File size: 56,901 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 |
# mypy: allow-untyped-defs
import abc
import contextlib
import ctypes
import importlib
import inspect
import sys
import types
from typing import Any, Callable, Optional, TYPE_CHECKING, TypeVar, Union
from typing_extensions import Concatenate, ParamSpec
import torch
import torch.utils._pytree as pytree
from torch import _utils_internal
from torch._C import _dispatch_is_included_in_alias as is_included_in_alias, DispatchKey
from torch._functorch.pyfunctorch import dispatch_functorch, TransformType
from torch.utils._python_dispatch import TorchDispatchMode
if TYPE_CHECKING:
from torch._subclasses.functional_tensor import BaseFunctionalizeAPI
_T = TypeVar("_T")
_P = ParamSpec("_P")
# Query `hasattr` only once.
_SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
@contextlib.contextmanager
def dl_open_guard():
"""
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
shared library to load custom operators.
"""
if not _SET_GLOBAL_FLAGS:
yield
return
old_flags = sys.getdlopenflags()
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
try:
yield
finally:
sys.setdlopenflags(old_flags)
class OperatorBase:
"""
Base class for OpOverload (which represents C++ ATen operators) and HigherOrderOperator
(which represents Python-only operators that are unrepresentable in TorchScript).
"""
def __init__(self):
# The dispatch cache precomputes a mapping of dispatch key that the
# dispatcher wants to dispatch to, to an actual implementation of the
# dispatch key. Confusingly, the actual implementation could *also* be a
# dispatch key, but in this case, this refers to the C++ kernel that
# was registered to some dispatch key. Aliases are permitted in the
# latter but not the former; for example, you might lookup the
# entry for AutogradCPU, and this maps you to the Autograd key for
# the generic autograd kernel that works for all devices. Since this
# is the Python dispatcher, you can also put an arbitrary Python
# callable to call instead. This handler gets precisely the
# args/kwargs that the operator was __call__'ed with.
# NB: This name is hard-coded in torch/csrc/autograd/python_variable.cpp
# for use with OpOverload; cache lookup is done entirely from C++
# for speed.
# TODO: The cache is NOT currently used by HigherOrderOperator, but it should!
self._dispatch_cache: dict[
DispatchKey, Union[DispatchKey, Callable[..., Any]]
] = {}
# This table allows you to override the behavior of a particular
# dispatch key to call a custom Python function, rather than the
# ordinary C++ configured behavior. This is the raison d'etre of
# Python dispatcher: to let you program the dispatcher from Python
# in case you need something unusual, and don't want to clobber
# the existing registrations using the Python operator registration
# API.
self.py_kernels: dict[DispatchKey, Callable[..., Any]] = {}
# This table allows you to override the behavior of a particular
# operator for a particular TorchDispatchMode. In practice,
# we are using this mostly for ProxyTensorMode. Modes can be
# thought of as an open world extension of dispatch keys, so it
# makes sense that you should be able to register them, the same
# way you can register dispatch keys.
self.python_key_table: dict[
type[Union[TorchDispatchMode, torch.Tensor]], Callable[..., Any]
] = {}
# This table allows you to override the behavior of functorch
# transformations. NB: this currently only does something for
# HigherOrderOperator
self.functorch_table = {}
def __call__(self, *args, **kwargs):
raise NotImplementedError
def has_kernel_for_dispatch_key(self, k):
return k in self.py_kernels
def has_kernel_for_any_dispatch_key(self, ks):
for k in self.py_kernels:
if not torch._C._dispatch_is_alias_key(k) and ks.has(k):
return True
return False
def py_impl(
self,
k: Union[
type[TorchDispatchMode],
type[torch.Tensor],
TransformType,
DispatchKey,
],
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
def inner(fn: Callable[_P, _T]) -> Callable[_P, _T]:
if inspect.isclass(k) and (
issubclass(k, TorchDispatchMode) or issubclass(k, torch.Tensor)
):
assert k not in self.python_key_table
# TODO(voz): Should we replace setting DispatchKey.Python entirely with setting mode keys?
self.python_key_table[k] = fn
self._dispatch_cache.clear()
return fn
if isinstance(k, TransformType):
assert k not in self.functorch_table
self.functorch_table[k] = fn
return fn
assert isinstance(k, DispatchKey)
assert k != DispatchKey.Python, (
"Please register a mode for the DispatchKey.Python key instead."
)
if k in self.py_kernels:
raise RuntimeError(
f"Trying to override a python impl for {k} on operator {self.name()}"
)
self.py_kernels[k] = fn
self._dispatch_cache.clear()
return fn
return inner
# Registers an implementation to all **3** variants of functionalization that we have:
# - DispatchKey.Functionalize
# - functorch.TransformType.Functionalize
# - FunctionalTensorMode
# Example:
# @py_functionalize_impl
# def functionalize_rule(ctx, inner_f, *args):
# args_unwrapped = ctx.unwrap_tensors(args)
# with ctx.redispatch_to_next():
# out = ctx.functionalize(inner_f)(*args_unwrapped)
# return ctx.wrap_tensors(out)
def py_functionalize_impl(
self, fn: Callable[Concatenate["BaseFunctionalizeAPI", _P], _T]
) -> Callable[Concatenate["BaseFunctionalizeAPI", _P], _T]:
from torch._subclasses.functional_tensor import (
CppFunctionalizeAPI,
FunctionalTensorMode,
FunctorchFunctionalizeAPI,
PythonFunctionalizeAPI,
)
# Construct our three flavors of functionalization,
# each of which have slightly different wrap/unwrap/redispatch policies
def functionalize_dk_fn(*args: _P.args, **kwargs: _P.kwargs) -> _T:
return fn(CppFunctionalizeAPI(), *args, **kwargs)
def functionalize_dispatch_mode_fn(
mode: Optional[FunctionalTensorMode], *args: _P.args, **kwargs: _P.kwargs
) -> _T:
return fn(PythonFunctionalizeAPI(mode), *args, **kwargs)
def functionalize_functorch_fn(
interpreter, *args: _P.args, **kwargs: _P.kwargs
) -> _T:
return fn(FunctorchFunctionalizeAPI(interpreter), *args, **kwargs)
self.py_impl(DispatchKey.Functionalize)(functionalize_dk_fn)
self.py_impl(FunctionalTensorMode)(functionalize_dispatch_mode_fn)
self.py_impl(TransformType.Functionalize)(functionalize_functorch_fn)
return fn
def name(self):
raise NotImplementedError
# Equivalent to computeDispatchTableEntryWithDebug
def resolve_key(op: OperatorBase, k: DispatchKey): # type: ignore[valid-type]
# 1. (Direct) operator registration
if op.has_kernel_for_dispatch_key(k):
return k
# 2.1 Use CompositeExplicitAutogradNonFunctional kernel if available
cand = DispatchKey.CompositeExplicitAutogradNonFunctional
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
return cand
# 2.2 Use CompositeExplicitAutograd kernel if available
cand = DispatchKey.CompositeExplicitAutograd
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
return cand
has_backend_kernel = op.has_kernel_for_any_dispatch_key(
torch._C._dispatch_get_backend_keyset_from_autograd(k)
) or op.has_kernel_for_dispatch_key(DispatchKey.CompositeExplicitAutograd)
# 2.3. Use CompositeImplicitAutograd kernel if available
cand = DispatchKey.CompositeImplicitAutogradNestedTensor
if (
(k != DispatchKey.Undefined and is_included_in_alias(k, cand))
and op.has_kernel_for_dispatch_key(cand)
and not has_backend_kernel
):
return cand
cand = DispatchKey.CompositeImplicitAutograd
if (
k == DispatchKey.Undefined or is_included_in_alias(k, cand)
) and op.has_kernel_for_dispatch_key(cand):
if k == DispatchKey.AutogradOther and op.has_kernel_for_any_dispatch_key(
torch._C._dispatch_autogradother_backends
):
raise RuntimeError("ambiguous autogradother kernel")
elif not has_backend_kernel:
return cand
# 2.4. For autograd backend keys, use kernel from DispatchKey::Autograd if available
cand = DispatchKey.Autograd
if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
return cand
# 2.5 Use kernel from DispatchKey::FuncTorchBatchedDecomposition if available
cand = DispatchKey.FuncTorchBatchedDecomposition
if is_included_in_alias(k, cand) and op.has_kernel_for_dispatch_key(cand):
return cand
# Backend fallback
if torch._C._dispatch_has_backend_fallback(k):
# The dispatch key itself will implicitly route to backend fallback.
# This is probably not great for the pure Python implementation.
return k
raise NotImplementedError(f"could not find kernel for {op} at dispatch key {k}")
_higher_order_ops: dict[str, "HigherOrderOperator"] = {}
_HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS = [
DispatchKey.PythonDispatcher, # type: ignore[attr-defined]
DispatchKey.PythonTLSSnapshot, # type: ignore[attr-defined]
DispatchKey.ADInplaceOrView,
DispatchKey.BackendSelect,
DispatchKey.AutocastCPU, # type: ignore[attr-defined]
DispatchKey.AutocastCUDA, # type: ignore[attr-defined]
]
class HigherOrderOperator(OperatorBase, abc.ABC):
# The HigherOrderOperator will appear as torch.ops.higher_order.{name}
#
# If you're creating a new HigherOrderOperator, please do not change the
# default. Adding operators to the global torch.ops namespace is a bad
# practice due to name collisions.
def __init__(self, name, *, cacheable=False):
super().__init__()
if type(self) is HigherOrderOperator:
raise RuntimeError(
"Direct instantiation of HigherOrderOperator is not allowed. Please subclass it."
)
self._name = name
# Make _OPNamespace not scream, this whole name based association needs a good hard look
self.__name__ = name
_higher_order_ops[name] = self
self._ns = "higher_order"
self.__module__ = "torch.ops.higher_order"
self._cacheable = cacheable
self.non_fallthrough_keys = torch._C._dispatch_keyset_full()
for dispatch_key in _HIGHER_ORDER_OP_DEFAULT_FALLTHROUGH_DISPATCH_KEYS:
self.fallthrough(dispatch_key)
# [NOTE] We have to register pre-dispatch key implementation
# because sometimes HOP use aot-dispatch tracing to detect certaion
# mutations. This is problematic when we are functionalizing HOP
# during pre-dispatch because when the inner tracer starts, it will see
# that PreDispatch key is still active. In that case, we just redispatch
# it to next key. This is only safe to do when PreDispatch key stack has no
# active modes.
def py_impl(
self,
k: Union[
type[TorchDispatchMode],
type[torch.Tensor],
TransformType,
DispatchKey,
],
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
if isinstance(k, DispatchKey) and not self.non_fallthrough_keys.has(k):
self.non_fallthrough_keys = self.non_fallthrough_keys.add(k)
return super().py_impl(k)
@property
def namespace(self):
return self._ns
def cacheable(self):
return self._cacheable
def fallthrough(self, dispatch_key):
self.non_fallthrough_keys = self.non_fallthrough_keys.remove(dispatch_key)
# Use positional-only argument to avoid naming collide with custom ops arguments
# that are named "self".
def dispatch(self, /, dispatch_key, *args, **kwargs):
from torch.utils._python_dispatch import _get_current_dispatch_mode
if dispatch_key in self._dispatch_cache:
kernel = self._dispatch_cache[dispatch_key]
assert not isinstance(kernel, DispatchKey)
return kernel(*args, **kwargs)
if dispatch_key == DispatchKey.FuncTorchDynamicLayerFrontMode:
return dispatch_functorch(self, args, kwargs)
if dispatch_key == DispatchKey.Python:
# Keep the following 1:1 with handle_torch_function_no_python_arg_parser
# in torch/csrc/utils/python_arg_parser.cpp
overloaded_args_list = []
def has_python_key(tensor):
return torch._C._dispatch_keys(tensor).has("Python")
def check_overloaded(arg):
if isinstance(arg, torch.Tensor) and has_python_key(arg):
overloaded_args_list.append(arg)
for arg in (*args, *kwargs.values()):
check_overloaded(arg)
if isinstance(arg, (list, tuple)):
for a in arg:
check_overloaded(a)
overloaded_args = tuple(overloaded_args_list)
# Step 1: dispatch on any user TorchDispatchModes
from torch.utils._python_dispatch import _pop_mode_temporarily
curr_mode = _get_current_dispatch_mode()
if curr_mode is not None:
if type(curr_mode) in self.python_key_table:
handler = self.python_key_table[type(curr_mode)]
with _pop_mode_temporarily() as mode:
# "natural" calling convention: (mode, *args, **kwargs)
# TODO(rzou): we should support torch_dispatch calling convention too.
result = handler(mode, *args, **kwargs)
else:
raise NotImplementedError(
f"There was no rule registered for HOP {self._name} and mode {curr_mode}. "
f"We recommend filing an issue."
)
if result is not NotImplemented:
return result
# Step 2: dispatch on any subclasses
for arg in overloaded_args:
subclass_type = type(arg)
if (
subclass_type.__torch_dispatch__
== torch._C._disabled_torch_dispatch_impl
):
continue
# In some case, people are using FakeTensor without a FakeTensorMode.
# For example, some sparse arch model has a mix of FakeTensor and real
# tensor for weights during lowering, and ppl tends to run eager evaluation
# on the model without setting up the FakeTensorMode.
# In this case, we pull FakeTensorMode impl.
if subclass_type is torch._subclasses.fake_tensor.FakeTensor:
subclass_type = torch._subclasses.fake_tensor.FakeTensorMode # type: ignore[assignment]
handler = self.python_key_table[subclass_type]
result = handler(arg.fake_mode, *args, **kwargs) # type: ignore[attr-defined]
return result
if subclass_type in self.python_key_table:
handler = self.python_key_table[subclass_type]
# "natural" calling convention: (*args, **kwargs)
# TODO(rzou): we should support torch_dispatch calling convention too.
result = handler(*args, **kwargs)
else:
raise NotImplementedError(
f"There was no rule registered for HOP {self._name} and subclass {subclass_type}. "
f"We recommend filing an issue."
)
if result is not NotImplemented:
return result
# All handlers returned NotImplemented
raise TypeError(
f"Multiple dispatch failed for {self._name}. There was no registered that "
f"did not return NotImplemented. Use HOP.py_impl to register some. "
f"Tried mode: {curr_mode}) and subclasses: "
f"{[type(a) for a in overloaded_args]}"
)
functionality_key = torch._C._to_functionality_key(dispatch_key) # type: ignore[attr-defined]
if functionality_key == DispatchKey.PreDispatch:
from torch.utils._python_dispatch import _pop_mode_temporarily
# The check for Python in the exclude set is so we properly respect `with no_dispatch()`
# calls inside of a mode.
if (
_len_torch_dispatch_stack_pre_dispatch() > 0
) and not torch._C._dispatch_tls_is_dispatch_key_excluded(
DispatchKey.Python
):
curr_mode = _get_current_dispatch_mode_pre_dispatch()
assert curr_mode is not None, (
"Illegal invocation of dispatch on DispatchKey.PreDispatch without a mode."
)
assert type(curr_mode) in self.python_key_table, (
f"Current active mode {curr_mode} not registered"
)
handler = self.python_key_table[type(curr_mode)]
with _pop_mode_temporarily(functionality_key) as mode:
return handler(mode, *args, **kwargs)
final_key = resolve_key(self, dispatch_key)
# This can current fail due to backend fallbacks. You just have to
# register them by hand for HigherOrderOperator.
if final_key not in self.py_kernels:
raise NotImplementedError(
f"could not find kernel for HigherOrderOperator {self._name} "
f"at dispatch key {final_key} (resolved from {dispatch_key})"
)
# [NOTE] We shouldn't cache PreDispatch kernel here because depending
# on what modes are active, predispatch behaviour is different.
# Also we do same thing for normal ops:
# See Note [Not Caching Per-Dispatch-Key Mode Handlers]
if dispatch_key != DispatchKey.PreDispatch:
self._dispatch_cache[dispatch_key] = self.py_kernels[final_key]
kernel = self.py_kernels[final_key]
# It's illegal to register DispatchKey to py_kernels, since there's no
# C++ kernel to call into
assert not isinstance(kernel, DispatchKey)
return kernel(*args, **kwargs)
@abc.abstractmethod
def __call__(self, /, *args, **kwargs):
def wrapper():
flat_args = _to_flat_tuple(args, kwargs)
if torch.overrides.has_torch_function(flat_args):
return torch.overrides.handle_torch_function(
self, flat_args, *args, **kwargs
)
dispatch_key_set = _compute_keyset(args, kwargs, self.non_fallthrough_keys)
return self.dispatch(
dispatch_key_set.highestPriorityTypeId(), *args, **kwargs
)
return wrapper()
def __str__(self):
return f"{self.name()}"
def name(self):
return self._name
def _to_flat_tuple(args, kwargs):
return pytree.arg_tree_leaves(*args, **kwargs)
def _compute_keyset(args, kwargs, non_fallthrough_keys):
tensors = _get_tensors(args, kwargs)
return key_extractor(tensors, non_fallthrough_keys)
def _get_tensors(args, kwargs):
flat_all = _to_flat_tuple(args, kwargs)
tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
return tuple(tensor_args)
# Note - this should maintain identical impl to the C++ dispatcher key extraction logic
# at ATen/core/dispatch/DispatchKeyExtractor.h
def key_extractor(tensors, key_mask):
key_set = torch._C._dispatch_tls_local_include_set()
for tensor in tensors:
key_set = key_set | torch._C._dispatch_keys(tensor)
key_set = key_set - torch._C._dispatch_tls_local_exclude_set()
key_set = key_set & key_mask
return key_set
# Mode stack for PreDispatchKey
# it should always have three keys with
# priority given to FunctionalTensorMode and
# then ProxyTorchDispatchMode. It means that
# slot 0 belongs to ProxyTorchDispatchMode and
# slot 1 belongs to FunctionalTensorMode.
#
# SchemaCheckMode is separate from the other 2,
# and is only valid when the stack is empty.
# SchemaCheckMode is for testing purposes, and
# is meant to run in eager mode on concrete inputs,
# checking for incorrect schemas in regards to
# aliasing or mutating ops.
class _ModeStackStateForPreDispatch:
def __init__(self):
self.__infra_modes = [None, None]
self._schema_check_mode = None
def set(self, index, mode):
assert index < len(self.__infra_modes)
self.__infra_modes[index] = mode
def get(self, index):
assert index < len(self.__infra_modes)
return self.__infra_modes[index]
def count(self):
return len([i for i in self.__infra_modes if i is not None]) + int(
self._schema_check_mode is not None
)
_mode_stack_state_for_pre_dispatch = _ModeStackStateForPreDispatch()
def unset_mode_pre_dispatch(mode_key, schema_check=False):
current_mode_stack_pre_dispatch = mode_stack_state_for_pre_dispatch()
assert mode_key is None or mode_key in (
torch._C._TorchDispatchModeKey.PROXY,
torch._C._TorchDispatchModeKey.FUNCTIONAL,
)
if schema_check:
assert mode_key is None
def _unset_mode():
if mode_key == torch._C._TorchDispatchModeKey.PROXY:
current_mode = current_mode_stack_pre_dispatch.get(0)
mode_stack_state_for_pre_dispatch().set(0, None)
return current_mode
elif mode_key == torch._C._TorchDispatchModeKey.FUNCTIONAL:
current_mode = current_mode_stack_pre_dispatch.get(1)
mode_stack_state_for_pre_dispatch().set(1, None)
return current_mode
else:
current_mode = mode_stack_state_for_pre_dispatch()._schema_check_mode
mode_stack_state_for_pre_dispatch()._schema_check_mode = None
return current_mode
current_mode = _unset_mode()
new_pre_dispatch_len = _len_torch_dispatch_stack_pre_dispatch()
# When we are unsetting a mode, we need to check if there is
# active mode left on the PreDispatch key. If there is nothing
# active, we need to remove PreDispatch key from local dispatch include
# set.
if new_pre_dispatch_len == 0:
torch._C._dispatch_tls_set_dispatch_key_included(DispatchKey.PreDispatch, False)
return current_mode
def _set_mode_pre_dispatch(mode):
from torch._subclasses.functional_tensor import FunctionalTensorMode
from torch._subclasses.schema_check_mode import SchemaCheckMode
from torch.fx.experimental.proxy_tensor import ProxyTorchDispatchMode
assert isinstance(
mode,
(
FunctionalTensorMode,
ProxyTorchDispatchMode,
SchemaCheckMode,
),
)
previous_mode_stack_len = _len_torch_dispatch_stack_pre_dispatch()
if isinstance(mode, SchemaCheckMode):
current_mode = mode_stack_state_for_pre_dispatch()._schema_check_mode
if previous_mode_stack_len > 0:
raise AssertionError(
"SchemaCheckMode for pre-dispatch must be used exclusively, found other modes on the stack"
)
mode_stack_state_for_pre_dispatch()._schema_check_mode = mode
elif isinstance(mode, FunctionalTensorMode):
current_mode = mode_stack_state_for_pre_dispatch().get(1)
assert current_mode is None
mode_stack_state_for_pre_dispatch().set(1, mode)
else:
current_mode = mode_stack_state_for_pre_dispatch().get(0)
assert current_mode is None
mode_stack_state_for_pre_dispatch().set(0, mode)
# When we are setting a mode, we need to check if there is
# active mode left on the PreDispatch key. If there was nothing
# active before setting this mode, it means that PreDispatch key
# was turned off. So we need to turn it on again.
if previous_mode_stack_len == 0:
torch._C._dispatch_tls_set_dispatch_key_included(DispatchKey.PreDispatch, True)
def _pop_mode_from_pre_dispatch():
mode_stack = mode_stack_state_for_pre_dispatch()
pre_dispatch_len = _len_torch_dispatch_stack_pre_dispatch()
if pre_dispatch_len == 0:
raise AssertionError("Trying to pop empty mode stack")
if mode_stack._schema_check_mode is not None:
return unset_mode_pre_dispatch(None, schema_check=True)
if mode_stack.get(1) is not None:
return unset_mode_pre_dispatch(torch._C._TorchDispatchModeKey.FUNCTIONAL)
if mode_stack.get(0) is not None:
return unset_mode_pre_dispatch(torch._C._TorchDispatchModeKey.PROXY)
def _len_torch_dispatch_stack_pre_dispatch():
return mode_stack_state_for_pre_dispatch().count()
def _get_dispatch_mode_pre_dispatch(mode_key):
assert mode_key in (
torch._C._TorchDispatchModeKey.PROXY,
torch._C._TorchDispatchModeKey.FUNCTIONAL,
)
if mode_key == torch._C._TorchDispatchModeKey.PROXY:
return mode_stack_state_for_pre_dispatch().get(0)
else:
return mode_stack_state_for_pre_dispatch().get(1)
def _get_current_dispatch_mode_pre_dispatch():
if mode_stack_state_for_pre_dispatch()._schema_check_mode is not None:
return mode_stack_state_for_pre_dispatch()._schema_check_mode
else:
stack_len = mode_stack_state_for_pre_dispatch().count()
if stack_len == 2:
return mode_stack_state_for_pre_dispatch().get(1)
if stack_len == 1:
return (
mode_stack_state_for_pre_dispatch().get(1)
if mode_stack_state_for_pre_dispatch().get(1) is not None
else mode_stack_state_for_pre_dispatch().get(0)
)
return None
def mode_stack_state_for_pre_dispatch():
global _mode_stack_state_for_pre_dispatch
return _mode_stack_state_for_pre_dispatch
cached_ops: set["OpOverload"] = set()
def add_cached_op(op_overload):
global cached_ops
cached_ops.add(op_overload)
def reset_cached_ops():
global cached_ops
cached_ops.clear()
def get_cached_ops():
global cached_ops
return cached_ops
# Each OpOverload object contains pointer to a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
# You can obtain an OpOverload object through attribute query on OpOverloadPacket.
class OpOverload(OperatorBase):
def __init__(self, overloadpacket, op, op_dk, schema, tags):
super().__init__()
self._op = op
self._op_dk = op_dk
self._schema = schema
self._overloadpacket = overloadpacket
self._tags = tags
self._overloadname = (
"default" if schema.overload_name == "" else schema.overload_name
)
if tags:
self._nondeterministic_seeded = torch.Tag.nondeterministic_seeded in tags
self._name = self._schema.name
if schema.overload_name:
self._name += "." + schema.overload_name
self.__name__ = f"{self._schema.name.split('::')[1]}.{self._overloadname}"
self.__module__ = overloadpacket.__module__
op.__module__ = overloadpacket.__module__
self.__qualname__ = self._name
self.__annotations__ = {}
# Only compute the OperatorHandle when we need it. Not all OpOverloads have
# OperatorHandles (the TorchScript ones don't...)
self._lazy_handle = None
# If the OpOverload was constructed from a Library.def in Python.
self._defined_in_python = self.__qualname__ in torch.library._defs
# Logic replicated from aten/src/ATen/native/MathBitsFallback.h
is_write = None
for a in self._schema.arguments:
if a.alias_info is None:
continue
if is_write is None:
is_write = a.alias_info.is_write
else:
# We will conservatively call mixed mutable/non-mutable
# aliased inputs as NOT a view
is_write = a.alias_info.is_write or is_write
self.is_view = is_write is not None and not is_write
@property
def _namespace(self):
return self._schema.name.split("::")[0]
@property
def _opname(self):
return self._schema.name.split("::")[1]
@property
def _handle(self):
if self._lazy_handle is None:
self._lazy_handle = torch._C._dispatch_find_schema_or_throw(
self._schema.name, self._schema.overload_name
)
return self._lazy_handle
# it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverload(op='{}.{}', overload='{}')>".format(
*self._schema.name.split("::"), self._overloadname
)
# Use positional-only argument to avoid naming collision with aten ops arguments
# that are named "self". This way, all the aten ops can be called by kwargs.
def __call__(self, /, *args, **kwargs):
return self._op(*args, **kwargs)
# Use positional-only argument to avoid naming collision with aten ops arguments
# that are named "self". This way, all the aten ops can be called by kwargs.
def redispatch(self, /, keyset, *args, **kwargs):
return self._handle.redispatch_boxed(keyset, *args, **kwargs)
def __hash__(self):
return hash(self._op)
# `my_namespace.my_op_name.overload_name`
def __str__(self):
return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
def has_kernel_for_dispatch_key(self, k):
return super().has_kernel_for_dispatch_key(
k
) or torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), k)
def has_kernel_for_any_dispatch_key(self, ks):
return torch._C._dispatch_has_kernel_for_any_dispatch_key(
self.name(), ks
) or super().has_kernel_for_any_dispatch_key(ks)
@property
def namespace(self):
return self._schema.name.split("::")[0]
def _can_decompose(self):
dk = DispatchKey.CompositeImplicitAutograd
return dk in self.py_kernels or torch._C._dispatch_has_kernel_for_dispatch_key(
self.name(), dk
)
def decompose(self, *args, **kwargs):
dk = DispatchKey.CompositeImplicitAutograd
if dk in self.py_kernels:
# NB: This branch is not too necessary anymore, because we can
# apply Python CompositeImplicitAutograd *before* tracing
# using Python dispatcher (also taking advantage of the autograd
# formula). But it's included for completeness
return self.py_kernels[dk](*args, **kwargs)
elif torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk):
return self._op_dk(dk, *args, **kwargs)
else:
return NotImplemented
# Remove a dispatch key from the dispatch cache. This will force it to get
# recomputed the next time. Does nothing
# WARNING: if you register a dispatch key to py_kernels of an OpOverload,
# calling _del_dispatch on that key is NOT sufficient to apply your change,
# because a single registration may affect MULTIPLE dispatch keys (e.g.,
# registering Autograd affects AutogradCPU). del_dispatch is to be used
# only if you are specifically modifying how get_dispatch handles a
# particular input 'key'.
def _uncache_dispatch(self, key):
self._dispatch_cache.pop(key, None)
# This implements the pre-computation logic for the Python dispatcher.
def _get_dispatch(self, key):
# This is only called upon a cache miss
assert key not in self._dispatch_cache, f"{self} {key}"
if key == DispatchKey.Python:
if not isinstance(self, TorchBindOpOverload) and not self.python_key_table:
self._dispatch_cache[key] = key
add_cached_op(self)
return key
def handler(*args, **kwargs):
from torch.utils._python_dispatch import _get_current_dispatch_mode
# TODO: We also need to handle tensor subclasses here
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
curr_mode = type(_get_current_dispatch_mode())
assert curr_mode is not None, (
"Illegal invocation of dispatch on DispatchKey.Python without a mode."
)
if curr_mode not in self.python_key_table:
if isinstance(self, TorchBindOpOverload):
with (
torch.utils._python_dispatch._pop_mode_temporarily() as mode
):
return torch._library.utils.handle_dispatch_mode(
mode, self, *args, **kwargs
)
else:
return self._op_dk(key, *args, **kwargs)
with torch.utils._python_dispatch._pop_mode_temporarily() as mode:
return self.python_key_table[curr_mode](mode, *args, **kwargs)
self._dispatch_cache[key] = handler
add_cached_op(self)
return handler
functionality_key = torch._C._to_functionality_key(key) # type: ignore[attr-defined]
if functionality_key == DispatchKey.PreDispatch:
curr_stack_len = _len_torch_dispatch_stack_pre_dispatch()
# The check for Python in the exclude set is so we properly respect `with no_dispatch()`
# calls inside of a mode.
if (
curr_stack_len > 0
and not torch._C._dispatch_tls_is_dispatch_key_excluded(
DispatchKey.Python
)
):
def handler(*args, **kwargs):
@contextlib.contextmanager
def _temporarily_pop_modes_from_pre_dispatch():
top_mode = _pop_mode_from_pre_dispatch()
try:
yield top_mode
finally:
_set_mode_pre_dispatch(top_mode)
with _temporarily_pop_modes_from_pre_dispatch() as curr_mode:
return torch._library.utils.handle_dispatch_mode(
curr_mode, self, *args, **kwargs
)
# Note [Not Caching Per-Dispatch-Key Mode Handlers]
# Note that we're not caching this handler. There isn't really a point, since the slow bit
# is the handler itself (in python).
# Also, not caching means that we don't have to reset the cache when any existing
# modes go out of scope (which in of itself takes time to loop through all operators).
return handler
final_key = resolve_key(self, key)
# See Note [Not Caching Per-Dispatch-Key Mode Handlers]
cache_result = key != DispatchKey.PreDispatch
# TODO: We could potentially have lots of debugging wrappers against
# dispatch keys; design some general registration mechanism instead of
# having if statement for each of them
if key == DispatchKey.Functionalize:
import torch._dispatch.python as pydispatch
if pydispatch.CROSSREF_FUNCTIONALIZE:
handler = pydispatch.make_crossref_functionalize(self, final_key)
if cache_result:
self._dispatch_cache[key] = handler
add_cached_op(self)
return handler
r = self.py_kernels.get(final_key, final_key)
if cache_result:
self._dispatch_cache[key] = r
add_cached_op(self)
return r
def name(self):
return self._name
@property
def overloadpacket(self):
return self._overloadpacket
@property
def op(self):
return self._op
@property
def tags(self):
return self._tags
# TODO: add more methods to expose information about input and output arguments
# TorchBindOpOverload are those custom ops which have at least one overload's
# schema consists of torch.ScriptObject (i.e. custom class) input.
# TorchBindOpOverload will skip C++ dispatcher and purely dispatched in python
# when its inputs contain FakeScriptObject in a similar way as higher order ops.
class TorchBindOpOverload(OpOverload):
def _fallthrough_keys(self) -> list[DispatchKey]:
# TODO: we should be calling the fallback for these, but a fallthrough is almost close
# enough to the fallback in most cases that we care about.
_DEFAULT_FALLTHROUGH_KEYS = [
DispatchKey.Autograd,
DispatchKey.AutogradCPU,
DispatchKey.AutogradCUDA,
DispatchKey.ADInplaceOrView,
DispatchKey.BackendSelect,
DispatchKey.PythonTLSSnapshot,
DispatchKey.PythonDispatcher,
]
def _may_use_fallthrough_instead_of_fallback(key: DispatchKey):
if torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), key):
return torch._C._dispatch_kernel_for_dispatch_key_is_fallthrough(
self.name(), key
)
return (
key not in self.py_kernels
or self.py_kernels[key] is torch.library.fallthrough_kernel
)
return [
key
for key in _DEFAULT_FALLTHROUGH_KEYS
if _may_use_fallthrough_instead_of_fallback(key)
]
@contextlib.contextmanager
def _register_as_effectful_op_temporarily(self):
from torch._higher_order_ops.effects import (
_EffectType,
_register_effectful_op,
SIDE_EFFECTS,
)
try:
if self not in SIDE_EFFECTS:
_register_effectful_op(self, _EffectType.ORDERED)
yield
finally:
if self in SIDE_EFFECTS:
del SIDE_EFFECTS[self]
# Use positional-only argument to avoid naming collision with aten ops arguments
# that are named "self". This way, all the aten ops can be called by kwargs.
def __call__(self, /, *args, **kwargs):
if _must_dispatch_in_python(args, kwargs):
# When any inputs are FakeScriptObject, we need to
# skip c++ dispatcher and dispatch in python through _get_dispatch of python_dispatcher
# because C++ dispatcher will check the schema and cannot recognize FakeScriptObject.
#
# Note:
# 1. We only register the torchbind op temporarily as effectful op because we only want
# the effect token functionalization logic to be applied during tracing. Otherwise, the behavior
# of the eagerly executing the op might change after tracing.
# 2. We don't want to register the op as effectful for all torchbind ops in ctor because this might
# cause unexpected behavior for some autograd.profiler ops e.g. profiler._record_function_exit._RecordFunction.
with self._register_as_effectful_op_temporarily():
return self._dispatch_in_python(args, kwargs, self._fallthrough_keys())
return self._op(*args, **kwargs)
def _dispatch_in_python(self, args, kwargs, fallthrough_keys):
non_fallthrough_keys = torch._C._dispatch_keyset_full()
for key in fallthrough_keys:
non_fallthrough_keys = non_fallthrough_keys.remove(key)
dispatch_key_set = _compute_keyset(args, kwargs, non_fallthrough_keys)
dispatch_key = dispatch_key_set.highestPriorityTypeId()
handler = (
self._get_dispatch(dispatch_key)
if dispatch_key not in self._dispatch_cache
else self._dispatch_cache[dispatch_key]
)
if isinstance(handler, DispatchKey):
# fallthrough keys can be registered at runtime via torch.library.impl
# so need to add it to fallthrough_keys and re-dispatch.
if torch._C._dispatch_kernel_for_dispatch_key_is_fallthrough(
self.name(), dispatch_key
):
return self._dispatch_in_python(
args, kwargs, fallthrough_keys + [dispatch_key]
)
raise RuntimeError(
f"Torchbind op {self} received a FakeScriptObject input when dispatching {handler}."
f" but no python implementation is found."
f" Please file an issue on this when you encounter this error."
f" This error can happen when you export or compile the model."
f" It can still happpen even if a C++ implementation for {dispatch_key}. "
f" has been registered. That's because FakeScriptObject purely lives in python and cannot work "
f" with a C++ implementation."
)
assert isinstance(handler, Callable) # type: ignore[arg-type]
return handler(*args, **kwargs)
def _must_dispatch_in_python(args, kwargs):
return pytree.tree_any(
lambda obj: isinstance(
obj, torch._library.fake_class_registry.FakeScriptObject
),
(args, kwargs),
)
def _has_script_object_arg(schema: torch.FunctionSchema) -> bool:
return any(isinstance(arg.type, torch.ClassType) for arg in schema.arguments)
# OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
# You can obtain an OpOverload object through attribute query.
class OpOverloadPacket:
def __init__(self, qualified_op_name, op_name, op, overload_names):
# These attributes are accessible on the object through the properties
# defined below but are immutable
self._qualified_op_name = qualified_op_name
self.__name__ = op_name
self._op = op
self._overload_names = overload_names
self._dir = []
self._has_torchbind_op_overload = any(
_has_script_object_arg(schema) for schema in self._schemas.values()
)
# it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverloadPacket(op='{}.{}')>".format(
*self._qualified_op_name.split("::")
)
def __hash__(self):
return hash(self._op)
def __str__(self):
return "{}.{}".format(*self._qualified_op_name.split("::"))
@property
def op(self):
return self._op
@property
def _schemas(self):
return {
overload_name: torch._C._get_schema(self._qualified_op_name, overload_name)
for overload_name in self._overload_names
}
def __getattr__(self, key):
# It is not a valid op_name when __file__ is passed in
if key == "__file__":
return "torch.ops"
# ensure that query for dunder attributes that does not exist on
# opoverloadpacket but instead exists on the self._op object does not unnecessarily call
# `_get_operation_overload` (which is an expensive operation).
# This is done to prevent any potential slowdown. This list can be extended
# if there exists other attributes like `__name__` that only exist on self._op and not on the
# opoverloadpacket.
# This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
try:
if key.startswith("__"):
return getattr(self._op, key)
except AttributeError:
# for consistency because it seems weird to
# throw an attribute error with a message containing
# an object name different from the one the attribute
# query was performed on.
raise AttributeError(
f"'{str(self)}' can't have an overload name beginning with '__' and the "
f"underlying op {str(self._op)} has no attribute {key} either."
) from None
try:
# This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
use_key = "" if key == "default" else key
# TODO: disallow access to overloads registered by JIT
op_dk_tags = torch._C._get_operation_overload(
self._qualified_op_name, use_key
)
if op_dk_tags is None:
raise AttributeError(
f"The underlying op of '{str(self)}' has no overload name '{key}'"
)
op_, op_dk_, tags = op_dk_tags
schema = torch._C._get_schema(self._qualified_op_name, use_key)
overload = (
OpOverload(self, op_, op_dk_, schema, tags)
if not _has_script_object_arg(schema)
else TorchBindOpOverload(self, op_, op_dk_, schema, tags)
)
# cache the overload object
setattr(self, key, overload)
self._dir.append(key)
return overload
except RuntimeError:
raise AttributeError(
f"The underlying op of '{str(self)}' has no overload name '{key}'"
) from None
def __iter__(self):
return iter(self._dir)
# Use positional-only argument to avoid naming collision with aten ops arguments
# that are named "self". This way, all the aten ops can be called by kwargs.
def __call__(self, /, *args, **kwargs):
# overloading __call__ to ensure torch.ops.foo.bar()
# is still callable from JIT
# We save the function ptr as the `op` attribute on
# OpOverloadPacket to access it here.
# Directly calling OverloadPacket goes into C++, which will check
# the schema and cause an error for torchbind op when inputs consist of FakeScriptObject so we
# intercept it here and call TorchBindOpverload instead.
if self._has_torchbind_op_overload and _must_dispatch_in_python(args, kwargs):
return _call_overload_packet_from_python(self, args, kwargs)
return self._op(*args, **(kwargs or {}))
# TODO: use this to make a __dir__
def overloads(self):
return [n if n else "default" for n in self._overload_names]
# Note - this mirrors the logic of the cpp_function defined in jit/python/init.cpp
# _jit_get_operations, which calls _get_operation_for_overload_or_packet.
def _call_overload_packet_from_python(op: OpOverloadPacket, args, kwargs):
# Re-use the torch function handling logic in cpp
torch_function_called, ret = torch._C._maybe_call_torch_function_for_op_packet(
op, *args, **kwargs
)
if torch_function_called:
return ret
# The following mirrors getOpWithStack.
# In cpp, we do a schema matching for the arguments, and call ToIValue to
# to check whether the arguments are valid. But need to do similar things here
# and check the schema whether the FakeScriptObject is the corresponding fake class
# of the actual class used in schema.
exceptions = {}
found_op = None
for overload_name in op.overloads():
op_overload = getattr(op, overload_name)
try:
_ = torch._C._check_schema_allow_fake_script_object(
op_overload._schema, *args, **kwargs
)
found_op = op_overload
break
except RuntimeError as e:
exceptions[overload_name] = e
if found_op:
return found_op(*args, **kwargs)
err_msg = (
f"Fail to match any TorchBindOverload of {op} with following exceptions:\n"
)
for key, msg in exceptions.items():
err_msg += f"Overload name {key}:\n {msg}\n"
raise RuntimeError(err_msg)
# Resolution of torch.fn is different from torch.ops.aten.fn
# torch.fn uses the Python argparser, matches with the
# appropriate schema, and calls into the unboxed version of the method
# torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
# JIT creates a stack of all the overloads and then tries to match the
# correct one at runtime and always calls into the boxed version of the method
# Autograd codegen creates VariableType, TracerType,
# inplace or view type and python bindings.
# Aten codegen generates tensor methods for the tensor class.
# _OpNamespace is a subclass of ModuleType because the torch script
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
# to work from script, we need to ensure ops and foo are modules
class _OpNamespace(types.ModuleType):
"""
An op namespace to dynamically bind Operators into Python.
Say a user has created a custom Operator called "my_namespace::my_op". To
call this op, the user will write torch.ops.my_namespace.my_op(...).
At startup, this operation will not yet be bound into Python. Instead, the
following sequence of magic tricks will occur:
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
on the `torch.ops` object, which will create a new `_OpNamespace`
object called `my_namespace` and set it as an attribute on the `ops`
object.
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
the `my_namespace` object, which will retrieve the operation via
`torch.get_operation`, a function bound from C++, and then in a similar
fashion bind this new object onto the `my_namespace` object.
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
and subsequent accesses will incur no further lookup (the namespace and
operation will already exist).
"""
def __init__(self, name):
super().__init__("torch.ops." + name)
self.name = name
self._dir = []
def __iter__(self):
return iter(self._dir)
def __getattr__(self, op_name):
# It is not a valid op_name when __file__ is passed in
if op_name == "__file__":
return "torch.ops"
elif op_name in ["__origin__", "__self__"]:
raise AttributeError(
f"Invalid attribute '{op_name}' for '_OpNamespace' '{self.name}'"
)
# Get the op `my_namespace::my_op` if available. This will also check
# for overloads and raise an exception if there are more than one.
namespace_name = self.name
qualified_op_name = f"{namespace_name}::{op_name}"
module_name = self.__module__ + "." + namespace_name
try:
op, overload_names = _get_packet(qualified_op_name, module_name)
if op is None:
raise AttributeError(
f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
)
except RuntimeError as e:
# Turn this into AttributeError so getattr(obj, key, default)
# works (this is called by TorchScript with __origin__)
raise AttributeError(
f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
) from e
op.__module__ = module_name
opoverloadpacket = OpOverloadPacket(
qualified_op_name, op_name, op, overload_names
)
opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
# cache the opoverloadpacket to ensure that each op corresponds to
# a unique OpOverloadPacket object
setattr(self, op_name, opoverloadpacket)
self._dir.append(op_name)
return opoverloadpacket
def _get_packet(qualname, op_module):
op, overload_names = torch._C._jit_get_operation(qualname)
if op is not None:
# let the script frontend know that op is identical to the builtin op
# with qualified_op_name
torch.jit._builtins._register_builtin(op, qualname)
op.__module__ = op_module
return op, overload_names
def _refresh_packet(packet):
op, overload_names = _get_packet(packet._qualified_op_name, packet._op.__module__)
assert op is not None
packet._op = op
packet._overload_names = overload_names
class _PyOpNamespace(_OpNamespace):
def __init__(self, name, ops):
super().__init__(name)
self._ops = ops
def __getattr__(self, name):
# Following _OpNamespace.__getattr__, we cache the op on the _PyOpNamespace object.
op = self._ops.get(name, None)
if op is None:
raise AttributeError(
f"'_PyOpNamespace' '{self.name}' object has no attribute '{name}'"
)
setattr(self, name, op)
return op
class _Ops(types.ModuleType):
__file__ = "_ops.py"
def __init__(self):
super().__init__("torch.ops")
self.loaded_libraries = set()
self._higher_order_op_namespace = _PyOpNamespace(
"torch.ops.higher_order", _higher_order_ops
)
self._dir = []
def __getattr__(self, name):
# Check if the name is a HigherOrderOperator
if name == "higher_order":
return self._higher_order_op_namespace
# Here we are creating `torch.ops.my_namespace`
namespace = _OpNamespace(name)
setattr(self, name, namespace)
self._dir.append(name)
return namespace
def __iter__(self):
return iter(self._dir)
def import_module(self, module):
"""
Imports a Python module that has torch.library registrations.
Generally, to extend PyTorch with custom operators, a user will
create a Python module whose import triggers registration of
the custom operators via a torch.ops.load_library call or a call
to one or more torch.library.* APIs.
It is unexpected for Python modules to have side effects, so some
linters and formatters will complain. Use this API to import Python
modules that contain these torch.library side effects.
Args:
module (str): The name of the Python module to import
"""
importlib.import_module(module)
def load_library(self, path):
"""
Loads a shared library from the given path into the current process.
The library being loaded may run global initialization code to register
custom operators with the PyTorch JIT runtime. This allows dynamically
loading custom operators. For this, you should compile your operator
and the static registration code into a shared library object, and then
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
shared object.
After the library is loaded, it is added to the
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
for the paths of all libraries loaded using this function.
Args:
path (str): A path to a shared library to load.
"""
if torch._running_with_deploy():
return
path = _utils_internal.resolve_library_path(path)
with dl_open_guard():
# Import the shared library into the process, thus running its
# static (global) initialization code in order to register custom
# operators with the JIT.
ctypes.CDLL(path)
self.loaded_libraries.add(path)
# The ops "namespace"
ops: _Ops = _Ops()
|