File size: 75,761 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
# temporarily skip RUF for this file for now, we can re-enable
# after move the affine quantization related things to torchao
# noqa: RUF
"""
This module implements observers which are used to collect statistics about
the values observed during calibration (PTQ) or training (QAT).
"""

import re
import warnings
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from functools import partial
from typing import Any, Optional

import torch
import torch.nn as nn
from torch.ao.quantization.utils import (
    calculate_qmin_qmax,
    check_min_max_valid,
    is_per_channel,
    is_per_tensor,
    validate_qmin_qmax,
)


__all__ = [
    "default_affine_fixed_qparams_observer",
    "default_debug_observer",
    "default_dynamic_quant_observer",
    "default_fixed_qparams_range_0to1_observer",
    "default_fixed_qparams_range_neg1to1_observer",
    "default_float_qparams_observer",
    "default_float_qparams_observer_4bit",
    "default_histogram_observer",
    "default_observer",
    "default_per_channel_weight_observer",
    "default_placeholder_observer",
    "default_reuse_input_observer",
    "default_symmetric_fixed_qparams_observer",
    "default_weight_observer",
    "get_observer_state_dict",
    "load_observer_state_dict",
    "per_channel_weight_observer_range_neg_127_to_127",
    "weight_observer_range_neg_127_to_127",
    "FixedQParamsObserver",
    "HistogramObserver",
    "MinMaxObserver",
    "MovingAverageMinMaxObserver",
    "MovingAveragePerChannelMinMaxObserver",
    "NoopObserver",
    "ObserverBase",
    "PerChannelMinMaxObserver",
    "PlaceholderObserver",
    "RecordingObserver",
    "ReuseInputObserver",
    "UniformQuantizationObserverBase",
    "AffineQuantizedObserverBase",
    "Granularity",
    "MappingType",
    "PerAxis",
    "PerBlock",
    "PerGroup",
    "PerRow",
    "PerTensor",
    "PerToken",
    "TorchAODType",
    "ZeroPointDomain",
    "get_block_size",
]


class _PartialWrapper:
    def __init__(self, p):
        self.p = p
        self.callable_args = {}

    def __call__(self, *args, **keywords):
        # call each arg in callable_args and add them partial, then run with keywords
        # skip if arg_name in keywords so its possible to overwrite
        for arg_name in self.callable_args:
            if arg_name not in keywords:
                keywords = {**keywords, arg_name: self.callable_args[arg_name]()}
        return self.p(*args, **keywords)

    def __repr__(self):
        return self.p.__repr__() + self.callable_args.__repr__()

    def with_args(self, **kwargs):
        return _with_args(self, **kwargs)

    def with_callable_args(self, **kwargs):
        result = _PartialWrapper(p=self.p)
        result.callable_args = {**self.callable_args, **kwargs}
        return result


def _with_args(cls_or_self, **kwargs):
    r"""Wrapper that allows creation of class factories.

    This can be useful when there is a need to create classes with the same
    constructor arguments, but different instances. Can be used in conjunction with
    _callable_args

    Example::

        >>> # xdoctest: +SKIP("Undefined vars")
        >>> Foo.with_args = classmethod(_with_args)
        >>> foo_builder = Foo.with_args(a=3, b=4).with_args(answer=42)
        >>> foo_instance1 = foo_builder()
        >>> foo_instance2 = foo_builder()
        >>> id(foo_instance1) == id(foo_instance2)
        False
    """
    r = _PartialWrapper(partial(cls_or_self, **kwargs))
    return r


def _with_callable_args(cls_or_self, **kwargs):
    r"""Wrapper that allows creation of class factories args that need to be
    called at construction time.

    This can be useful when there is a need to create classes with the same
    constructor arguments, but different instances and those arguments should only
    be calculated at construction time. Can be used in conjunction with _with_args

    Example::

        >>> # xdoctest: +SKIP("Undefined vars")
        >>> Foo.with_callable_args = classmethod(_with_callable_args)
        >>> Foo.with_args = classmethod(_with_args)
        >>> foo_builder = Foo.with_callable_args(cur_time=get_time_func).with_args(name="dan")
        >>> foo_instance1 = foo_builder()
        >>> # wait 50
        >>> foo_instance2 = foo_builder()
        >>> id(foo_instance1.creation_time) == id(foo_instance2.creation_time)
        False
    """
    r = _PartialWrapper(partial(cls_or_self))
    return r.with_callable_args(**kwargs)


ABC: Any = ABCMeta("ABC", (object,), {})  # compatible with Python 2 *and* 3:


class ObserverBase(ABC, nn.Module):
    r"""Base observer Module.
    Any observer implementation should derive from this class.

    Concrete observers should follow the same API. In forward, they will update
    the statistics of the observed Tensor. And they should provide a
    `calculate_qparams` function that computes the quantization parameters given
    the collected statistics.

    Args:
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        is_dynamic: indicator for whether the observer is a placeholder for dynamic quantization
        or static quantization
    """

    def __init__(self, dtype, is_dynamic: bool = False):
        super().__init__()
        self.dtype = dtype
        self.is_dynamic = is_dynamic

    @abstractmethod
    def forward(self, x):
        pass

    @abstractmethod
    def calculate_qparams(self, **kwargs):
        pass

    with_args = classmethod(_with_args)
    with_callable_args = classmethod(_with_callable_args)


class UniformQuantizationObserverBase(ObserverBase):
    r"""Common base for all observers using uniform quantization to calculate
    scale and zero_point.

    Args:
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        qscheme: Quantization scheme to be used.
        reduce_range: Reduces the range of the quantized data type by 1 bit.
                      This is sometimes required to avoid instruction overflow.
        quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup.
        quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup.
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    .. warning::

        :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``.
               or `torch.int8` or `torch.uint8`

    .. warning::

        :attr:`qscheme` can only take one of the following options:

        - ``torch.per_tensor_affine``
        - ``torch.per_tensor_symmetric``
        - ``torch.per_channel_affine``
        - ``torch.per_channel_symmetric``
    """

    # Note: the version is shared by all observer types
    #
    # Version 1/None
    #   self
    #
    # Version 2 (base class only, does not include child class buffers)
    #   self
    #   |--- eps : Tensor
    #
    # Version 3
    #   for HistogramObserver only, changed the shape of uninitialized
    #   min_val and max_val buffers from torch.Size([0]) to torch.Size([])
    #   for PerChannelObservers, changed the name of the buffers from min_vals
    #   to min_val and from max_vals to max_val.
    _version = 3

    eps: torch.Tensor

    def __init__(
        self,
        dtype=torch.quint8,
        qscheme=torch.per_tensor_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        factory_kwargs=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
        super().__init__(dtype=dtype, is_dynamic=is_dynamic, **kwargs)
        self.qscheme = qscheme
        if reduce_range:
            warnings.warn(
                "Please use quant_min and quant_max to specify the range for observers. \
                    reduce_range will be deprecated in a future release of PyTorch."
            )
        self.reduce_range = reduce_range
        self.register_buffer("eps", torch.tensor([eps], **factory_kwargs))
        assert self.qscheme in (
            torch.per_tensor_affine,
            torch.per_tensor_symmetric,
            torch.per_channel_affine,
            torch.per_channel_symmetric,
            torch.per_channel_affine_float_qparams,
        ), "Default Observer only works for per_tensor_affine, \
                per_tensor_symmetric, per_channel_affine, \
                per_channel_symmetric and per_channel_float_qparams quantization scheme"

        _ALLOWED_DTYPES = (
            torch.qint8,
            torch.quint8,
            torch.quint4x2,
            torch.qint32,
            torch.int8,
            torch.uint8,
            torch.int16,
            torch.int32,
            torch.float8_e5m2,
            torch.float8_e4m3fn,
            torch.uint16,
        )

        assert (
            self.dtype in _ALLOWED_DTYPES
        ), f"Default Observer only works for {_ALLOWED_DTYPES} data type"
        self.has_customized_qrange = (quant_min is not None) and (quant_max is not None)
        if self.has_customized_qrange:
            validate_qmin_qmax(quant_min, quant_max)
        self.quant_min, self.quant_max = calculate_qmin_qmax(
            quant_min,
            quant_max,
            self.has_customized_qrange,
            self.dtype,
            self.reduce_range,
        )

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if version is None or version == 1:
            # eps was moved to a buffer in version 2
            eps = torch.tensor([torch.finfo(torch.float32).eps])
            state_dict[prefix + "eps"] = eps

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    @torch.jit.export
    def _validate_qmin_qmax(self, quant_min: int, quant_max: int) -> None:
        r"""Validates that the user-specified quantization range is properly initialized
        and within the given bound supported by the observer dtype.

        To accommodate lower-bit quantization with respect to the existing torch.qint8 and
        torch.quint8 datatypes, the user can choose to use dynamic quantization range by passing
        in a tuple of initial qmin and qmax values. One use case is these customized qmin and qmax
        values are used to calculate static estimates of the scale and zero point for aggressive lower-bit
        fake quantization. These estimates are compared against parameters learned through backpropagation.
        The related literatures for scale and zero point via backpropagation are as follows:

        Learned Step Size Quantization: https://openreview.net/pdf?id=rkgO66VKDS
        Trained Quantization Thresholds: https://arxiv.org/pdf/1903.08066.pdf
        """
        # The variable names are prefixed with "initial" because their values (qmin and qmax) might be adjusted
        # based on whether quantization range is reduced and the datatype (signed/unsigned) used by the observer.
        assert (
            quant_min <= 0 <= quant_max
        ), "Used-specified quantization range must include 0."
        assert (
            quant_min < quant_max
        ), "qmin must be strictly less than qmax for user-specified quantization range."

    @torch.jit.export
    def _calculate_qparams(
        self, min_val: torch.Tensor, max_val: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor]:
        r"""Calculates the quantization parameters, given min and max
        value tensors. Works for both per tensor and per channel cases

        Args:
            min_val: Minimum values per channel
            max_val: Maximum values per channel

        Returns:
            scales: Scales tensor of shape (#channels,)
            zero_points: Zero points tensor of shape (#channels,)
        """
        # Functionally equivalent to 'determine_qparams' in utils.py. Observers must be torchscriptable however and qscheme
        # as far as I can tell is not allowed to passed as a parameter in torchscript functions. This makes refactoring observer
        # to use this utility a massive pain and very gross. For now Im opting just to duplicate as this code
        # seems unlikey to change (last update over 1 year ago) and when torchscript is fully deprecated we can refactor.
        # TODO(jakeszwe, jerryzh168)
        if not check_min_max_valid(min_val, max_val):
            return torch.tensor([1.0], device=min_val.device.type), torch.tensor(
                [0], device=min_val.device.type
            )

        quant_min, quant_max = self.quant_min, self.quant_max
        min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
        max_val_pos = torch.max(max_val, torch.zeros_like(max_val))

        device = min_val_neg.device
        scale = torch.ones(min_val_neg.size(), dtype=torch.float32, device=device)
        zero_point = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)

        if (
            self.qscheme == torch.per_tensor_symmetric
            or self.qscheme == torch.per_channel_symmetric
        ):
            max_val_pos = torch.max(-min_val_neg, max_val_pos)
            scale = max_val_pos / (float(quant_max - quant_min) / 2)
            scale = torch.max(scale, self.eps)
            if self.dtype in [torch.quint8, torch.uint8]:
                if self.has_customized_qrange:
                    # When customized quantization range is used, down-rounded midpoint of the range is chosen.
                    zero_point = zero_point.new_full(
                        zero_point.size(), (quant_min + quant_max) // 2
                    )
                else:
                    zero_point = zero_point.new_full(zero_point.size(), 128)
            elif self.dtype in [torch.uint16]:
                zero_point = zero_point.new_full(zero_point.size(), 2**15)
        elif self.qscheme == torch.per_channel_affine_float_qparams:
            scale = (max_val - min_val) / float(quant_max - quant_min)
            scale = torch.where(scale > self.eps, scale, torch.ones_like(scale))
            # We use the quantize function
            # xq = Round(Xf * inv_scale + zero_point),
            # setting zero_point to (-1 * min *inv_scale) we get
            # Xq = Round((Xf - min) * inv_scale)
            zero_point = -1 * min_val / scale
        else:
            scale = (max_val_pos - min_val_neg) / float(quant_max - quant_min)
            scale = torch.max(scale, self.eps)
            zero_point = quant_min - torch.round(min_val_neg / scale).to(torch.int)
            zero_point = torch.clamp(zero_point, quant_min, quant_max)

        # For scalar values, cast them to Tensors of size 1 to keep the shape
        # consistent with default values in FakeQuantize.
        if len(scale.shape) == 0:
            # TODO: switch to scale.item() after adding JIT support
            scale = torch.tensor([float(scale)], dtype=scale.dtype, device=device)
        if len(zero_point.shape) == 0:
            # TODO: switch to zero_point.item() after adding JIT support
            zero_point = torch.tensor(
                [int(zero_point)], dtype=zero_point.dtype, device=device
            )
            if self.qscheme == torch.per_channel_affine_float_qparams:
                zero_point = torch.tensor(
                    [float(zero_point)], dtype=zero_point.dtype, device=device
                )

        return scale, zero_point

    @torch.jit.export
    def reset_min_max_vals(self):
        raise NotImplementedError("Cannot reset min/max values in the given observer.")


# Originally, this class was called `_ObserverBase`.  Keeping the old name around
# for backwards compatibility.
# TODO(after v1.13): delete this
_ObserverBase = UniformQuantizationObserverBase


class MinMaxObserver(UniformQuantizationObserverBase):
    r"""Observer module for computing the quantization parameters based on the
    running min and max values.

    This observer uses the tensor min/max statistics to compute the quantization
    parameters. The module records the running minimum and maximum of incoming
    tensors, and uses this statistic to compute the quantization parameters.

    Args:
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
        quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup.
        quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup.
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    Given running min/max as :math:`x_\text{min}` and :math:`x_\text{max}`,
    scale :math:`s` and zero point :math:`z` are computed as:

    The running minimum/maximum :math:`x_\text{min/max}` is computed as:

    .. math::

        \begin{array}{ll}
        x_\text{min} &= \begin{cases}
            \min(X) & \text{if~}x_\text{min} = \text{None} \\
            \min\left(x_\text{min}, \min(X)\right) & \text{otherwise}
        \end{cases}\\
        x_\text{max} &= \begin{cases}
            \max(X) & \text{if~}x_\text{max} = \text{None} \\
            \max\left(x_\text{max}, \max(X)\right) & \text{otherwise}
        \end{cases}\\
        \end{array}

    where :math:`X` is the observed tensor.

    The scale :math:`s` and zero point :math:`z` are then computed as:

    .. math::

        \begin{aligned}
            \text{if Symmetric:}&\\
            &s = 2 \max(|x_\text{min}|, x_\text{max}) /
                \left( Q_\text{max} - Q_\text{min} \right) \\
            &z = \begin{cases}
                0 & \text{if dtype is qint8} \\
                128 & \text{otherwise}
            \end{cases}\\
            \text{Otherwise:}&\\
                &s = \left( x_\text{max} - x_\text{min}  \right ) /
                    \left( Q_\text{max} - Q_\text{min} \right ) \\
                &z = Q_\text{min} - \text{round}(x_\text{min} / s)
        \end{aligned}

    where :math:`Q_\text{min}` and :math:`Q_\text{max}` are the minimum and
    maximum of the quantized data type.

    .. warning:: :attr:`dtype` can only take ``torch.qint8`` or ``torch.quint8``.

    .. note:: If the running minimum equals to the running maximum, the scale
              and zero_point are set to 1.0 and 0.
    """
    min_val: torch.Tensor
    max_val: torch.Tensor

    def __init__(
        self,
        dtype=torch.quint8,
        qscheme=torch.per_tensor_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        factory_kwargs=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        if not is_per_tensor(qscheme):
            raise NotImplementedError(
                "MinMaxObserver's qscheme only support torch.per_tensor_symmetric \
                    and torch.per_tensor_affine."
            )
        # TODO: MinMaxObserver by itself doesn't support dynamic quantization, but
        # if it's inherited by MovingAverageObserver, and averaging_constant is 1, it
        # supports dynamic quantization, we may need to better error checking here

        # For x86 quantized kernels, we need to ensure that the vpmaddubsw
        # instruction does not overflow. We allow for a reduce_range argument to
        # observers that reduces the quantized range to (0,127) or (-64, 63).
        # For more details see aten/src/ATen/native/quantized/cpu/qconv.cpp
        # This is not an optimal choice for non x86 backends as it loses a bit
        # of precision for activations.
        super().__init__(
            dtype=dtype,
            qscheme=qscheme,
            reduce_range=reduce_range,
            quant_min=quant_min,
            quant_max=quant_max,
            factory_kwargs=factory_kwargs,
            eps=eps,
            is_dynamic=is_dynamic,
            **kwargs,
        )
        factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
        self.register_buffer("min_val", torch.tensor(float("inf"), **factory_kwargs))
        self.register_buffer("max_val", torch.tensor(float("-inf"), **factory_kwargs))
        if (
            self.qscheme == torch.per_tensor_symmetric
            and self.reduce_range
            and self.dtype == torch.quint8
        ):
            raise NotImplementedError(
                "Cannot reduce range for symmetric \
                                       quantization for quint8"
            )

    def forward(self, x_orig):
        r"""Records the running minimum and maximum of ``x``."""
        if x_orig.numel() == 0:
            return x_orig
        x = x_orig.detach()  # avoid keeping autograd tape
        x = x.to(self.min_val.dtype)
        min_val_cur, max_val_cur = torch.aminmax(x)
        min_val = torch.min(min_val_cur, self.min_val)
        max_val = torch.max(max_val_cur, self.max_val)
        self.min_val.copy_(min_val)
        self.max_val.copy_(max_val)
        return x_orig

    @torch.jit.export
    def calculate_qparams(self):
        r"""Calculates the quantization parameters."""
        return self._calculate_qparams(self.min_val, self.max_val)

    @torch.jit.export
    def extra_repr(self):
        return f"min_val={self.min_val}, max_val={self.max_val}"

    @torch.jit.export
    def reset_min_max_vals(self):
        """Resets the min/max values."""
        self.min_val.copy_(torch.tensor(float("inf")))
        self.max_val.copy_(torch.tensor(float("-inf")))


class MovingAverageMinMaxObserver(MinMaxObserver):
    r"""Observer module for computing the quantization parameters based on the
    moving average of the min and max values.

    This observer computes the quantization parameters based on the moving
    averages of minimums and maximums of the incoming tensors. The module
    records the average minimum and maximum of incoming tensors, and uses this
    statistic to compute the quantization parameters.

    Args:
        averaging_constant: Averaging constant for min/max.
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
        quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup.
        quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup.
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    The moving average min/max is computed as follows

    .. math::

        \begin{array}{ll}
                x_\text{min} = \begin{cases}
                    \min(X) & \text{if~}x_\text{min} = \text{None} \\
                    (1 - c) x_\text{min} + c \min(X) & \text{otherwise}
                \end{cases}\\
                x_\text{max} = \begin{cases}
                    \max(X) & \text{if~}x_\text{max} = \text{None} \\
                    (1 - c) x_\text{max} + c \max(X) & \text{otherwise}
                \end{cases}\\
        \end{array}

    where :math:`x_\text{min/max}` is the running average min/max, :math:`X` is
    is the incoming tensor, and :math:`c` is the ``averaging_constant``.

    The scale and zero point are then computed as in
    :class:`~torch.ao.quantization.observer.MinMaxObserver`.

    .. note:: Only works with ``torch.per_tensor_affine`` quantization scheme.

    .. note:: If the running minimum equals to the running maximum, the scale
              and zero_point are set to 1.0 and 0.
    """

    def __init__(
        self,
        averaging_constant=0.01,
        dtype=torch.quint8,
        qscheme=torch.per_tensor_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        if not is_per_tensor(qscheme):
            raise NotImplementedError(
                f"MovingAverageMinMaxObserver's qscheme only support \
                torch.per_tensor_symmetric and torch.per_tensor_affine. \
                but got: {qscheme}"
            )
        self.averaging_constant = averaging_constant
        if is_dynamic and self.averaging_constant != 1:
            raise NotImplementedError(
                "MovingAverageMinMaxObserver doesn't support dynamic quantization for "
                f"averaging constant of {self.averaging_constant}"
            )
        super().__init__(
            dtype=dtype,
            qscheme=qscheme,
            reduce_range=reduce_range,
            quant_min=quant_min,
            quant_max=quant_max,
            eps=eps,
            is_dynamic=is_dynamic,
            **kwargs,
        )

    def forward(self, x_orig):
        if x_orig.numel() == 0:
            return x_orig
        x = x_orig.detach()  # avoid keeping autograd tape
        x = x.to(self.min_val.dtype)
        min_val = self.min_val
        max_val = self.max_val
        if min_val == float("inf") and max_val == float("-inf"):
            min_val, max_val = torch.aminmax(x)
        else:
            min_val_cur, max_val_cur = torch.aminmax(x)
            min_val = min_val + self.averaging_constant * (min_val_cur - min_val)
            max_val = max_val + self.averaging_constant * (max_val_cur - max_val)
        self.min_val.copy_(min_val)
        self.max_val.copy_(max_val)
        return x_orig


class PerChannelMinMaxObserver(UniformQuantizationObserverBase):
    r"""Observer module for computing the quantization parameters based on the
    running per channel min and max values.

    This observer uses the tensor min/max statistics to compute the per channel
    quantization parameters. The module records the running minimum and maximum
    of incoming tensors, and uses this statistic to compute the quantization
    parameters.

    Args:
        ch_axis: Channel axis
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
        quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup.
        quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup.
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    The quantization parameters are computed the same way as in
    :class:`~torch.ao.quantization.observer.MinMaxObserver`, with the difference
    that the running min/max values are stored per channel.
    Scales and zero points are thus computed per channel as well.

    .. note:: If the running minimum equals to the running maximum, the scales
              and zero_points are set to 1.0 and 0.
    """
    min_val: torch.Tensor
    max_val: torch.Tensor

    def __init__(
        self,
        ch_axis=0,
        dtype=torch.quint8,
        qscheme=torch.per_channel_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        factory_kwargs=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        if not is_per_channel(qscheme):
            raise NotImplementedError(
                "PerChannelMinMaxObserver's qscheme only support \
                    torch.per_channel_symmetric, torch.per_channel_affine and torch.per_channel_affine_float_qparams."
            )
        if is_dynamic:
            raise NotImplementedError(
                "PerChannelMinMaxObserver doesn't support dynamic quantization"
            )
        super().__init__(
            dtype=dtype,
            qscheme=qscheme,
            reduce_range=reduce_range,
            quant_min=quant_min,
            quant_max=quant_max,
            factory_kwargs=factory_kwargs,
            eps=eps,
            is_dynamic=is_dynamic,
            **kwargs,
        )
        factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
        self.ch_axis = ch_axis
        self.register_buffer("min_val", torch.tensor([], **factory_kwargs))
        self.register_buffer("max_val", torch.tensor([], **factory_kwargs))
        if (
            self.qscheme == torch.per_channel_symmetric
            and self.reduce_range
            and self.dtype == torch.quint8
        ):
            raise NotImplementedError(
                "Cannot reduce range for symmetric quantization for quint8"
            )

    def forward(self, x_orig):
        return self._forward(x_orig)

    def _forward(self, x_orig):
        if x_orig.numel() == 0:
            return x_orig
        x = x_orig.detach()  # avoid keeping autograd tape
        min_val = self.min_val
        max_val = self.max_val
        x_dim = x.size()

        new_axis_list = [i for i in range(len(x_dim))]  # noqa: C416
        new_axis_list[self.ch_axis] = 0
        new_axis_list[0] = self.ch_axis
        y = x.permute(new_axis_list)
        # Need to match dtype of min/max because the updates to buffers
        # are done in place and types need to match for comparisons
        y = y.to(self.min_val.dtype)
        y = torch.flatten(y, start_dim=1)
        if min_val.numel() == 0 or max_val.numel() == 0:
            min_val, max_val = torch.aminmax(y, dim=1)
        else:
            min_val_cur, max_val_cur = torch.aminmax(y, dim=1)
            min_val = torch.min(min_val_cur, min_val)
            max_val = torch.max(max_val_cur, max_val)
        self.min_val.resize_(min_val.shape)
        self.max_val.resize_(max_val.shape)
        self.min_val.copy_(min_val)
        self.max_val.copy_(max_val)
        return x_orig

    @torch.jit.export
    def calculate_qparams(self):
        return self._calculate_qparams(self.min_val, self.max_val)

    def extra_repr(self):
        return f"min_val={self.min_val}, max_val={self.max_val}"

    def _load_from_state_dict(
        self,
        state_dict: dict[str, Any],
        prefix: str,
        local_metadata: dict[str, torch.Tensor],
        strict: bool,
        missing_keys: list[str],
        unexpected_keys: list[str],
        error_msgs: list[str],
    ):
        version = local_metadata.get("version", None)
        if version is not None and version < 3:
            local_state = ["min_vals", "max_vals"]
            expected_min_name = "min_vals"
            expected_max_name = "max_vals"
        else:
            local_state = ["min_val", "max_val"]
            expected_min_name = "min_val"
            expected_max_name = "max_val"
        for name in local_state:
            key = prefix + name
            if key in state_dict:
                val = state_dict[key]
                # Custom handling to allow loading min_val or max_val
                # of size N into uninitialized buffers of size 0. The
                # buffers are resized here, and the values are copied in
                # the default state_dict loading code of the parent.
                if name == expected_min_name:
                    self.min_val.resize_(val.shape)
                elif name == expected_max_name:
                    self.max_val.resize_(val.shape)
                else:
                    warnings.warn(
                        f"Observer load_from_state_dict got unexpected name {name}"
                    )
                # For torchscript module we need to update the attributes here since we do not
                # call the `_load_from_state_dict` function defined module.py
                if torch.jit.is_scripting():
                    if name == expected_min_name:
                        self.min_val.copy_(val)
                    elif name == expected_max_name:
                        self.max_val.copy_(val)
                    else:
                        warnings.warn(
                            f"Observer load_from_state_dict got unexpected name {name}"
                        )
            elif strict:
                missing_keys.append(key)

        if not torch.jit.is_scripting():
            super()._load_from_state_dict(
                state_dict,
                prefix,
                local_metadata,
                False,
                missing_keys,
                unexpected_keys,
                error_msgs,
            )

    def _load_from_state_dict_script(
        self,
        state_dict: dict[str, Any],
        prefix: str,
        local_metadata: dict[str, torch.Tensor],
        strict: bool,
        missing_keys: list[str],
        unexpected_keys: list[str],
        error_msgs: list[str],
    ):
        self._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    @torch.jit.export
    def reset_min_max_vals(self):
        """Resets the min/max values."""
        # This used to be torch.ones but that does not work because
        # JIT compiler can optimize it via common subexpression elimination
        # in which case both min_val and max_val point to the same tensor.
        self.min_val = torch.rand(
            0,
        )
        self.max_val = torch.rand(
            0,
        )


class MovingAveragePerChannelMinMaxObserver(PerChannelMinMaxObserver):
    r"""Observer module for computing the quantization parameters based on the
    running per channel min and max values.

    This observer uses the tensor min/max statistics to compute the per channel
    quantization parameters. The module records the running minimum and maximum
    of incoming tensors, and uses this statistic to compute the quantization
    parameters.

    Args:
        averaging_constant: Averaging constant for min/max.
        ch_axis: Channel axis
        dtype: Quantized data type
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
        quant_min: Minimum quantization value. If unspecified, it will follow the 8-bit setup.
        quant_max: Maximum quantization value. If unspecified, it will follow the 8-bit setup.
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    The quantization parameters are computed the same way as in
    :class:`~torch.ao.quantization.observer.MovingAverageMinMaxObserver`, with the
    difference that the running min/max values are stored per channel.
    Scales and zero points are thus computed per channel as well.

    .. note:: If the running minimum equals to the running maximum, the scales
              and zero_points are set to 1.0 and 0.
    """

    def __init__(
        self,
        averaging_constant=0.01,
        ch_axis=0,
        dtype=torch.quint8,
        qscheme=torch.per_channel_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        if not is_per_channel(qscheme):
            raise NotImplementedError(
                "MovingAveragePerChannelMinMaxObserver's qscheme only support \
                    torch.per_channel_symmetric, torch.per_channel_affine and torch.per_channel_affine_float_qparams."
            )
        if is_dynamic:
            raise NotImplementedError(
                "MovingAveragePerChannelMinMaxObserver doesn't support dynamic quantization"
            )
        super().__init__(
            ch_axis=ch_axis,
            dtype=dtype,
            qscheme=qscheme,
            reduce_range=reduce_range,
            quant_min=quant_min,
            quant_max=quant_max,
            eps=eps,
            is_dynamic=is_dynamic,
            **kwargs,
        )
        self.averaging_constant = averaging_constant

    def forward(self, x_orig):
        if x_orig.numel() == 0:
            return x_orig
        x = x_orig.detach()  # avoid keeping autograd tape
        x = x.to(self.min_val.dtype)
        min_val = self.min_val
        max_val = self.max_val
        x_dim = x.size()

        new_axis_list = [i for i in range(len(x_dim))]  # noqa: C416
        new_axis_list[self.ch_axis] = 0
        new_axis_list[0] = self.ch_axis
        y = x.permute(new_axis_list)
        y = torch.flatten(y, start_dim=1)
        if min_val.numel() == 0 or max_val.numel() == 0:
            min_val, max_val = torch.aminmax(y, dim=1)
        else:
            min_val_cur, max_val_cur = torch.aminmax(y, dim=1)
            min_val = min_val + self.averaging_constant * (min_val_cur - min_val)
            max_val = max_val + self.averaging_constant * (max_val_cur - max_val)
        self.min_val.resize_(min_val.shape)
        self.max_val.resize_(max_val.shape)
        self.min_val.copy_(min_val)
        self.max_val.copy_(max_val)
        return x_orig


class HistogramObserver(UniformQuantizationObserverBase):
    r"""
    The module records the running histogram of tensor values along with
    min/max values. ``calculate_qparams`` will calculate scale and zero_point.

    Args:
        bins: Number of bins to use for the histogram
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
        eps: Epsilon value for float32, Defaults to `torch.finfo(torch.float32).eps`.

    The scale and zero point are computed as follows:

    1. Create the histogram of the incoming inputs.
        The histogram is computed continuously, and the ranges per bin change
        with every new tensor observed.
    2. Search the distribution in the histogram for optimal min/max values.
        The search for the min/max values ensures the minimization of the
        quantization error with respect to the floating point model.
    3. Compute the scale and zero point the same way as in the
        :class:`~torch.ao.quantization.MinMaxObserver`
    """
    histogram: torch.Tensor
    min_val: torch.Tensor
    max_val: torch.Tensor

    def __init__(
        self,
        bins: int = 2048,
        dtype: torch.dtype = torch.quint8,
        qscheme=torch.per_tensor_affine,
        reduce_range=False,
        quant_min=None,
        quant_max=None,
        factory_kwargs=None,
        eps=torch.finfo(torch.float32).eps,
        is_dynamic=False,
        **kwargs,
    ) -> None:
        if not is_per_tensor(qscheme):
            raise NotImplementedError(
                "HistogramObserver's qscheme only support torch.per_tensor_symmetric \
                    and torch.per_tensor_affine."
            )
        if is_dynamic:
            raise NotImplementedError(
                "HistogramObserver doesn't support dynamic quantization"
            )
        # bins: The number of bins used for histogram calculation.
        super().__init__(
            dtype=dtype,
            qscheme=qscheme,
            reduce_range=reduce_range,
            quant_min=quant_min,
            quant_max=quant_max,
            factory_kwargs=factory_kwargs,
            eps=eps,
            is_dynamic=is_dynamic,
            **kwargs,
        )
        factory_kwargs = torch.nn.factory_kwargs(factory_kwargs)
        self.bins = bins
        self.register_buffer("histogram", torch.zeros(self.bins, **factory_kwargs))
        self.register_buffer("min_val", torch.tensor(float("inf"), **factory_kwargs))
        self.register_buffer("max_val", torch.tensor(float("-inf"), **factory_kwargs))
        self.dst_nbins = 2 ** torch.iinfo(self.dtype).bits
        self.upsample_rate = (
            16  # used to reduce quantization errors when upscaling histogram
        )

    def _get_norm(
        self, delta_begin: torch.Tensor, delta_end: torch.Tensor, density: torch.Tensor
    ) -> torch.Tensor:
        r"""
        Compute the norm of the values uniformaly distributed between
        delta_begin and delta_end.
        Currently only L2 norm is supported.

        norm = density * (integral_{begin, end} x^2)
             = density * (end^3 - begin^3) / 3
        """
        norm = (
            delta_end * delta_end * delta_end - delta_begin * delta_begin * delta_begin
        ) / 3
        return density * norm

    def _compute_quantization_error(self, next_start_bin: int, next_end_bin: int):
        r"""
        Compute the quantization error if we use start_bin to end_bin as the
        min and max to do the quantization.
        """
        bin_width = (self.max_val.item() - self.min_val.item()) / self.bins

        dst_bin_width = bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
        if dst_bin_width == 0.0:
            return 0.0

        src_bin = torch.arange(self.bins, device=self.histogram.device)
        # distances from the beginning of first dst_bin to the beginning and
        # end of src_bin
        src_bin_begin = (src_bin - next_start_bin) * bin_width
        src_bin_end = src_bin_begin + bin_width

        # which dst_bins the beginning and end of src_bin belong to?
        dst_bin_of_begin = torch.clamp(
            torch.div(src_bin_begin, dst_bin_width, rounding_mode="floor"),
            0,
            self.dst_nbins - 1,
        )
        dst_bin_of_begin_center = (dst_bin_of_begin + 0.5) * dst_bin_width

        dst_bin_of_end = torch.clamp(
            torch.div(src_bin_end, dst_bin_width, rounding_mode="floor"),
            0,
            self.dst_nbins - 1,
        )
        density = self.histogram / bin_width

        norm = torch.zeros(self.bins, device=self.histogram.device)

        delta_begin = src_bin_begin - dst_bin_of_begin_center
        delta_end = dst_bin_width / 2
        norm += self._get_norm(
            delta_begin,
            torch.ones(self.bins, device=self.histogram.device) * delta_end,
            density,
        )

        norm += (dst_bin_of_end - dst_bin_of_begin - 1) * self._get_norm(
            torch.tensor(-dst_bin_width / 2), torch.tensor(dst_bin_width / 2), density
        )

        dst_bin_of_end_center = dst_bin_of_end * dst_bin_width + dst_bin_width / 2

        delta_begin = -dst_bin_width / 2
        delta_end = src_bin_end - dst_bin_of_end_center
        norm += self._get_norm(torch.tensor(delta_begin), delta_end, density)

        return norm.sum().item()

    def _non_linear_param_search(self) -> tuple[torch.Tensor, torch.Tensor]:
        r"""Non-linear parameter search.

        An approximation for L2 error minimization for selecting min/max.
        By selecting new min/max, we filter out outliers in input distribution.
        This follows the implementation of NormMinimization::NonlinearQuantizationParamsSearch in
        caffe2/quantization/server/norm_minimization.cc
        """
        assert self.histogram.size()[0] == self.bins, "bins mismatch"
        bin_width = (self.max_val - self.min_val) / self.bins

        # cumulative sum
        total = torch.sum(self.histogram).item()
        cSum = torch.cumsum(self.histogram, dim=0)

        stepsize = 1e-5  # granularity
        alpha = 0.0  # lower bound
        beta = 1.0  # upper bound
        start_bin = 0
        end_bin = self.bins - 1
        norm_min = float("inf")

        while alpha < beta:
            # Find the next step
            next_alpha = alpha + stepsize
            next_beta = beta - stepsize

            # find the left and right bins between the quantile bounds
            l = start_bin
            r = end_bin
            while l < end_bin and cSum[l] < next_alpha * total:
                l = l + 1
            while r > start_bin and cSum[r] > next_beta * total:
                r = r - 1

            # decide the next move
            next_start_bin = start_bin
            next_end_bin = end_bin
            if (l - start_bin) > (end_bin - r):
                # move the start bin
                next_start_bin = l
                alpha = next_alpha
            else:
                # move the end bin
                next_end_bin = r
                beta = next_beta

            if next_start_bin == start_bin and next_end_bin == end_bin:
                continue

            # calculate the quantization error using next_start_bin and next_end_bin
            norm = self._compute_quantization_error(next_start_bin, next_end_bin)

            if norm > norm_min:
                break
            norm_min = norm
            start_bin = next_start_bin
            end_bin = next_end_bin

        new_min = self.min_val + bin_width * start_bin
        new_max = self.min_val + bin_width * (end_bin + 1)
        return new_min, new_max

    def _upscale_histogram(
        self,
        histogram: torch.Tensor,
        orig_min: torch.Tensor,
        orig_max: torch.Tensor,
        update_min: torch.Tensor,
        update_max: torch.Tensor,
    ):
        # this turns the histogram into a more fine-coarsed histogram to reduce
        # bin quantization errors
        histogram = histogram.repeat_interleave(self.upsample_rate) / self.upsample_rate
        bin_size = (orig_max - orig_min) / (self.bins * self.upsample_rate)
        mid_points_histogram = (
            torch.linspace(
                orig_min,
                orig_max,
                self.bins * self.upsample_rate + 1,
                device=orig_min.device,
            )[:-1].to(histogram.device)
            + 0.5 * bin_size
        )
        boundaries_new_histogram = torch.linspace(
            update_min, update_max, self.bins + 1, device=update_min.device
        ).to(histogram.device)
        # this maps the mid-poits of the histogram to the new histogram's space
        bucket_assignments = (
            torch.bucketize(mid_points_histogram, boundaries_new_histogram, right=True)
            - 1
        )
        # this then maps the histogram mid-points in the new space, weighted by the original histogram's values
        # this is just the old histogram in the new histogram's space

        # In case due to numerical issues the values land higher/lower than the maximum/minimum
        bucket_assignments[bucket_assignments >= self.bins] = self.bins - 1
        bucket_assignments[bucket_assignments < 0] = 0

        update_histogram = torch.bincount(
            bucket_assignments, weights=histogram, minlength=self.bins
        )
        return update_histogram

    def _combine_histograms(
        self,
        orig_hist: torch.Tensor,
        orig_min: torch.Tensor,
        orig_max: torch.Tensor,
        update_hist: torch.Tensor,
        update_min: torch.Tensor,
        update_max: torch.Tensor,
    ) -> torch.Tensor:
        # If the new min and max are the same as the current min and max,
        # we can just add the new histogram to the original histogram
        if update_min == orig_min and update_max == orig_max:
            return orig_hist + update_hist

        # If the orig hist only has one value (i.e., the min and max are the same)
        # we can just add it into new histogram
        if orig_min == orig_max:
            bin_value = torch.sum(update_hist)
            transformed_orig_hist = (
                torch.histc(orig_min, bins=self.bins, min=update_min, max=update_max)  # type: ignore[arg-type]
                * bin_value
            )
            return transformed_orig_hist + update_hist

        # We assume the update_hist is already in the target range, we will map the orig_max to it
        assert update_min <= orig_min
        assert update_max >= orig_max

        # Now we need to turn the old_histogram, into the range of the new histogram
        transformed_orig_hist = self._upscale_histogram(
            orig_hist,
            orig_min,
            orig_max,
            update_min,
            update_max,
        )

        return update_hist + transformed_orig_hist

    def reset_histogram(
        self, x: torch.Tensor, min_val: torch.Tensor, max_val: torch.Tensor
    ) -> None:
        self.min_val.resize_(min_val.shape)
        self.min_val.copy_(min_val)
        self.max_val.resize_(max_val.shape)
        self.max_val.copy_(max_val)
        assert (
            min_val.numel() == 1 and max_val.numel() == 1
        ), "histogram min/max values must be scalar."
        new_histogram = torch.histc(x, self.bins, min=min_val, max=max_val)  # type: ignore[arg-type]
        self.histogram.detach_().resize_(new_histogram.shape)
        self.histogram.copy_(new_histogram)

    def forward(self, x_orig: torch.Tensor) -> torch.Tensor:  # pyre-ignore[14]
        if x_orig.numel() == 0:
            return x_orig
        x = x_orig.detach()
        x_min, x_max = torch.aminmax(x)
        # want to ignore torch.inf since we don't actually
        # want to make our quantization range infinite
        # and in practice those values will be clamped
        if x_min == -torch.inf or x_max == torch.inf:
            warnings.warn("torch.inf detected in input tensor, ignoring input")
            x = x[x.abs() != torch.inf]
            if x.numel() == 0:
                return x_orig
            x_min, x_max = torch.aminmax(x)

        current_min = self.min_val
        current_max = self.max_val

        is_uninitialized = self.min_val == float("inf") or self.max_val == float("-inf")
        if is_uninitialized:
            self.reset_histogram(x, x_min, x_max)
        else:
            update_min, update_max = x_min, x_max
            new_min = torch.min(current_min, update_min)
            new_max = torch.max(current_max, update_max)

            # TODO: For some reason, this is required for it to pass torchscript test
            # new_min and new_max should already have requires_grad set to False
            new_min, new_max = new_min.detach(), new_max.detach()
            update_histogram = torch.histc(
                x, self.bins, min=new_min, max=new_max  # type: ignore[arg-type]
            ).to(self.histogram.device)
            if new_min == current_min and new_max == current_max:
                combined_histogram = self.histogram + update_histogram
                self.histogram.detach_().resize_(combined_histogram.shape)
                self.histogram.copy_(combined_histogram)
            else:
                combined_histogram = self._combine_histograms(
                    self.histogram,
                    current_min,
                    current_max,
                    update_histogram,
                    new_min,
                    new_max,
                )
                self.histogram.detach_().resize_(combined_histogram.shape)
                self.histogram.copy_(combined_histogram)
                self.min_val.detach_().resize_(new_min.shape)
                self.min_val.copy_(new_min)
                self.max_val.detach_().resize_(new_max.shape)
                self.max_val.copy_(new_max)

        return x_orig

    @torch.jit.export
    def calculate_qparams(self):
        is_uninitialized = self.min_val == float("inf") and self.max_val == float(
            "-inf"
        )
        if is_uninitialized:
            warnings.warn(
                "must run observer before calling calculate_qparams.\
                                    Returning default scale and zero point "
            )
            return torch.tensor([1.0], device=self.min_val.device.type), torch.tensor(
                [0], device=self.min_val.device.type
            )
        assert self.bins == len(self.histogram), (
            "The number of bins in histogram should be equal to the number of bins "
            "supplied while making this observer"
        )

        new_min, new_max = self._non_linear_param_search()

        return self._calculate_qparams(new_min, new_max)

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super()._save_to_state_dict(destination, prefix, keep_vars)
        destination[prefix + "min_val"] = self.min_val
        destination[prefix + "max_val"] = self.max_val

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if version is None or version < 3:
            # if min_val and max_val are not initialized, update their shape
            # to account for the differences between v2 and v3
            min_val_name, max_val_name = prefix + "min_val", prefix + "max_val"
            if min_val_name in state_dict:
                if state_dict[min_val_name].shape == torch.Size([0]):
                    state_dict[min_val_name] = torch.tensor(float("inf"))
            if max_val_name in state_dict:
                if state_dict[max_val_name].shape == torch.Size([0]):
                    state_dict[max_val_name] = torch.tensor(float("-inf"))

        local_state = ["min_val", "max_val"]
        for name in local_state:
            key = prefix + name
            if key in state_dict:
                val = state_dict[key]
                setattr(self, name, val)
            elif strict:
                missing_keys.append(key)
        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    def extra_repr(self):
        return f"min_val={self.min_val}, max_val={self.max_val}"


class FixedQParamsObserver(ObserverBase):
    r"""
    Observer that simulates quantize and dequantize with fixed
    quantization parameters in training time. Only per tensor
    quantization is supported.

    Args:
        `scale` (float): fixed scale for the observer
        `zero_point` (int): fixed zero point for the observer
        `dtype`, `qscheme`, `quant_min`, `quant_max`
    """

    scale: torch.Tensor
    zero_point: torch.Tensor

    def __init__(
        self,
        scale,
        zero_point,
        dtype=torch.quint8,
        qscheme=torch.per_tensor_affine,
        quant_min=0,
        quant_max=255,
        is_dynamic=False,
        **kwargs,
    ):
        if is_dynamic:
            raise NotImplementedError(
                "FixedQParamsObserver doesn't support dynamic quantization"
            )
        super().__init__(dtype=dtype, is_dynamic=is_dynamic, **kwargs)
        self.quant_min = quant_min
        self.quant_max = quant_max
        self.register_buffer("scale", torch.tensor([scale], dtype=torch.float))
        self.register_buffer("zero_point", torch.tensor([zero_point], dtype=torch.int))
        self.dtype = dtype
        self.qscheme = qscheme

    def forward(self, X):
        return X

    @torch.jit.export
    def calculate_qparams(self):
        return self.scale, self.zero_point


class PlaceholderObserver(ObserverBase):
    r"""
    Observer that doesn't do anything and just passes its configuration to the
    quantized module's ``.from_float()``.

    Can be used for quantization to float16 which doesn't require determining
    ranges.

    Args:
        dtype: dtype argument to the `quantize` node needed to implement the
               reference model spec.
        quant_min: minimum value in quantized domain (TODO: align behavior with other observers)
        quant_max: maximum value in quantized domain
        custom_op_name: (temporary) specify this observer for an operator that doesn't require any observation
                        (Can be used in Graph Mode Passes for special case ops).
        compute_dtype (deprecated): if set, marks the future quantize function to use
                       dynamic quantization instead of static quantization.
                       This field is deprecated, use `is_dynamic=True` instead.
        is_dynamic: if True, the `quantize` function in the reference model
                    representation taking stats from this observer instance will
                    use dynamic quantization.
    """

    def __init__(
        self,
        dtype=torch.float32,
        custom_op_name="",
        compute_dtype=None,
        quant_min=None,
        quant_max=None,
        qscheme=None,
        eps=None,
        is_dynamic=False,
    ) -> None:
        super().__init__(dtype=dtype, is_dynamic=is_dynamic)
        if qscheme is None:
            qscheme = torch.per_tensor_affine
        if eps is None:
            eps = torch.finfo(torch.float32).eps

        # dtype of input of the target operator, e.g. for dynamic quantization
        # ops, the dtype will be float32
        self.dtype = dtype
        self.qscheme = qscheme
        self.quant_min = quant_min
        self.quant_max = quant_max
        self.eps = eps
        self.custom_op = custom_op_name
        # used for configuration of computation type for dynamic quantization
        if compute_dtype:
            is_dynamic = True
            warnings.warn(
                "Please use `is_dynamic` instead of `compute_dtype`. \
                    `compute_dtype` will be deprecated in a future release \
                    of PyTorch."
            )

    def forward(self, x):
        return x

    @torch.jit.export
    def extra_repr(self):
        return f"dtype={self.dtype}, is_dynamic={self.is_dynamic}"

    @torch.jit.export
    def calculate_qparams(self):
        raise Exception(  # noqa: TRY002
            "calculate_qparams should not be called for PlaceholderObserver"
        )


class RecordingObserver(ObserverBase):
    r"""
    The module is mainly for debug and records the tensor values during runtime.

    Args:
        dtype: Quantized data type
        qscheme: Quantization scheme to be used
        reduce_range: Reduces the range of the quantized data type by 1 bit
    """
    __annotations__ = {"tensor_val": list[Optional[torch.Tensor]]}

    def __init__(self, dtype=torch.quint8):
        super().__init__(dtype=dtype, is_dynamic=False)
        self.tensor_val = []

    def forward(self, x):
        self.tensor_val.append(x.clone())
        return x

    @torch.jit.export
    def calculate_qparams(self):
        raise Exception(  # noqa: TRY002
            "calculate_qparams should not be called for RecordingObserver"
        )

    @torch.jit.export
    def get_tensor_value(self):
        return self.tensor_val


class NoopObserver(ObserverBase):
    r"""
    Observer that doesn't do anything and just passes its configuration to the
    quantized module's ``.from_float()``.

    Primarily used for quantization to float16 which doesn't require determining
    ranges.

    Args:
        dtype: Quantized data type
        custom_op_name: (temporary) specify this observer for an operator that doesn't require any observation
                        (Can be used in Graph Mode Passes for special case ops).
    """

    def __init__(self, dtype=torch.float16, custom_op_name="") -> None:
        super().__init__(dtype=dtype, is_dynamic=False)
        self.dtype = dtype
        self.custom_op = custom_op_name

    def forward(self, x):
        return x

    @torch.jit.export
    def calculate_qparams(self):
        raise Exception(  # noqa: TRY002
            "calculate_qparams should not be called for NoopObserver"
        )


class ReuseInputObserver(ObserverBase):
    r"""This observer is used when we want to reuse the observer from the operator
    that produces the input Tensor, typically used for operators like reshape, e.g.
    ```
    x0 = ...
    x1 = x0.reshape()
    ```
    if we configure x0 to be observed by some observer, let's say MinMaxObserver,
    and reshape is configured with ReuseInputObserver, we'll reuse the observer instance
    for x0 for x1 (output of reshape). If x0 is not observed, we also won't observe x1.

    Note: this is only enabled in FX Graph Mode Quantization
    """

    def __init__(self) -> None:
        super().__init__(torch.quint8, is_dynamic=False)

    def forward(self, x):
        return x

    @torch.jit.export
    def calculate_qparams(self):
        raise Exception(  # noqa: TRY002
            "calculate_qparams should not be called for ReuseInputObserver"
        )


"""
# Experimental Affine Quantization Feature START
We plan to merge the following with torchao repo after we move pt2e flow to torchao
copied from https://github.com/pytorch/ao/blob/main/torchao/quantization/observer.py
"""
from dataclasses import dataclass
from enum import auto, Enum


class MappingType(Enum):
    """How floating point number is mapped to integer number

    symmetric mapping means floating point range is symmetrically mapped to integer range
    let's say we have floating point range (-3.5, 10.2) and integer range (-8, 7) (int4)
    we'll use (-10.2, 10.2) as the range for floating point and map that to (-8, 7)
    e.g. scale = (10.2 - (-10.2)) / (7 - (-8))

    SYMMETRIC_NO_CLIPPING_ERR is a variant of symmetric mapping, where the scale is the max of smin
    and smax, where smin = min_val_neg / quant_min, and smax = max_val_pos / quant_max. By calculating
    smin and smax individually, there can be less round error on negative values, and no out-of-range
    of all floating point values.

    asymmetric mapping means we just directly map the floating point range to integer range,
    for the above example, we will map (-3.5, 10.2) to (-8, 7) and calculate quantization parameter
    based on this mapping
    e.g. scale = (10.2 - (-3.5)) / (7 - (-8))
    """

    SYMMETRIC = auto()
    SYMMETRIC_NO_CLIPPING_ERR = auto()
    ASYMMETRIC = auto()


class ZeroPointDomain(Enum):
    """Enum that indicate whether zero_point is in integer domain or floating point domain

    integer domain: quantized_val = (float_val / scale) (integer) + zero_point (integer)
    float domain: quantized_val = (float_val - (zero_point (float) - scale * mid_point)) / scale
    none domain: quantized_val = (float_val / scale)
    """

    INT = auto()
    FLOAT = auto()
    NONE = auto()


class TorchAODType(Enum):
    """
    Placeholder for dtypes that do not exist in PyTorch core yet.
    """

    # torch.int1 to torch.int7 will be added to PyTorch 2.6
    # These will remain here for BC with older PyTorch versions
    INT1 = auto()
    INT2 = auto()
    INT3 = auto()
    INT4 = auto()
    INT5 = auto()
    INT6 = auto()
    INT7 = auto()


@dataclass(frozen=True)
class Granularity:
    """
    Base class for representing the granularity of quantization.

    This class serves as a parent for specific granularity types used in
    quantization operations, such as per-tensor or per-axis quantization.
    """


@dataclass(frozen=True)
class PerBlock(Granularity):
    """
    Represents per-block granularity in quantization. See
    :func:`~torchao.quantization.quant_primitives.quantize_affine` for docs for
    `block_size`

    Attributes:
        block_size (Tuple[int, ...]): The size of each quantization group
    """

    block_size: tuple[int, ...]


@dataclass(frozen=True)
class PerTensor(Granularity):
    """
    Represents per-tensor granularity in quantization.

    This granularity type calculates the quantization parameters
    based off the entire tensor.

    """


@dataclass(frozen=True)
class PerAxis(Granularity):
    """
    Represents per-axis granularity in quantization.

    This granularity type calculates different quantization parameters
    along a specified axis of the tensor.

    For example if the input tensor is shape [8, 16] and axis=0, then
    the quantization parameters are calculated for each row of the tensor.
    Giving a total of 8 quantization parameters.

    Attributes:
        axis (int): The axis along which reduction is performed.
    """

    axis: int


@dataclass(frozen=True)
class PerGroup(Granularity):
    """
    Represents per-channel group granularity in quantization.

    This granularity type calculates different quantization parameters
    for each group of <group_size> elements.

    For example if the input tensor is shape [8, 16], and the group size is 4, then
    the input tensor is reshaped to [64, 4]
    quantization parameters are calculated for each group of 4 elements,
    giving a total of 64 quantization parameters.

    Attributes:
        group_size (int): The size of each quantization group

    """

    group_size: int


class PerRow(Granularity):
    """
    Represents row-wise granularity in quantization.

    This is a special case of per-axis quantization and is unique to Float8 matmuls
    where the input is quantized with a block_size of (1, ..., input.shape[-1]). And the weight
    is quantized with a block_size of (1, weight.shape[1]).
    """


class PerToken(Granularity):
    """
    Represents per-token granularity in quantization.

    This granularity type calculates a different set of quantization parameters
    for each token, which is represented as the last dimension of the tensor.

    For example, if the input tensor has shape [2, 3, 4], then there are 6 tokens
    with 4 elements each, and we will calculate 6 sets of quantization parameters,
    one for each token.

    If the input tensor has only two dimensions, e.g. [8, 16], then this is
    equivalent to `PerAxis(axis=0)`, which yields 8 sets of quantization parameters.
    """


def get_block_size(
    input_shape: tuple[int, ...], granularity: Granularity
) -> tuple[int, ...]:
    """Get the block size based on the input shape and granularity type.

    Args:
        input_shape: The input tensor shape possibly more than 2 dimensions
        granularity: The granularity type of the quantization
    """
    assert isinstance(
        granularity, Granularity
    ), "Please provide an instance of Granularity, not subclass of it"
    if isinstance(granularity, PerTensor):
        return input_shape
    elif isinstance(granularity, PerAxis):
        block_size = list(input_shape)
        block_size[granularity.axis] = 1
        return tuple(block_size)
    elif isinstance(granularity, PerRow):
        return (1,) * (len(input_shape) - 1) + (input_shape[-1],)
    elif isinstance(granularity, PerGroup):
        assert (
            len(input_shape) == 2
        ), f"Expecting input shape dim to be 2 for per group quantization, gotinput shape: {input_shape}"
        return (1, granularity.group_size)
    elif isinstance(granularity, PerToken):
        block_size = list(input_shape)
        block_size[-1] = input_shape[-1]
        return tuple(block_size)
    raise ValueError(f"Unsupported Granularity: {granularity}")


class AffineQuantizedObserverBase(ABC, torch.nn.Module):
    """Observer module for affine quantization (https://github.com/pytorch/ao/tree/main/torchao/quantization#affine-quantization)

    Args:
      `granularity` and `block_size`: The granularity of the quantization,
        must specify at least one, if both are specified `block_size` takes precedence
        Current supported granularity type are `PerTensor` and `PerAxis`
      other args: please see `:class:torchao.dtypes.AffineQuantizedTensor`
    """

    with_args = classmethod(_with_args)

    def __init__(
        self,
        mapping_type: MappingType,
        target_dtype: torch.dtype,
        granularity: Granularity,
        quant_min: Optional[int] = None,
        quant_max: Optional[int] = None,
        eps: Optional[float] = None,
        scale_dtype: Optional[torch.dtype] = None,
        zero_point_dtype: Optional[torch.dtype] = None,
        preserve_zero: bool = True,
        zero_point_domain: Optional[ZeroPointDomain] = ZeroPointDomain.INT,
        # there could be some extra args that's ignored
        **kwargs,
    ):
        super().__init__()
        assert granularity is not None, "granularity is None"

        self.mapping_type = mapping_type
        self.target_dtype = target_dtype
        self.granularity = granularity
        self.quant_min = quant_min
        self.quant_max = quant_max
        self.eps = eps
        self.scale_dtype = scale_dtype
        self.zero_point_dtype = zero_point_dtype
        self.preserve_zero = preserve_zero
        self.zero_point_domain = zero_point_domain
        # populatd during forward
        self.block_size = None
        self.original_dtype = None

    @abstractmethod
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        """forward function should take the input tensor
        and updates internal stats and return the original input Tensor
        """

    @abstractmethod
    def calculate_qparams(self) -> tuple[torch.Tensor, torch.Tensor]:
        """Calculate quantization parameter based on the stats attached to the observer module
        and returns a tuple of scale and zero_point Tensor
        """


def _is_observer_script_module(mod, obs_type_name):
    """Returns true if given mod is an instance of Observer script module."""
    if isinstance(mod, torch.jit.RecursiveScriptModule):
        # qualified name looks like '__torch__.torch.ao.quantization.observer.___torch_mangle_2.MinMaxObserver'
        suffix = mod._c.qualified_name.split(".", 1)[1]
        name = re.sub(r"\.___torch_mangle_\d+", "", suffix)
        return obs_type_name in name
    return False


# Experimental Affine Quantization Feature END


def _is_activation_post_process(module):
    return isinstance(
        module,
        (
            torch.ao.quantization.ObserverBase,
            torch.ao.quantization.FakeQuantizeBase,
            AffineQuantizedObserverBase,
        ),
    ) or _is_observer_script_module(module, "quantization.observer")


def _is_per_channel_script_obs_instance(module):
    if isinstance(module, torch.jit.RecursiveScriptModule):
        return _is_observer_script_module(
            module, "quantization.observer.PerChannelMinMaxObserver"
        ) or _is_observer_script_module(
            module, "quantization.observer.MovingAveragePerChannelMinMaxObserver"
        )
    return False


def get_observer_state_dict(mod):
    r"""
    Returns the state dict corresponding to the observer stats.
    Traverse the model state_dict and extract out the stats.
    """
    od = OrderedDict()
    if isinstance(mod, torch.jit.RecursiveScriptModule):
        for k, v in mod.state_dict().items():
            if "observer" in k:
                od[k] = v
    else:
        # path for GraphModule and nn.Module (eager mode)
        for k, v in mod.state_dict().items():
            if "activation_post_process" in k:
                od[k] = v
    od._metadata = mod.state_dict()._metadata  # type: ignore[attr-defined]
    return od


def load_observer_state_dict(mod, obs_dict):
    r"""
    Given input model and a state_dict containing model observer stats,
    load the stats back into the model. The observer state_dict can be saved
    using torch.ao.quantization.get_observer_state_dict
    """
    missing_keys: list[str] = []
    unexpected_keys: list[str] = []
    for name, module in mod.named_modules():
        prefix = name + "."
        if _is_activation_post_process(module):
            if _is_per_channel_script_obs_instance(module):
                # For per-channel observers we need to call a custom load_from_state_dict to resize the tensor.
                # However this is not called when the module is scripted and we end up calling the default one in module.py
                module._load_from_state_dict_script(
                    obs_dict, prefix, {}, True, missing_keys, unexpected_keys, []
                )
            else:
                module._load_from_state_dict(
                    obs_dict, prefix, {}, False, missing_keys, unexpected_keys, []
                )
    for k in missing_keys:
        if "observer" in k or "activation_post_process" in k:
            raise Exception(  # noqa: TRY002
                f"Missing keys for observer {k} in state_dict"
            )
    for k in unexpected_keys:
        if "observer" in k or "activation_post_process" in k:
            raise Exception(  # noqa: TRY002
                f"Unexpected keys for observer {k} in state_dict"
            )


# Restrict activations to be in the range (0,127)
default_observer = MinMaxObserver.with_args(quant_min=0, quant_max=127)
"""
Default observer for static quantization, usually used for debugging.
"""

default_placeholder_observer = PlaceholderObserver
"""
Default placeholder observer, usually used for quantization to torch.float16.
"""

default_debug_observer = RecordingObserver
"""
Default debug-only observer.
"""

default_weight_observer = MinMaxObserver.with_args(
    dtype=torch.qint8, qscheme=torch.per_tensor_symmetric
)
"""
Default weight observer.
"""

weight_observer_range_neg_127_to_127 = MinMaxObserver.with_args(
    dtype=torch.qint8,
    qscheme=torch.per_tensor_symmetric,
    quant_min=-127,
    quant_max=127,
    eps=2**-12,
)
"""
Symmetric weight observer with the 8-bit values restricted to [-127, +127], excluding -128.
"""

default_histogram_observer = HistogramObserver.with_args(quant_min=0, quant_max=127)
"""
Default histogram observer, usually used for PTQ.
"""

default_per_channel_weight_observer = PerChannelMinMaxObserver.with_args(
    dtype=torch.qint8, qscheme=torch.per_channel_symmetric
)
"""
Default per-channel weight observer, usually used on backends where per-channel
weight quantization is supported, such as `fbgemm`.
"""

per_channel_weight_observer_range_neg_127_to_127 = PerChannelMinMaxObserver.with_args(
    dtype=torch.qint8,
    qscheme=torch.per_channel_symmetric,
    quant_min=-127,
    quant_max=127,
    eps=2**-12,
)
"""
Per-channel, symmetric weight observer with the 8-bit values restricted to [-127, +127], excluding -128.
"""

default_dynamic_quant_observer = PlaceholderObserver.with_args(
    dtype=torch.quint8,
    quant_min=0,
    quant_max=255,
    is_dynamic=True,
)
"""
Default observer for dynamic quantization.
"""

default_float_qparams_observer = PerChannelMinMaxObserver.with_args(
    dtype=torch.quint8, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0
)
"""
Default observer for a floating point zero-point.
"""

default_float_qparams_observer_4bit = PerChannelMinMaxObserver.with_args(
    dtype=torch.quint4x2, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0
)
"""
Default observer for a floating point zero-point and 4 bit activations.
"""

# TODO(future PR): remove these defaults and enforce activation functions
# to explicitly specify their output range
default_fixed_qparams_range_neg1to1_observer = FixedQParamsObserver.with_args(
    scale=2.0 / 256.0, zero_point=128, dtype=torch.quint8, quant_min=0, quant_max=255
)
default_fixed_qparams_range_0to1_observer = FixedQParamsObserver.with_args(
    scale=1.0 / 256.0, zero_point=0, dtype=torch.quint8, quant_min=0, quant_max=255
)
# TODO: the following 2 variables are kept for backwards compatibility; remove after a few releases
default_symmetric_fixed_qparams_observer = default_fixed_qparams_range_neg1to1_observer
default_affine_fixed_qparams_observer = default_fixed_qparams_range_0to1_observer

"""
Default observers for fixed qparams operations.
"""

default_reuse_input_observer = ReuseInputObserver
"""
Default observer for operators like reshape that reuses the observer of input to
the operator
"""