File size: 45,020 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
# mypy: allow-untyped-defs
r"""This package adds support for device memory management implemented in CUDA."""

import collections
import contextlib
import ctypes
import pickle
import sys
import warnings
from inspect import signature
from typing import Any, Literal, Optional, Union
from typing_extensions import deprecated

import torch
from torch import _C
from torch._utils import _dummy_type
from torch.types import Device

from . import (
    _get_amdsmi_device_index,
    _get_device_index,
    _get_nvml_device_index,
    _lazy_init,
    is_initialized,
)
from ._memory_viz import memory as _memory, segments as _segments


__all__ = [
    "caching_allocator_alloc",
    "caching_allocator_delete",
    "caching_allocator_enable",
    "get_per_process_memory_fraction",
    "set_per_process_memory_fraction",
    "empty_cache",
    "memory_stats",
    "memory_stats_as_nested_dict",
    "reset_accumulated_memory_stats",
    "reset_peak_memory_stats",
    "reset_max_memory_allocated",
    "reset_max_memory_cached",
    "host_memory_stats",
    "host_memory_stats_as_nested_dict",
    "reset_accumulated_host_memory_stats",
    "reset_peak_host_memory_stats",
    "memory_allocated",
    "max_memory_allocated",
    "memory_reserved",
    "max_memory_reserved",
    "memory_cached",
    "max_memory_cached",
    "memory_snapshot",
    "memory_summary",
    "list_gpu_processes",
    "mem_get_info",
    "get_allocator_backend",
    "CUDAPluggableAllocator",
    "change_current_allocator",
    "MemPool",
    "MemPoolContext",
    "use_mem_pool",
]


if not hasattr(torch._C, "_cuda_CUDAAllocator"):
    # Define dummy base classes
    torch._C.__dict__["_cuda_CUDAAllocator"] = _dummy_type("_cuda_CUDAAllocator")


if not hasattr(torch._C, "_MemPool"):
    # Define dummy base classes
    torch._C.__dict__["_MemPool"] = _dummy_type("_MemPool")
    torch._C.__dict__["_MemPoolContext"] = _dummy_type("_MemPoolContext")
    torch._C.__dict__["_cuda_beginAllocateToPool"] = _dummy_type(
        "_cuda_beginAllocateToPool"
    )
    torch._C.__dict__["_cuda_endAllocateCurrentStreamToPool"] = _dummy_type(
        "_cuda_endAllocateCurrentStreamToPool"
    )
    torch._C.__dict__["_cuda_releasePool"] = _dummy_type("_cuda_releasePool")

from torch._C import (  # noqa: F401
    _cuda_beginAllocateToPool,
    _cuda_CUDAAllocator,
    _cuda_endAllocateCurrentStreamToPool,
    _cuda_releasePool,
    _MemPool,
    _MemPoolContext,
)


def _host_allocator():
    _lazy_init()
    return torch._C._cuda_cudaHostAllocator()


@contextlib.contextmanager
def _free_mutex():
    torch._C._cuda_lock_mutex()
    try:
        yield
    finally:
        torch._C._cuda_unlock_mutex()


def caching_allocator_alloc(size, device: Union[Device, int] = None, stream=None):
    r"""Perform a memory allocation using the CUDA memory allocator.

    Memory is allocated for a given device and a stream, this
    function is intended to be used for interoperability with other
    frameworks. Allocated memory is released through
    :func:`~torch.cuda.caching_allocator_delete`.

    Args:
        size (int): number of bytes to be allocated.
        device (torch.device or int, optional): selected device. If it is
            ``None`` the default CUDA device is used.
        stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then
            the default stream for the selected device is used.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    if stream is None:
        stream = torch.cuda.current_stream(device)
    if isinstance(stream, torch.cuda.streams.Stream):
        stream = stream.cuda_stream
    if not isinstance(stream, int):
        raise TypeError(
            "Invalid type for stream argument, must be "
            "`torch.cuda.Stream` or `int` representing a pointer "
            "to a existing stream"
        )
    with torch.cuda.device(device):
        return torch._C._cuda_cudaCachingAllocator_raw_alloc(size, stream)


def caching_allocator_delete(mem_ptr):
    r"""Delete memory allocated using the CUDA memory allocator.

    Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`.
    is freed here. The associated device and stream are tracked inside
    the allocator.

    Args:
        mem_ptr (int): memory address to be freed by the allocator.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)


def caching_allocator_enable(value: bool = True) -> None:
    r"""Enable or disable the CUDA memory allocator. On by default."""
    if is_initialized():
        torch._C._cuda_cudaCachingAllocator_enable(value)


def set_per_process_memory_fraction(
    fraction, device: Union[Device, int] = None
) -> None:
    r"""Set memory fraction for a process.

    The fraction is used to limit an caching allocator to allocated memory on a CUDA device.
    The allowed value equals the total visible memory multiplied fraction.
    If trying to allocate more than the allowed value in a process, will raise an out of
    memory error in allocator.

    Args:
        fraction(float): Range: 0~1. Allowed memory equals total_memory * fraction.
        device (torch.device or int, optional): selected device. If it is
            ``None`` the default CUDA device is used.
    .. note::
        In general, the total available free memory is less than the total capacity.
    """
    _lazy_init()
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    if not isinstance(fraction, float):
        raise TypeError("Invalid type for fraction argument, must be `float`")
    if fraction < 0 or fraction > 1:
        raise ValueError(f"Invalid fraction value: {fraction}. Allowed range: 0~1")

    torch._C._cuda_setMemoryFraction(fraction, device)


def get_per_process_memory_fraction(device: Union[Device, int] = None) -> float:
    r"""Get memory fraction for a process.

    Args:
        device (torch.device or int, optional): selected device. If it is
            ``None`` the default CUDA device is used.
    Returns:
        memory fraction, in range 0~1. Allowed memory equals total_memory * fraction.
    """
    _lazy_init()
    if device is None:
        device = torch.cuda.current_device()
    device = _get_device_index(device)
    return torch._C._cuda_getMemoryFraction(device)


def empty_cache() -> None:
    r"""Release all unoccupied cached memory currently held by the caching
    allocator so that those can be used in other GPU application and visible in
    `nvidia-smi`.

    .. note::
        :func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU
        memory available for PyTorch. However, it may help reduce fragmentation
        of GPU memory in certain cases. See :ref:`cuda-memory-management` for
        more details about GPU memory management.
    """
    if is_initialized():
        torch._C._cuda_emptyCache()


def memory_stats(device: Union[Device, int] = None) -> dict[str, Any]:
    r"""Return a dictionary of CUDA memory allocator statistics for a given device.

    The return value of this function is a dictionary of statistics, each of
    which is a non-negative integer.

    Core statistics:

    - ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of allocation requests received by the memory allocator.
    - ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of allocated memory.
    - ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of reserved segments from ``cudaMalloc()``.
    - ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of reserved memory.
    - ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of active memory blocks.
    - ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of active memory.
    - ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      number of inactive, non-releasable memory blocks.
    - ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      amount of inactive, non-releasable memory.

    For these core statistics, values are broken down as follows.

    Pool type:

    - ``all``: combined statistics across all memory pools.
    - ``large_pool``: statistics for the large allocation pool
      (as of October 2019, for size >= 1MB allocations).
    - ``small_pool``: statistics for the small allocation pool
      (as of October 2019, for size < 1MB allocations).

    Metric type:

    - ``current``: current value of this metric.
    - ``peak``: maximum value of this metric.
    - ``allocated``: historical total increase in this metric.
    - ``freed``: historical total decrease in this metric.

    In addition to the core statistics, we also provide some simple event
    counters:

    - ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that
      result in a cache flush and retry.
    - ``"num_ooms"``: number of out-of-memory errors thrown.
    - ``"num_sync_all_streams"``: number of ``synchronize_and_free_events`` calls.
    - ``"num_device_alloc"``: number of CUDA allocation calls. This includes both
      cuMemMap and cudaMalloc.
    - ``"num_device_free"``: number of CUDA free calls. This includes both cuMemUnmap
      and cudaFree.

    The caching allocator can be configured via ENV to not split blocks larger than a
    defined size (see Memory Management section of the Cuda Semantics documentation).
    This helps avoid memory fragmentation but may have a performance
    penalty. Additional outputs to assist with tuning and evaluating impact:

    - ``"max_split_size"``: blocks above this size will not be split.
    - ``"oversize_allocations.{current,peak,allocated,freed}"``:
      number of over-size allocation requests received by the memory allocator.
    - ``"oversize_segments.{current,peak,allocated,freed}"``:
      number of over-size reserved segments from ``cudaMalloc()``.

    The caching allocator can be configured via ENV to round memory allocations in order
    to reduce fragmentation. Sometimes the overhead from rounding can be higher than
    the fragmentation it helps reduce. The following stat can be used to check if
    rounding adds too much overhead:

    - ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
      memory requested by client code, compare this with allocated_bytes to check if
      allocation rounding adds too much overhead.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistics for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.

    .. note::
        With :ref:`backend:cudaMallocAsync<cuda-memory-envvars>`, some stats are not
        meaningful, and are always reported as zero.
    """
    result = []

    def _recurse_add_to_result(prefix, obj):
        if isinstance(obj, dict):
            if len(prefix) > 0:
                prefix += "."
            for k, v in obj.items():
                _recurse_add_to_result(prefix + k, v)
        else:
            result.append((prefix, obj))

    stats = memory_stats_as_nested_dict(device=device)
    _recurse_add_to_result("", stats)
    result.sort()

    return collections.OrderedDict(result)


def memory_stats_as_nested_dict(device: Union[Device, int] = None) -> dict[str, Any]:
    r"""Return the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""
    if not is_initialized():
        return {}
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_memoryStats(device)


def reset_accumulated_memory_stats(device: Union[Device, int] = None) -> None:
    r"""Reset the "accumulated" (historical) stats tracked by the CUDA memory allocator.

    See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to
    the `"allocated"` and `"freed"` keys in each individual stat dict, as well as
    `"num_alloc_retries"` and `"num_ooms"`.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_resetAccumulatedMemoryStats(device)


def reset_peak_memory_stats(device: Union[Device, int] = None) -> None:
    r"""Reset the "peak" stats tracked by the CUDA memory allocator.

    See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the
    `"peak"` key in each individual stat dict.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    return torch._C._cuda_resetPeakMemoryStats(device)


def host_memory_stats() -> dict[str, Any]:
    r"""Return a dictionary of CUDA memory allocator statistics for a given device.

     The return value of this function is a dictionary of statistics, each of
     which is a non-negative integer.

     Core statistics:

     - ``"allocated.{current,peak,allocated,freed}"``:
       number of allocation requests received by the memory allocator.
     - ``"allocated_bytes.{current,peak,allocated,freed}"``:
       amount of allocated memory.
     - ``"segment.{current,peak,allocated,freed}"``:
       number of reserved segments from ``cudaMalloc()``.
     - ``"reserved_bytes.{current,peak,allocated,freed}"``:
       amount of reserved memory.

     For these core statistics, values are broken down as follows.

     Metric type:

     - ``current``: current value of this metric.
     - ``peak``: maximum value of this metric.
     - ``allocated``: historical total increase in this metric.
     - ``freed``: historical total decrease in this metric.

     In addition to the core statistics, we also provide some simple event
     counters:

     - ``"num_host_alloc"``: number of CUDA allocation calls. This includes both
       cudaHostAlloc and cudaHostRegister.
     - ``"num_host_free"``: number of CUDA free calls. This includes both cudaHostFree
       and cudaHostUnregister.

     Finally, we also provide some simple timing counters:

     - ``"host_alloc_time.{total,max,min,count,avg}"``:
       timing of allocation requests going through CUDA calls.
     - ``"host_free_time.{total,max,min,count,avg}"``:
       timing of free requests going through CUDA calls.

    For these timing statistics, values are broken down as follows.

     Metric type:

     - ``total``: total time spent.
     - ``max``: maximum value per call.
     - ``min``: minimum value per call.
     - ``count``: number of times it was called.
     - ``avg``: average time per call.
    """
    result = []

    def _recurse_add_to_result(prefix, obj):
        if isinstance(obj, dict):
            if len(prefix) > 0:
                prefix += "."
            for k, v in obj.items():
                _recurse_add_to_result(prefix + k, v)
        else:
            result.append((prefix, obj))

    stats = host_memory_stats_as_nested_dict()
    _recurse_add_to_result("", stats)
    result.sort()

    return collections.OrderedDict(result)


def host_memory_stats_as_nested_dict() -> dict[str, Any]:
    r"""Return the result of :func:`~torch.cuda.host_memory_stats` as a nested dictionary."""
    if not is_initialized():
        return {}
    return torch._C._cuda_hostMemoryStats()


def reset_accumulated_host_memory_stats() -> None:
    r"""Reset the "accumulated" (historical) stats tracked by the host memory allocator.

    See :func:`~torch.cuda.host_memory_stats` for details. Accumulated stats correspond to
    the `"allocated"` and `"freed"` keys in each individual stat dict.
    """
    return torch._C._cuda_resetAccumulatedHostMemoryStats()


def reset_peak_host_memory_stats() -> None:
    r"""Reset the "peak" stats tracked by the host memory allocator.

    See :func:`~torch.cuda.host_memory_stats` for details. Peak stats correspond to the
    `"peak"` key in each individual stat dict.
    """
    return torch._C._cuda_resetPeakHostMemoryStats()


def reset_max_memory_allocated(device: Union[Device, int] = None) -> None:
    r"""Reset the starting point in tracking maximum GPU memory occupied by tensors for a given device.

    See :func:`~torch.cuda.max_memory_allocated` for details.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. warning::
        This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
        /all/ peak memory stats.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    warnings.warn(
        "torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, "
        "which resets /all/ peak memory stats.",
        FutureWarning,
    )
    return reset_peak_memory_stats(device=device)


def reset_max_memory_cached(device: Union[Device, int] = None) -> None:
    r"""Reset the starting point in tracking maximum GPU memory managed by the caching allocator for a given device.

    See :func:`~torch.cuda.max_memory_cached` for details.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. warning::
        This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
        /all/ peak memory stats.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    warnings.warn(
        "torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, "
        "which resets /all/ peak memory stats.",
        FutureWarning,
    )
    return reset_peak_memory_stats(device=device)


def memory_allocated(device: Union[Device, int] = None) -> int:
    r"""Return the current GPU memory occupied by tensors in bytes for a given device.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        This is likely less than the amount shown in `nvidia-smi` since some
        unused memory can be held by the caching allocator and some context
        needs to be created on GPU. See :ref:`cuda-memory-management` for more
        details about GPU memory management.
    """
    return memory_stats(device=device).get("allocated_bytes.all.current", 0)


def max_memory_allocated(device: Union[Device, int] = None) -> int:
    r"""Return the maximum GPU memory occupied by tensors in bytes for a given device.

    By default, this returns the peak allocated memory since the beginning of
    this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to
    reset the starting point in tracking this metric. For example, these two
    functions can measure the peak allocated memory usage of each iteration in a
    training loop.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("allocated_bytes.all.peak", 0)


def memory_reserved(device: Union[Device, int] = None) -> int:
    r"""Return the current GPU memory managed by the caching allocator in bytes for a given device.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("reserved_bytes.all.current", 0)


def max_memory_reserved(device: Union[Device, int] = None) -> int:
    r"""Return the maximum GPU memory managed by the caching allocator in bytes for a given device.

    By default, this returns the peak cached memory since the beginning of this
    program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset
    the starting point in tracking this metric. For example, these two functions
    can measure the peak cached memory amount of each iteration in a training
    loop.

    Args:
        device (torch.device or int, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return memory_stats(device=device).get("reserved_bytes.all.peak", 0)


@deprecated(
    "`torch.cuda.memory_cached` has been renamed to `torch.cuda.memory_reserved`",
    category=FutureWarning,
)
def memory_cached(device: Union[Device, int] = None) -> int:
    r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""
    return memory_reserved(device=device)


@deprecated(
    "`torch.cuda.max_memory_cached` has been renamed to `torch.cuda.max_memory_reserved`",
    category=FutureWarning,
)
def max_memory_cached(device: Union[Device, int] = None) -> int:
    r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""
    return max_memory_reserved(device=device)


def memory_snapshot():
    r"""Return a snapshot of the CUDA memory allocator state across all devices.

    Interpreting the output of this function requires familiarity with the
    memory allocator internals.

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    return torch._C._cuda_memorySnapshot()["segments"]


def memory_summary(device: Union[Device, int] = None, abbreviated: bool = False) -> str:
    r"""Return a human-readable printout of the current memory allocator statistics for a given device.

    This can be useful to display periodically during training, or when
    handling out-of-memory exceptions.

    Args:
        device (torch.device or int, optional): selected device. Returns
            printout for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).
        abbreviated (bool, optional): whether to return an abbreviated summary
            (default: False).

    .. note::
        See :ref:`cuda-memory-management` for more details about GPU memory
        management.
    """
    device = _get_device_index(device, optional=True)
    stats = memory_stats(device=device)

    def _format_size(sz, pref_sz):
        prefixes = ["B  ", "KiB", "MiB", "GiB", "TiB", "PiB"]
        prefix = prefixes[0]
        for new_prefix in prefixes[1:]:
            if pref_sz < 768 * 1024:
                break
            prefix = new_prefix
            sz //= 1024
            pref_sz /= 1024
        return f"{sz:6d} {prefix}"

    def _format_count(cnt, pref_cnt):
        prefixes = [" ", "K", "M"]
        prefix = prefixes[0]
        for new_prefix in prefixes[1:]:
            if pref_cnt < 750 * 1000:
                break
            prefix = new_prefix
            cnt //= 1000
            pref_cnt /= 1000
        return f"{cnt:7d} {prefix} "

    metrics_to_display = [
        ("allocated_bytes", "Allocated memory", _format_size),
        ("active_bytes", "Active memory", _format_size),
        ("requested_bytes", "Requested memory", _format_size),
        ("reserved_bytes", "GPU reserved memory", _format_size),
        ("inactive_split_bytes", "Non-releasable memory", _format_size),
        ("allocation", "Allocations", _format_count),
        ("active", "Active allocs", _format_count),
        ("segment", "GPU reserved segments", _format_count),
        ("inactive_split", "Non-releasable allocs", _format_count),
    ]

    lines = []
    lines.append("=" * 75)
    lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")
    lines.append("-" * 75)
    lines.append(
        "  {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d}  "
    )
    lines.append("=" * 75)
    lines.append(
        "        Metric         | Cur Usage  | Peak Usage | Tot Alloc  | Tot Freed  "
    )

    for metric_key, metric_name, formatter in metrics_to_display:
        lines.append("-" * 75)
        submetrics = [("all", metric_name)]
        if not abbreviated:
            submetrics.append(("large_pool", "      from large pool"))
            submetrics.append(("small_pool", "      from small pool"))

        current_prefval, peak_prefval, allocated_prefval, freed_prefval = (
            None,
            None,
            None,
            None,
        )

        for submetric_key, submetric_name in submetrics:
            prefix = metric_key + "." + submetric_key + "."

            current = stats[prefix + "current"]
            peak = stats[prefix + "peak"]
            allocated = stats[prefix + "allocated"]
            freed = stats[prefix + "freed"]

            if current_prefval is None:
                current_prefval = current
                peak_prefval = peak
                allocated_prefval = allocated
                freed_prefval = freed

            lines.append(
                f" {submetric_name:<21} | {formatter(current, current_prefval)} | {formatter(peak, peak_prefval)} | "
                f"{formatter(allocated, allocated_prefval)} | {formatter(freed, freed_prefval)} ",
            )

    metrics_to_display = [
        ("oversize_allocations", "Oversize allocations", _format_count),
        ("oversize_segments", "Oversize GPU segments", _format_count),
    ]

    for metric_key, metric_name, formatter in metrics_to_display:
        lines.append("-" * 75)

        prefix = metric_key + "."

        current = stats[prefix + "current"]
        peak = stats[prefix + "peak"]
        allocated = stats[prefix + "allocated"]
        freed = stats[prefix + "freed"]

        lines.append(
            f" {metric_name:<21} | {formatter(current, current)} | {formatter(peak, peak)} | "
            f"{formatter(allocated, allocated)} | {formatter(freed, freed)} ",
        )

    lines.append("=" * 75)

    fmt_dict = {"_": "", "device": device}
    for k, v in stats.items():
        fmt_dict[k.replace(".", "-")] = v
    return "|" + "|\n|".join(lines).format(**fmt_dict) + "|\n"


def list_gpu_processes(device: Union[Device, int] = None) -> str:
    r"""Return a human-readable printout of the running processes and their GPU memory use for a given device.

    This can be useful to display periodically during training, or when
    handling out-of-memory exceptions.

    Args:
        device (torch.device or int, optional): selected device. Returns
            printout for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).
    """
    if not torch.version.hip:
        try:
            import pynvml  # type: ignore[import]
        except ModuleNotFoundError:
            return "pynvml module not found, please install pynvml"
        from pynvml import NVMLError_DriverNotLoaded

        try:
            pynvml.nvmlInit()
        except NVMLError_DriverNotLoaded:
            return "cuda driver can't be loaded, is cuda enabled?"

        device = _get_nvml_device_index(device)
        handle = pynvml.nvmlDeviceGetHandleByIndex(device)
        procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
    else:
        try:
            import amdsmi  # type: ignore[import]
        except ModuleNotFoundError:
            return "amdsmi module not found, please install amdsmi"
        try:
            amdsmi.amdsmi_init()  # type: ignore[attr-defined]
        except amdsmi.AmdSmiException:  # type: ignore[attr-defined]
            return "amdsmi driver can't be loaded, is ROCm installed?"

        device = _get_amdsmi_device_index(device)

        try:
            handle = amdsmi.amdsmi_get_processor_handles()[device]  # type: ignore[attr-defined]
            procs = amdsmi.amdsmi_get_gpu_process_list(handle)  # type: ignore[attr-defined]
        except amdsmi.AmdSmiException:  # type: ignore[attr-defined]
            return "amdsmi cannot list processes from other users"

    lines = []
    lines.append(f"GPU:{device}")
    if len(procs) == 0:
        lines.append("no processes are running")
    for p in procs:
        if not torch.version.hip:
            mem = p.usedGpuMemory / (1024 * 1024)
            pid = p.pid
        else:
            try:
                proc_info = amdsmi.amdsmi_get_gpu_process_info(handle, p)  # type: ignore[possibly-undefined]
            except AttributeError:
                # https://github.com/ROCm/amdsmi/commit/c551c3caedbd903ba828e7fdffa5b56d475a15e7
                # is a BC-breaking change that removes amdsmi_get_gpu_process_info API from amdsmi
                proc_info = p
            mem = proc_info["memory_usage"]["vram_mem"] / (1024 * 1024)
            pid = proc_info["pid"]
        lines.append(f"process {pid:>10d} uses {mem:>12.3f} MB GPU memory")
    return "\n".join(lines)


def mem_get_info(device: Union[Device, int] = None) -> tuple[int, int]:
    r"""Return the global free and total GPU memory for a given device using cudaMemGetInfo.

    Args:
        device (torch.device or int or str, optional): selected device. Returns
            statistic for the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default) or if the device index is not specified.

    .. note::
        See :ref:`cuda-memory-management` for more
        details about GPU memory management.
    """
    if device is None:
        device = torch.cuda.current_device()
    # optional=True allows `device = torch.device('cuda')` for which device.index is None
    device = _get_device_index(device, optional=True)
    return torch.cuda.cudart().cudaMemGetInfo(device)


def _record_memory_history_legacy(
    enabled: bool,
    record_context=True,
    trace_alloc_max_entries=1,
    trace_alloc_record_context=False,
    device: Union[Device, int] = None,
    record_context_cpp=False,
):
    _C._cuda_record_memory_history_legacy(
        enabled,
        record_context,
        trace_alloc_max_entries,
        trace_alloc_record_context,
        record_context_cpp,
    )


def _record_memory_history(
    enabled: Literal[None, "state", "all"] = "all", *args, **kwargs
) -> None:
    """Enable recording of stack traces associated with memory
    allocations, so you can tell what allocated any piece of memory in
    :func:`torch.cuda.memory._snapshot()`.

    In addition too keeping stack traces with each current allocation and free,
    this will also enable recording of a history of all alloc/free events.

    Use :func:`torch.cuda.memory._snapshot()` to retrieve this information,
    and the tools in `_memory_viz.py` to visualize snapshots.

    The Python trace collection is fast (2us per trace), so you may consider
    enabling this on production jobs if you anticipate ever having to debug
    memory issues.

    C++ trace collection is also fast (~50ns/frame), which for many typical programs
    works out to ~2us per trace, but can vary depending on stack depth.

    Args:
        enabled (Literal[None, "state", "all"], optional):
            `None`, disable recording memory history.
            `"state"`, keep information for currenly allocated memory.
            `"all"`, additionally keep a history of all alloc/free calls.
            Defaults to "all".
        context (Literal[None, "state", "alloc", "all"], optional):
            `None`, Do not record any tracebacks.
            `"state"`, Record tracebacks for currently allocated memory.
            `"alloc"`, additionally keep tracebacks for alloc calls.
            `"all"`, additionally keep tracebacks for free calls.
            Defaults to "all".
        stacks (Literal["python", "all"], optional):
            `"python"`, include Python, TorchScript, and inductor frames in tracebacks
            `"all"`, additionally include C++ frames
            Defaults to "all".
        max_entries (int, optional): Keep a maximum of `max_entries`
            alloc/free events in the recorded history recorded.
    """
    if isinstance(enabled, bool):
        return _record_memory_history_legacy(enabled, *args, **kwargs)
    else:
        return _record_memory_history_impl(enabled, *args, **kwargs)


def _record_memory_history_impl(
    enabled: Optional[str] = "all",
    context: Optional[str] = "all",
    stacks: str = "all",
    max_entries: int = sys.maxsize,
    device: Union[Device, int] = None,
):
    _C._cuda_record_memory_history(enabled, context, stacks, max_entries)


_record_memory_history.__signature__ = signature(_record_memory_history_impl)  # type: ignore[attr-defined]


def _snapshot(device: Union[Device, int] = None):
    """Save a snapshot of CUDA memory state at the time it was called.

    The state is represented as a dictionary with the following structure.

    .. code-block:: python

        class Snapshot(TypedDict):
            segments : List[Segment]
            device_traces: List[List[TraceEntry]]

        class Segment(TypedDict):
            # Segments are memory returned from a cudaMalloc call.
            # The size of reserved memory is the sum of all Segments.
            # Segments are cached and reused for future allocations.
            # If the reuse is smaller than the segment, the segment
            # is split into more then one Block.
            # empty_cache() frees Segments that are entirely inactive.
            address: int
            total_size: int #  cudaMalloc'd size of segment
            stream: int
            segment_type: Literal['small', 'large'] # 'large' (>1MB)
            allocated_size: int # size of memory in use
            active_size: int # size of memory in use or in active_awaiting_free state
            blocks : List[Block]

        class Block(TypedDict):
            # A piece of memory returned from the allocator, or
            # current cached but inactive.
            size: int
            requested_size: int # size requested during malloc, may be smaller than
                                # size due to rounding
            address: int
            state: Literal['active_allocated', # used by a tensor
                        'active_awaiting_free', # waiting for another stream to finish using
                                                # this, then it will become free
                        'inactive',] # free for reuse
            frames: List[Frame] # stack trace from where the allocation occurred

        class Frame(TypedDict):
                filename: str
                line: int
                name: str

        class TraceEntry(TypedDict):
            # When `torch.cuda.memory._record_memory_history()` is enabled,
            # the snapshot will contain TraceEntry objects that record each
            # action the allocator took.
            action: Literal[
            'alloc'  # memory allocated
            'free_requested', # the allocated received a call to free memory
            'free_completed', # the memory that was requested to be freed is now
                            # able to be used in future allocation calls
            'segment_alloc', # the caching allocator ask cudaMalloc for more memory
                            # and added it as a segment in its cache
            'segment_free',  # the caching allocator called cudaFree to return memory
                            # to cuda possibly trying free up memory to
                            # allocate more segments or because empty_caches was called
            'oom',          # the allocator threw an OOM exception. 'size' is
                            # the requested number of bytes that did not succeed
            'snapshot'      # the allocator generated a memory snapshot
                            # useful to coorelate a previously taken
                            # snapshot with this trace
            ]
            addr: int # not present for OOM
            frames: List[Frame]
            size: int
            stream: int
            device_free: int # only present for OOM, the amount of
                            # memory cuda still reports to be free

    Returns:
        The Snapshot dictionary object
    """
    return _C._cuda_memorySnapshot()


def _dump_snapshot(filename="dump_snapshot.pickle"):
    """
    Save a pickled version of the `torch.memory._snapshot()` dictionary to a file.

    This file can be opened by the interactive snapshot viewer at pytorch.org/memory_viz

    Args:
        filename (str, optional): Name of the file to create. Defaults to "dump_snapshot.pickle".
    """
    s = _snapshot()
    with open(filename, "wb") as f:
        pickle.dump(s, f)


def _save_segment_usage(filename="output.svg", snapshot=None):
    if snapshot is None:
        snapshot = _snapshot()
    with open(filename, "w") as f:
        f.write(_segments(snapshot))


def _save_memory_usage(filename="output.svg", snapshot=None):
    if snapshot is None:
        snapshot = _snapshot()
    with open(filename, "w") as f:
        f.write(_memory(snapshot))


def _set_allocator_settings(env: str):
    return torch._C._cuda_cudaCachingAllocator_set_allocator_settings(env)


def get_allocator_backend() -> str:
    r"""Return a string describing the active allocator backend as set by
    ``PYTORCH_CUDA_ALLOC_CONF``. Currently available backends are
    ``native`` (PyTorch's native caching allocator) and `cudaMallocAsync``
    (CUDA's built-in asynchronous allocator).

    .. note::
        See :ref:`cuda-memory-management` for details on choosing the allocator backend.
    """
    return torch._C._cuda_getAllocatorBackend()


class _CUDAAllocator:
    r"""Wrapper over internal CUDA memory allocators."""

    def __init__(self, allocator: torch._C._cuda_CUDAAllocator):
        self._allocator = allocator

    def allocator(self):
        return self._allocator


class CUDAPluggableAllocator(_CUDAAllocator):
    r"""CUDA memory allocator loaded from a so file."""

    def __init__(self, path_to_so_file: str, alloc_fn_name: str, free_fn_name: str):
        r"""Memory allocators are compiled in .so files and loaded dynamically using ctypes.

        To change the active allocator use the :func:`torch.memory.cuda.change_current_allocator` function.

        Args:
            path_to_so_file(str): Path in the filesystem to the `.so` file containing
                the allocator functions
            alloc_fn_name(str): Name of the function to perform the memory allocation
                in the so file. The signature must be:
                void* alloc_fn_name(ssize_t size, int device, cudaStream_t stream);
            free_fn_name(str): Name of the function to perform the memory release
                in the so file. The signature must be:
                void free_fn_name(void* ptr, size_t size, cudaStream_t stream);

        .. warning::
            This is currently supported only in unix OSs

        .. note::
            See :ref:`cuda-memory-management` for details on creating and using a custom allocator
        """
        allocator = ctypes.CDLL(path_to_so_file)
        alloc_fn = ctypes.cast(getattr(allocator, alloc_fn_name), ctypes.c_void_p).value
        free_fn = ctypes.cast(getattr(allocator, free_fn_name), ctypes.c_void_p).value
        assert alloc_fn is not None
        assert free_fn is not None
        self._allocator = torch._C._cuda_customAllocator(alloc_fn, free_fn)


def change_current_allocator(allocator: _CUDAAllocator) -> None:
    r"""Change the currently used memory allocator to be the one provided.

    If the current allocator has already been used/initialized, this function will error.


    Args:
        allocator (torch.cuda.memory._CUDAAllocator): allocator to be set as the active one.
    .. note::
        See :ref:`cuda-memory-management` for details on creating and using a custom allocator
    """
    torch._C._cuda_changeCurrentAllocator(allocator.allocator())


def _get_current_allocator() -> _CUDAAllocator:
    r"""Return the allocator being currently used.

    .. note::
        See :ref:`cuda-memory-management` for details on creating and using a custom allocator
    """
    return _CUDAAllocator(torch._C._cuda_getAllocator())


class MemPoolContext(_MemPoolContext):
    r"""MemPoolContext holds the currently active pool and stashes the previous
    pool. On deletion it makes the previous pool active.

    Args:
        pool(torch.cuda.MemPool): a MemPool object to be made active so that
        allocations route to this pool.

    """

    def __init__(self, pool: _MemPool):
        super().__init__(pool)

    @staticmethod
    def active_pool() -> Optional[_MemPool]:
        r"""Returns the active MemPool"""
        return _MemPoolContext.active_pool()


class MemPool(_MemPool):
    r"""MemPool represents a pool of memory in a caching allocator. Currently,
    it's just the ID of the pool object maintained in the CUDACachingAllocator.

    Args:
        allocator(torch._C._cuda_CUDAAllocator, optional): a
            torch._C._cuda_CUDAAllocator object that can be used to
            define how memory gets allocated in the pool. If :attr:`allocator`
            is ``None`` (default), memory allocation follows the default/
            current configuration of the CUDACachingAllocator.

    """

    def __init__(self, allocator: Optional[_cuda_CUDAAllocator] = None):
        super().__init__(allocator, True)

    @property
    def id(self) -> tuple[int, int]:
        r"""Returns the ID of this pool as a tuple of two ints."""
        return super().id

    @property
    def allocator(self) -> Optional[_cuda_CUDAAllocator]:
        r"""Returns the allocator this MemPool routes allocations to."""
        return super().allocator

    def use_count(self) -> int:
        r"""Returns the reference count of this pool."""
        return super().use_count()

    def snapshot(self):
        r"""Return a snapshot of the CUDA memory allocator pool state across all
        devices.

        Interpreting the output of this function requires familiarity with the
        memory allocator internals.

        .. note::
            See :ref:`cuda-memory-management` for more details about GPU memory
            management.
        """
        try:
            ctx = MemPoolContext(self)
            snapshot = torch.cuda.memory_snapshot()
        finally:
            del ctx
        return snapshot


@contextlib.contextmanager
def use_mem_pool(pool: MemPool, device: Union[Device, int] = None):
    r"""A context manager that routes allocations to a given pool.

    Args:
        pool(torch.cuda.MemPool): a MemPool object to be made active so that
            allocations route to this pool.
        device (torch.device or int, optional): selected device. Uses MemPool on
            the current device, given by :func:`~torch.cuda.current_device`,
            if :attr:`device` is ``None`` (default).

    """
    ctx = MemPoolContext(pool)
    device_index = (
        torch.cuda.current_device() if device is None else _get_device_index(device)
    )
    _cuda_beginAllocateToPool(device_index, pool.id)
    try:
        yield
    finally:
        _cuda_endAllocateCurrentStreamToPool(device_index, pool.id)
        _cuda_releasePool(device_index, pool.id)
        del ctx