True
if (
_Action(action.stage_index + 1, BACKWARD_INPUT, action.microbatch_index)
in prev_ops
):
return True
if (
_Action(action.stage_index + 1, FULL_BACKWARD, action.microbatch_index)
in prev_ops
):
return True
return False
elif action.computation_type == BACKWARD_WEIGHT:
return True
elif action.computation_type == SEND_F:
expected_f = _Action(action.stage_index, F, action.microbatch_index)
return expected_f in prev_ops
elif action.computation_type == RECV_F:
peer_stage_idx = stage_idx - 1
expected_send = _Action(peer_stage_idx, SEND_F, action.microbatch_index)
return expected_send in _prev_ops_rank[stage_to_rank(peer_stage_idx)]
elif action.computation_type == SEND_B:
expected_b = _Action(
action.stage_index, BACKWARD_INPUT, action.microbatch_index
)
expected_bw = _Action(
action.stage_index, FULL_BACKWARD, action.microbatch_index
)
return expected_b in prev_ops or expected_bw in prev_ops
elif action.computation_type == RECV_B:
peer_stage_idx = stage_idx + 1
expected_send = _Action(peer_stage_idx, SEND_B, action.microbatch_index)
return expected_send in _prev_ops_rank[stage_to_rank(peer_stage_idx)]
else:
raise ValueError(f"Unsupported action type {action}")
while pipeline_order:
progress = False
for rank in sorted(pipeline_order):
if len(pipeline_order[rank]) == 0:
continue
action = pipeline_order[rank][0]
if _ready_to_schedule(action):
if action is not None:
add_to_schedule(rank, action)
pipeline_order[rank].pop(0)
progress = True
else:
add_to_schedule(rank, None)
for i in sorted(pipeline_order, reverse=True):
if len(pipeline_order[i]) == 0:
del pipeline_order[i]
# hacky, but do a second pass to replace any 'none' at this timestep with a real action, if it got unblocked
# by one of the later ranks
for rank in sorted(pipeline_order):
if len(pipeline_order[rank]) == 0:
continue
if _schedule[rank][-1] is not None:
continue
action = pipeline_order[rank][0]
if _ready_to_schedule(action):
if action is not None:
_schedule[rank][-1] = action
_prev_ops_rank[rank].add(action)
pipeline_order[rank].pop(0)
for i in sorted(pipeline_order, reverse=True):
if len(pipeline_order[i]) == 0:
del pipeline_order[i]
if not progress:
print("WIP comms schedule:\n", _format_pipeline_order(_schedule))
for rank in pipeline_order:
print(f"{rank=} next action= {pipeline_order[rank][0]}")
raise ValueError("Schedule is not progressing")
return _schedule
def _dump_chrometrace(schedule, filename):
"""
This function dumps a schedule IR into a chrometrace format so it can be visualized.
It is currently very basic and only serves as a graphical alternative to dumping the schedule IR as text.
As future work we may extend this to include more accurate heuristics for durations, or let users input durations,
add 'flow events' to let the UI show the connection between sends and recvs, and model cuda streams for comm/compute
as separate streams on the chrometrace view.
"""
events = []
for rank in sorted(schedule):
for timestep, action in enumerate(schedule[rank]):
if action is None:
continue
events.append(
{
"name": str(action),
"cat": (
"computation"
if action.computation_type in (F, B, W)
else "communication"
),
"ph": "X",
"pid": rank,
"tid": rank,
"ts": timestep,
"dur": 1,
}
)
import json
with open(filename, "w") as f:
json.dump({"traceEvents": events}, f)
|