File size: 153,976 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 |
# mypy: allow-untyped-defs
"""
Utility functions and classes used throughout the TorchDynamo system.
This module contains a collection of helper utilities used by various parts of Dynamo for:
- Performance metrics collection and reporting
- Compilation timing and debugging
- Graph manipulation and tensor operations
- Runtime guards and checks
- Common data structure operations
- Testing and development tools
This is an internal module that provides shared functionality used across the Dynamo codebase.
"""
from __future__ import annotations
import atexit
import collections
import contextlib
import copy
import dataclasses
import datetime
import dis
import enum
import functools
import gc
import importlib
import inspect
import itertools
import json
import linecache
import logging
import math
import operator
import os
import re
import sys
import textwrap
import threading
import time
import traceback
import types
import typing
import uuid
import warnings
import weakref
from collections import Counter, OrderedDict
from contextlib import contextmanager
from dataclasses import is_dataclass
from functools import lru_cache
from types import MethodWrapperType
from typing import (
Any,
Callable,
cast,
ClassVar,
Generic,
Optional,
overload,
TypeVar,
Union,
)
from typing_extensions import Literal, TypeIs
import torch
import torch._functorch.config
import torch.fx.experimental.symbolic_shapes
import torch.utils._pytree as pytree
from torch import fx
from torch._C import (
_instruction_counter,
_len_torch_function_stack,
_pop_torch_function_stack,
_push_on_torch_function_stack,
)
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.metrics_context import MetricsContext, RuntimeMetricsContext
from torch._guards import CompileId, Source, TracingContext
from torch._subclasses.meta_utils import is_sparse_compressed
from torch._utils_internal import (
justknobs_check,
log_chromium_event_internal,
log_compilation_event,
record_chromium_event_internal,
signpost_event,
)
from torch.fx._utils import _format_graph_code, lazy_format_graph_code
from torch.monitor import _WaitCounter
from torch.nn.modules.lazy import LazyModuleMixin
from torch.utils._triton import has_triton, has_triton_package
from torch.utils.hooks import RemovableHandle
if typing.TYPE_CHECKING:
from collections.abc import Generator, Iterable, Iterator, KeysView, ValuesView
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
import torch._logging
import torch._numpy as tnp
from torch._guards import detect_fake_mode # noqa: F401n
from torch._logging import LazyString
from . import config
# NOTE: Make sure `NP_SUPPORTED_MODULES` and `NP_TO_TNP_MODULE` are in sync.
if np:
NP_SUPPORTED_MODULES: tuple[types.ModuleType, ...] = (
np,
np.fft,
np.linalg,
np.random,
)
NP_TO_TNP_MODULE = {
np: tnp,
np.fft: tnp.fft,
np.linalg: tnp.linalg,
np.random: tnp.random,
}
else:
NP_SUPPORTED_MODULES = ()
NP_TO_TNP_MODULE = {}
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
except ImportError:
pass
T = TypeVar("T")
unpatched_nn_module_getattr = torch.nn.Module.__getattr__
unpatched_nn_module_call = torch.nn.Module.__call__
unpatched_nn_module_call_impl = torch.nn.Module._call_impl
counters: collections.defaultdict[str, Counter[str]] = collections.defaultdict(
collections.Counter
)
optimus_scuba_log: dict[str, Any] = {}
troubleshooting_url = (
"https://pytorch.org/docs/main/torch.compiler_troubleshooting.html"
)
nnmodule_doc_url = "https://pytorch.org/docs/main/torch.compiler_nn_module.html"
nnmodule_doc_url_msg = f"See {nnmodule_doc_url} for more information and limitations."
log = logging.getLogger(__name__)
# profiling compilation time by function
compilation_time_metrics: dict[str, list[float]] = {}
# This supports calculate_time_spent(), which reports cumulative times
# across the process for any "phase" populated by dynamo_timed. Reset if
# reset_frame_count() is called.
cumulative_time_spent_ns: dict[str, float] = collections.defaultdict(float)
timer_counter = itertools.count()
# Abstraction on top of counters.
class ReInplaceTrigger(enum.Enum):
AUTO_FUNC_V1 = 1
AUTO_FUNC_V2 = 2
TRITON_OPS = 3
class ReinplaceCounters:
_values: collections.defaultdict[str, int] = collections.defaultdict(int)
# Track sizes of known not re-inplaced tensors (exclude dynamic shapes).
@classmethod
def add_missed_bytes(cls, trigger: ReInplaceTrigger, bytes: int):
if bytes != 0:
cls._values[f"missed_bytes_{trigger.name}"] += bytes
# Track number of not re-inplaced tensors.
@classmethod
def add_missed_opportunities(cls, trigger: ReInplaceTrigger, count: int):
if count != 0:
cls._values[f"missed_tensors_{trigger}"] += count
@classmethod
def clear(cls):
cls._values.clear()
@classmethod
def get_total_missed(cls):
sum = 0
for trigger in ReInplaceTrigger:
sum += cls._values.get(f"missed_tensors_{trigger}", 0)
return sum
@classmethod
def get_total_missed_bytes(cls):
sum = 0
for trigger in ReInplaceTrigger:
sum += cls._values.get(f"missed_bytes_{trigger.name}", 0)
return sum
@classmethod
def log(cls):
# if not empty log.
if cls._values:
signpost_event("inductor", "reinplace_counters", cls._values)
def tabulate(
rows: Union[list[tuple[str, object]], list[list[object]]],
headers: Union[tuple[str, ...], list[str]],
) -> str:
try:
import tabulate
return tabulate.tabulate(rows, headers=headers)
except ImportError:
return "\n".join(
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
)
curr_frame = 0
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def increment_frame() -> None:
global curr_frame
curr_frame = curr_frame + 1
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def reset_frame_count() -> None:
global curr_frame
cumulative_time_spent_ns.clear()
compilation_time_metrics.clear()
curr_frame = 0
op_count = 0
def increment_op_count(cnt: int) -> None:
global op_count
op_count += cnt
# Get the total time in seconds for each "phase"
# For example, {'entire_frame_compile':8.574629999999999, 'backend_compile':5.26806}
def calculate_time_spent() -> dict[str, float]:
total_by_key = {}
for phase, timing in cumulative_time_spent_ns.items():
total_by_key[phase] = timing / 1e9
total_by_key["total_wall_time"] = total_by_key.get(
"entire_frame_compile", 0
) + total_by_key.get("entire_backward_compile", 0)
return total_by_key
# Print a report of time spent so far
# Ex:
# TIMING:
# entire_frame_compile:8.574629999999999
# backend_compile:5.26806
def print_time_report() -> None:
total_by_key = calculate_time_spent()
out = "TIMING:"
for key, value in total_by_key.items():
out = f"{out} {key}:{round(value, 5)}"
print(out)
# Use the following singleton to capture and log CompilationMetrics. Entering the context
# manager allocates a new record to be logged when it exits. (You should not need to use
# this directly unless you introduce a new code path where compilation metrics would be
# gathered). While compiling, use the setters or timer in MetricsContext to update fields
# in the current context. For example:
#
# To set a single field once (use overwrite=True to overwrite):
# get_metrics_context().set("metric_name", value)
#
# To set multiple fields at once (use overwrite=True to overwrite):
# get_metrics_context().update({"name1": val1, "name2": val2})
#
# To increment an integer field:
# get_metrics_context().increment("metric_name", value)
#
# To record execution time, MetricsContext works with dynamo_timed:
# def foo(...):
# # Updates the "metric_us" field.
# with dynamo_timed("metric", dynamo_compile_column_us="metric_us")
# ...
#
_METRICS_CONTEXT: MetricsContext
_RUNTIME_METRICS_CONTEXT: RuntimeMetricsContext
def get_metrics_context() -> MetricsContext:
return _METRICS_CONTEXT
def get_runtime_metrics_context() -> RuntimeMetricsContext:
return _RUNTIME_METRICS_CONTEXT
class CompileEventLogLevel(enum.Enum):
"""
Enum that loosely corresponds with a "log level" of a given event.
CHROMIUM_EVENT: Logs only to tlparse.
COMPILE_EVENT: Logs to tlparse + PT2 Compile Events
COMPILATION_METRIC: Logs to tlparse, PT2 Compile Events, and dynamo_compile
"""
CHROMIUM = 1
PT2_COMPILE = 2
COMPILATION_METRIC = 3
class CompileEventLogger:
"""
Helper class for representing adding metadata(i.e. columns) to various compile events.
Use CompileEventLogger to add event data to:
- Chromium events
- PT2 Compile Events
- CompilationMetrics
This should be used in conjunction with dynamo_timed() and metrics contexts, which create
timed spans and events. CompileEventLogger uses three log levels (described in CompileEventLogLevel),
where each log level logs to all sources below it in the hierarchy.
Example usages:
- I want to log to an existing chromium event within dynamo timed:
with dynamo_timed("my_event"):
CompileEventLogger.chromium("my_event", foo=bar)
- I want to log my event to both chromium + pt2_compile_events:
with dynamo_timed("my_event", log_pt2_compile_event=True):
CompileEventLogger.pt2_compile("my_event", foo=bar)
- I want to add information to dynamo events and dynamo_compile
CompileEventLogger.compilation_metric(foo=bar)
"""
@staticmethod
def log_instant_event(
event_name: str,
metadata: dict[str, Any],
time_ns: Optional[int] = None,
log_level: CompileEventLogLevel = CompileEventLogLevel.CHROMIUM,
):
if time_ns is None:
time_ns = time.time_ns()
chromium_log = get_chromium_event_logger()
if log_level == CompileEventLogLevel.CHROMIUM:
log_pt2_compile_event = False
elif log_level == CompileEventLogLevel.PT2_COMPILE:
log_pt2_compile_event = True
else:
raise RuntimeError(
"Cannot log instant event at COMPILATION_METRIC level. Please choose one of CHROMIUM_EVENT or COMPILE_EVENT"
)
chromium_log.log_instant_event(
event_name, time_ns, metadata, log_pt2_compile_event
)
@staticmethod
def add_data(
event_name: str,
log_level: CompileEventLogLevel,
overwrite: bool = False,
**metadata: object,
):
"""
Centralized API for adding data to various events
Log an event to a toplevel "dynamo" event or metrics context
depending on log level.
"""
chromium_log = get_chromium_event_logger()
pt2_compile_substack = chromium_log.get_pt2_compile_substack()
if log_level == CompileEventLogLevel.CHROMIUM:
chromium_log.add_event_data(event_name, **metadata)
elif log_level == CompileEventLogLevel.PT2_COMPILE:
pt2_compile_substack = chromium_log.get_pt2_compile_substack()
if event_name not in pt2_compile_substack:
raise RuntimeError(
"Error: specified log level PT2_COMPILE, but the event %s"
" is not logged to pt2_compile_events. Make sure the event is active and you passed "
"log_pt2_compile_event=True to dynamo_timed",
event_name,
)
chromium_log.add_event_data(event_name, **metadata)
else:
assert log_level == CompileEventLogLevel.COMPILATION_METRIC
top_event = chromium_log.get_outermost_event()
if event_name != top_event:
raise RuntimeError(
"Log level is COMPILATION_METRIC, but event_name isn't the toplevel event. "
"CompilationMetrics must be logged to the toplevel event. Consider using `log_toplevel_event_data` directly."
)
metrics_context = get_metrics_context()
if not metrics_context.in_progress():
raise RuntimeError(
"No metrics context is in progress. Please only call this function within a metrics context."
)
# TODO: should we assert that the keys of metadata are in CompilationMetrics?
metrics_context.update(metadata, overwrite)
chromium_log.add_event_data(event_name, **metadata)
@staticmethod
def add_toplevel(
log_level: CompileEventLogLevel, overwrite: bool = False, **metadata: object
):
"""
Syntactic sugar for logging to the toplevel event
"""
top_event = get_chromium_event_logger().get_outermost_event()
if top_event is None:
raise RuntimeError(
"No toplevel event active. Please only call this function within a dynamo_timed context."
)
CompileEventLogger.add_data(top_event, log_level, overwrite, **metadata)
@staticmethod
def increment(
event_name: str, log_level: CompileEventLogLevel, key: str, value: int
):
"""
Increments an existing field, or adds it
"""
chromium_log = get_chromium_event_logger()
if (
log_level == CompileEventLogLevel.CHROMIUM
or log_level == CompileEventLogLevel.PT2_COMPILE
):
chromium_log.increment(event_name, key, value)
else:
assert log_level == CompileEventLogLevel.COMPILATION_METRIC
top_event = chromium_log.get_outermost_event()
if event_name != top_event:
raise RuntimeError(
"Log level is COMPILATION_METRIC, but event_name isn't the toplevel event. "
"CompilationMetrics must be logged to the toplevel event. Consider using `increment_toplevel` directly."
)
metrics_context = get_metrics_context()
if not metrics_context.in_progress():
raise RuntimeError(
"No metrics context is in progress. Please only call this function within a metrics context/dynamo_timed."
)
metrics_context.increment(key, value)
chromium_log.increment(event_name, key, value)
@staticmethod
def increment_toplevel(
key: str,
value: int = 1,
log_level: CompileEventLogLevel = CompileEventLogLevel.COMPILATION_METRIC,
):
"""
Increments a value on the toplevel metric. By default, logs to metric.
"""
chromium_log = get_chromium_event_logger()
top_event = chromium_log.get_outermost_event()
if top_event is None:
raise RuntimeError(
"No toplevel event active. Please only call this function within a metrics context/dynamo_timed."
)
CompileEventLogger.increment(top_event, log_level, key, value)
@staticmethod
def add_to_set(
event_name: str, log_level: CompileEventLogLevel, key: str, value: Any
):
"""
Add metadata <value> to a set of values with key <key>. Creates a set if it doesn't exist.
"""
chromium_log = get_chromium_event_logger()
if (
log_level == CompileEventLogLevel.CHROMIUM
or log_level == CompileEventLogLevel.PT2_COMPILE
):
chromium_log.add_to_set(event_name, key, value)
else:
assert log_level == CompileEventLogLevel.COMPILATION_METRIC
top_event = chromium_log.get_outermost_event()
if event_name != top_event:
raise RuntimeError(
"Log level is COMPILATION_METRIC, but event_name isn't the toplevel event. "
"CompilationMetrics must be logged to the toplevel event. Consider using `add_to_set_metric` directly."
)
metrics_context = get_metrics_context()
if not metrics_context.in_progress():
raise RuntimeError(
"No metrics context is in progress. Please only call this function within a metrics context/dynamo_timed."
)
metrics_context.add_to_set(key, value)
chromium_log.add_to_set(event_name, key, value)
@staticmethod
def add_to_set_toplevel(
key: str,
value: Any,
log_level: CompileEventLogLevel = CompileEventLogLevel.COMPILATION_METRIC,
):
"""
Same as add to set, just does it automatically to the toplevel event instead of having to explicitly name it.
Defaults to COMPILATION_METRIC log level.
"""
chromium_log = get_chromium_event_logger()
top_event = chromium_log.get_outermost_event()
if top_event is None:
raise RuntimeError(
"No toplevel event active. Please only call this function within a metrics context/dynamo_timed."
)
CompileEventLogger.add_to_set(top_event, log_level, key, value)
# Helper functions that are syntactic sugar
@staticmethod
def chromium(event_name: str, **metadata: object):
"""
Add <metadata> to <event_name> in chromium. Each key/value of metadata will appear in the chromium trace.
<event_name> should be the name of a timed event span passed to `dynamo_timed`.
"""
CompileEventLogger.add_data(
event_name, CompileEventLogLevel.CHROMIUM, overwrite=False, **metadata
)
@staticmethod
def pt2_compile(event_name: str, **metadata: object):
"""
Add <metadata> to <event_name> in chromium and PT2 Compile Events.
Each key/value of metadata will appear in the chromium trace. Each kwarg name becomes
a column in PT2 Compile Events, with the corresponding kwarg value.
<event_name> should be the name of a timed event span passed to `dynamo_timed`,
with log_to_pt2_compile_events=True.
"""
CompileEventLogger.add_data(
event_name, CompileEventLogLevel.PT2_COMPILE, overwrite=False, **metadata
)
@staticmethod
def compilation_metric(overwrite: bool = False, **metadata: object):
"""
Add <metadata> to the CompilationMetrics context. Also logs to PT2 Compile Events
and chromium.
Each key/value of metadata will appear in the chromium trace. Each kwarg name becomes
a column in PT2 Compile Events and Dynamo Compile, with the corresponding kwarg value.
"""
CompileEventLogger.add_toplevel(
CompileEventLogLevel.COMPILATION_METRIC, overwrite, **metadata
)
@staticmethod
def instant(
event_name: str, metadata: dict[str, Any], time_ns: Optional[int] = None
):
"""
Log an instant event to chromium logs with name <event_name> at time <time_ns>. The `args` field in
Perfetto will point to metadata. <time_ns> should be a value obtained from time.time_ns().
"""
CompileEventLogger.log_instant_event(
event_name, metadata, time_ns, CompileEventLogLevel.CHROMIUM
)
@staticmethod
def try_add_pt2_compile(event_name: str, **metadata: object):
"""
Adds to an existing pt2_compile event, but silently returns if the event doesn't exist.
This function is syntactic sugar for chromium_event_logger().try_add_event_data.
"""
chromium_log = get_chromium_event_logger()
chromium_log.try_add_event_data(event_name, **metadata)
@contextmanager
def dynamo_timed(
key: str,
# TODO(masneral): Deprecate this param.
phase_name: Optional[str] = None,
log_pt2_compile_event: bool = False,
metadata: Optional[dict[str, object]] = None,
dynamo_compile_column_us: Optional[str] = None,
dynamo_compile_runtime_column_us: Optional[str] = None,
compile_id: Optional[CompileId] = None,
is_forward: Optional[bool] = None,
log_waitcounter: bool = False,
) -> Generator[Any, None, None]:
"""
dynamo_timed is a context manager
By wrapping a function in dynamo_timed, we can get a few things:
1) Optionally log timings to pt2_compile_events.
2) Optionally log timings to CompilationMetrics (dynamo_compile).
3) Optionally log chromium events.
4) Optionally increment a WaitCounter.
5) Store a record in compilation_time_metrics
For example:
def _foo(...):
with dynamo_timed("_foo"):
...
Would show up as an entry in our timing dict:
OrderedDict([('_foo', [0.083690, 0.23949, 3.1425e-05])])
This is extremely useful for granular debugging.
Although it is tempting to use dynamo_timed as a decorator, please do not.
In its decorator form it makes cProfile traces less useful as dynamo_timed
suddenly becomes a bottleneck for lots of function calls (as only one parent
pointer is recorded).
Params:
- key: key into compile_time_metrics. If phase_name is not provided, this is
also the event name used for pt2_compile_events logs and chromium events.
- phase_name: Optional override for the event name.
- log_pt2_compile_event: Whether to log a pt2 compile event internally.
- metadata: Extra metadata to put in pt2_compile_events.
- dynamo_compile_column_us: If provided, updates the specified CompilationMetrics
field to be logged to dyname_compile column. We expect all columns to be _us;
therefore, the field name must end with "_us".
- dynamo_compile_runtime_column_us: Like 'dynamo_compile_column_us', but should
be used for those columns captured outside of a compile context, e.g.,
runtime autotuning.
- compile_id: In the typical case, this parameter should not be needed. Use to
supply the compile_id for those cases where we want to log a compile_id where
it's not naturally available, e.g., for runtime autotuning.
- is_forward: Optionally set an is_forward field for those logging destinations
that support it.
- log_waitcounter: If set, we'll log a waitcounter of the form "pytorch.dynamo_timed.{key}"
"""
# We're standardizing on microseconds for dynamo_compile timings.
if dynamo_compile_column_us is not None:
assert dynamo_compile_column_us.endswith("_us")
# Only one of these should be set.
assert dynamo_compile_column_us is None or dynamo_compile_runtime_column_us is None
if phase_name:
event_name = phase_name
fn_name = key
else:
event_name = key
fn_name = None
if key not in compilation_time_metrics:
compilation_time_metrics[key] = []
event_metadata = {}
if metadata:
event_metadata.update(metadata)
if fn_name:
event_metadata.update({"fn_name": fn_name})
if is_forward is not None:
event_metadata.update({"is_backward": not is_forward})
chromium_log: ChromiumEventLogger = get_chromium_event_logger()
start_ns = time.time_ns()
chromium_log.log_event_start(
event_name, start_ns, event_metadata, log_pt2_compile_event, compile_id
)
try:
with torch.profiler.record_function(f"{key} (dynamo_timed)"):
if log_waitcounter:
with _WaitCounter(f"pytorch.dynamo_timed.{key}").guard():
yield
else:
yield
finally:
end_ns = time.time_ns()
time_spent_ns = end_ns - start_ns
compilation_time_metrics[key].append(time_spent_ns / 1e9)
chromium_log.log_event_end(
event_name, end_ns, {}, start_ns, log_pt2_compile_event, compile_id
)
if dynamo_compile_column_us:
metrics_context = get_metrics_context()
if metrics_context.in_progress():
metrics_context.increment(
dynamo_compile_column_us, time_spent_ns // 1000
)
# TODO: the events that we capture in calculate_time_spent() seem a little
# arbitrary. Currently, it's only those fields that are present in
# CompilationMetrics (but note that we accumulate by the associated event
# name, not the field name in CompilationMetrics). Do we want to keep it
# this way?
cumulative_time_spent_ns[event_name] += time_spent_ns
if dynamo_compile_runtime_column_us:
get_runtime_metrics_context().increment(
dynamo_compile_runtime_column_us,
time_spent_ns // 1000,
extra={
"compile_id": compile_id,
"is_runtime": True,
"is_forward": is_forward,
},
)
cumulative_time_spent_ns[event_name] += time_spent_ns
@overload
def compile_times(repr: Literal["str"], aggregate: bool = False) -> str: ...
@overload
def compile_times(
repr: Literal["csv"], aggregate: bool = False
) -> tuple[list[str], list[object]]: ...
def compile_times(repr="str", aggregate: bool = False):
"""
Get metrics about torchdynamo frontend/backend compilation times.
Accumulates information from functions tagged with `dynamo_timed`.
repr='str' returns a printable string for user interaction, and 'csv'
returns headers, rows which can be logged for output
aggregate causes values from multiple compilations (e.g. split graphs)
to be accumulated into one value. If false, expect more than one value
per metric.
"""
def fmt_fn(values, item_fn=lambda x: x):
if aggregate:
return item_fn(sum(values))
return ", ".join(map(item_fn, values))
if repr == "str":
rows = [
(k, fmt_fn(compilation_time_metrics[k], item_fn=lambda x: f"{x:.4f}"))
for k in compilation_time_metrics
]
out = "TorchDynamo compilation metrics:\n"
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
return out
elif repr == "csv":
values = [
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
for v in compilation_time_metrics.values()
]
headers = list(compilation_time_metrics.keys())
return headers, values
return None
@atexit.register
def dump_compile_times() -> None:
log.info(compile_times(repr="str", aggregate=True))
tensortype_to_dtype = {
torch.FloatTensor: (torch.float32, torch.float),
torch.DoubleTensor: (torch.float64, torch.double),
torch.HalfTensor: (torch.float16, torch.half),
torch.BFloat16Tensor: (torch.bfloat16,),
torch.ByteTensor: (torch.uint8,),
torch.CharTensor: (torch.int8,),
torch.LongTensor: (torch.int64, torch.long),
torch.IntTensor: (torch.int32, torch.int),
torch.ShortTensor: (torch.int16, torch.short),
torch.BoolTensor: (torch.bool,),
}
class DuplicateWarningChecker:
def __init__(self, maxsize: int = 4096) -> None:
self.maxsize = maxsize
self.reset()
def reset(self):
self.set = OrderedDict()
def add(self, key: Union[str, tuple[object, object]]) -> bool:
if key in self.set:
self.set.move_to_end(key, last=True)
if not config.verbose:
return False
else:
self.set[key] = None
while len(self.set) > self.maxsize:
self.set.popitem(last=False)
return True
graph_break_dup_warning_checker = DuplicateWarningChecker()
def setup_compile_debug():
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
if compile_debug:
return add_file_handler()
return contextlib.ExitStack()
def reset_graph_break_dup_checker() -> None:
graph_break_dup_warning_checker.reset()
def add_file_handler():
log_path = os.path.join(get_debug_dir(), "torchdynamo")
os.makedirs(log_path, exist_ok=True)
log_file_handler = logging.FileHandler(os.path.join(log_path, "debug.log"))
logger = logging.getLogger("torch._dynamo")
logger.addHandler(log_file_handler)
exitstack = contextlib.ExitStack()
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
return exitstack
def setup_log_file():
exitstack = contextlib.ExitStack()
if config.log_file_name is not None:
log_file_handler = logging.FileHandler(config.log_file_name)
for logger in torch._logging._internal.get_loggers():
logger.addHandler(log_file_handler)
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
return exitstack
return exitstack
def gen_record_file_name(exc, code) -> str:
return f"{get_debug_dir()}/error_recordings/\
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
def write_record_to_file(filename: str, exec_record) -> None:
try:
if os.path.exists(filename):
log.warning(
"Unable to write execution record %s; file already exists.", filename
)
else:
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "wb") as f:
exec_record.dump(f)
except Exception:
log.exception("Unable to write execution record %s", filename)
def count_calls(g: fx.Graph) -> int:
c = 0
for n in g.nodes:
if "call" in n.op:
c += 1
return c
def identity(x: T) -> T:
return x
def hashable(x):
try:
hash(x)
return True
except TypeError:
return False
# cannot hash writable memoryview object
except ValueError:
return False
def nothing(*args, **kwargs):
pass
class ExactWeakKeyDictionary:
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
def __init__(self):
self.values = {}
self.refs = {}
def __getitem__(self, key):
return self.values[id(key)]
def get(self, key, default=None):
return self.values.get(id(key), default)
def __contains__(self, key):
return id(key) in self.values
def __setitem__(self, key, value):
idx = id(key)
if idx not in self.refs:
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
self.values[idx] = value
def _remove_id(self, idx):
if idx in self.values:
del self.values[idx]
if idx in self.refs:
del self.refs[idx]
def clear(self):
self.refs.clear()
self.values.clear()
@overload
def istype(obj: object, allowed_types: type[T]) -> TypeIs[T]: ...
@overload
def istype(
obj: object, allowed_types: tuple[type[list[T]], type[tuple[T, ...]]]
) -> TypeIs[T]: ...
@overload
def istype(obj: object, allowed_types: Iterable[type]) -> bool: ...
def istype(obj, allowed_types):
"""isinstance() without subclasses"""
if isinstance(allowed_types, (tuple, list, set)):
return type(obj) in allowed_types
return type(obj) is allowed_types
if sys.version_info >= (3, 12):
# Some typing classes moved to C in 3.12,
# which no longer have the _Final mixin.
_builtin_final_typing_classes = (
typing.ParamSpecArgs,
typing.ParamSpecKwargs,
typing.ParamSpec,
typing.TypeVar,
typing.TypeVarTuple,
typing.TypeAliasType,
)
def is_typing(value):
# _Final catches most of typing classes:
# - Any
# - Callable
# - Union
# ...
#
# NB: we intentionally ignore classes that inherit from Generic, since they
# can be used as both TypingVariable as well as UserDefinedClassVariable.
if sys.version_info >= (3, 12) and isinstance(value, _builtin_final_typing_classes):
return True
return isinstance(value, typing._Final) or value is typing.Generic # type: ignore[attr-defined]
def is_numpy_int_type(value):
if not np:
return False
return istype(
value,
(
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
),
)
def is_numpy_float_type(value):
if not np:
return False
return istype(
value,
(
np.float16,
np.float32,
np.float64,
),
)
def is_lru_cache_wrapped_function(value):
return isinstance(value, functools._lru_cache_wrapper) and is_function(
inspect.getattr_static(value, "__wrapped__")
)
def is_function_or_wrapper(value):
return is_function(value) or isinstance(
value, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
)
def is_function(value):
return isinstance(
value,
(
types.FunctionType,
types.BuiltinFunctionType,
types.MethodDescriptorType,
types.WrapperDescriptorType,
),
)
cmp_name_to_op_mapping = {
"__eq__": operator.eq,
"__ne__": operator.ne,
"__lt__": operator.lt,
"__le__": operator.le,
"__gt__": operator.gt,
"__ge__": operator.ge,
}
cmp_name_to_op_str_mapping = {
"__eq__": "==",
"__ne__": "!=",
"__lt__": "<",
"__le__": "<=",
"__gt__": ">",
"__ge__": ">=",
}
def is_wrapper_or_member_descriptor(value):
return isinstance(
value,
(
# set up by PyGetSetDef
types.GetSetDescriptorType,
# set by PyMethodDef, e.g. list.append
types.MethodDescriptorType,
# slots - list.__add__
types.WrapperDescriptorType,
# set up by PyMemberDef
types.MemberDescriptorType,
# wrapper over C functions
types.MethodWrapperType,
),
)
def unwrap_if_wrapper(fn):
return unwrap_with_attr_name_if_wrapper(fn)[0]
def unwrap_with_attr_name_if_wrapper(fn):
# TODO(anijain2305) - Investigate if we can get rid of this function
# unpack @torch._dynamo.optimize()(fn) wrapped function
if is_function(fn) and inspect.getattr_static(fn, "_torchdynamo_inline", False):
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
attr_name = "_torchdynamo_inline"
else:
attr_name = None
return fn, attr_name
def is_numpy_ndarray(value):
if not np:
return False
return istype(value, np.ndarray)
def istensor(obj):
"""Check of obj is a tensor"""
tensor_list: tuple[type, ...] = (
torch.Tensor,
torch.nn.Parameter,
*config.traceable_tensor_subclasses,
)
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
return istype(obj, tensor_list)
def is_lazy_module(mod):
return isinstance(mod, LazyModuleMixin)
@functools.lru_cache(4096)
def print_once(*args):
print(*args)
def make_cell(val=None):
"""Some black magic to create a cell object that usually only exists in a closure"""
x = val
def f():
return x
assert f.__closure__ is not None and len(f.__closure__) == 1
return f.__closure__[0]
def proxy_args_kwargs(args, kwargs):
try:
proxy_args = tuple(arg.as_proxy() for arg in args)
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
return proxy_args, proxy_kwargs
except NotImplementedError as e:
from .exc import unimplemented_v2
from .variables.base import typestr
unimplemented_v2(
gb_type="Failed to convert args/kwargs to proxy",
context=f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}",
explanation="Missing `as_proxy()` implementation for some arg/kwarg.",
hints=[],
from_exc=e,
)
def to_int_ms(v: Optional[float]) -> Optional[int]:
return None if v is None else int(v * 1000)
# float64 timestamp has a quarter microsecond precision in 2024, so while
# this is suboptimal we shouldn't meaningfully lose precision
def to_int_us(v: Optional[float]) -> Optional[int]:
return None if v is None else int(v * 1_000_000)
# Version field added to every log. Increment to make it easier to distinguish new
# vs. old entries when you make a substantive change to how the logs are populated.
LOG_FORMAT_VERSION = 3
@dataclasses.dataclass
class CompilationMetrics:
compile_id: Optional[str] = None
frame_key: Optional[str] = None
co_name: Optional[str] = None
co_filename: Optional[str] = None
co_firstlineno: Optional[int] = None
cache_size: Optional[int] = None
accumulated_cache_size: Optional[int] = None
guard_count: Optional[int] = None
shape_env_guard_count: Optional[int] = None
graph_op_count: Optional[int] = None
graph_node_count: Optional[int] = None
graph_input_count: Optional[int] = None
start_time: Optional[float] = None
entire_frame_compile_time_s: Optional[float] = None
backend_compile_time_s: Optional[float] = None
inductor_compile_time_s: Optional[float] = None
code_gen_time_s: Optional[float] = None
fail_type: Optional[str] = None
fail_reason: Optional[str] = None
fail_user_frame_filename: Optional[str] = None
fail_user_frame_lineno: Optional[int] = None
non_compliant_ops: Optional[set[str]] = None
compliant_custom_ops: Optional[set[str]] = None
restart_reasons: Optional[set[str]] = None
dynamo_time_before_restart_s: Optional[float] = None
# Sometimes, we will finish analyzing a frame but conclude we don't want
# to install any guarded code. True means we actually decided to install
# a compiled frame
has_guarded_code: Optional[bool] = None
remote_cache_time_saved_s: Optional[float] = None
structured_logging_overhead_s: Optional[float] = None
config_suppress_errors: Optional[bool] = None
config_inline_inbuilt_nn_modules: Optional[bool] = None
specialize_float: Optional[bool] = None
dynamo_config: Optional[str] = None
is_forward: Optional[bool] = None
num_triton_bundles: Optional[int] = None
remote_fx_graph_cache_get_time_ms: Optional[int] = None
remote_fx_graph_cache_put_time_ms: Optional[int] = None
start_time_us: Optional[int] = None
duration_us: Optional[int] = None
dynamo_cumulative_compile_time_us: Optional[int] = None
aot_autograd_cumulative_compile_time_us: Optional[int] = None
inductor_cumulative_compile_time_us: Optional[int] = None
inductor_code_gen_cumulative_compile_time_us: Optional[int] = None
triton_compile_time_us: Optional[int] = None
runtime_cudagraphify_time_us: Optional[int] = None
runtime_triton_autotune_time_us: Optional[int] = None
dynamo_compile_time_before_restart_us: Optional[int] = None
cuda_synchronize_time_us: Optional[int] = None # TODO: instrument
distributed_ephemeral_timeout_us: Optional[int] = None
structured_logging_overhead_us: Optional[int] = None
remote_fx_graph_cache_get_time_us: Optional[int] = None
remote_fx_graph_cache_put_time_us: Optional[int] = None
backward_cumulative_compile_time_us: Optional[int] = None
end_time_us: Optional[int] = None
pre_grad_pass_time_us: Optional[int] = None
post_grad_pass_time_us: Optional[int] = None
joint_graph_pass_time_us: Optional[int] = None
log_format_version: int = LOG_FORMAT_VERSION
inductor_config: Optional[str] = None
remote_cache_version: Optional[int] = None
inductor_fx_remote_cache_hit_count: Optional[int] = None
inductor_fx_remote_cache_miss_count: Optional[int] = None
inductor_fx_remote_cache_backend_type: Optional[str] = None
inductor_fx_remote_cache_hit_keys: Optional[str] = None
inductor_fx_remote_cache_miss_keys: Optional[str] = None
cuda_version: Optional[str] = None
triton_version: Optional[str] = None
feature_usage: Optional[dict[str, bool]] = None
compile_time_autotune_time_us: Optional[int] = None
is_runtime: Optional[bool] = False
gc_time_us: Optional[int] = None
tensorify_float_attempt: Optional[bool] = None
tensorify_float_success: Optional[bool] = None
tensorify_float_failure: Optional[set[str]] = None
guard_latency_us: Optional[float] = None
recompile_reason: Optional[str] = None
num_graph_breaks: Optional[int] = None
triton_kernel_compile_times_us: Optional[str] = None
ir_count: Optional[int] = None
cudagraph_skip_reason: Optional[str] = None
@classmethod
def create(cls, metrics: dict[str, Any]):
"""
Factory method to create a CompilationMetrics from a dict of fields.
Includes the logic to add legacy fields and any pre-processing, e.g.,
we transform some fields to comma-separated strings for scuba logging.
"""
def us_to_s(metric: Optional[int]) -> Optional[float]:
return metric / 1e6 if metric is not None else None
def us_to_ms(metric: Optional[int]) -> Optional[int]:
return metric // 1000 if metric is not None else None
def collection_to_str(metric: Optional[Any]) -> Optional[str]:
def safe_str(item: Any) -> str:
try:
return str(item)
except Exception:
return "<unknown>"
if metric is None:
return None
if not isinstance(metric, (set, list)):
return "<unknown>"
return ",".join(safe_str(item) for item in sorted(metric))
def collection_to_json_str(metric: Optional[Any]) -> Optional[str]:
if metric is None:
return None
try:
return json.dumps(list(metric))
except Exception:
return "<unknown>"
# TODO: The following are legacy fields, populated from the fields that replace
# them. Remove these when we decide we can really deprecate them.
legacy_metrics = {
"start_time": us_to_s(metrics.get("start_time_us")),
"entire_frame_compile_time_s": us_to_s(
metrics.get("dynamo_cumulative_compile_time_us")
),
"backend_compile_time_s": us_to_s(
metrics.get("aot_autograd_cumulative_compile_time_us")
),
"inductor_compile_time_s": us_to_s(
metrics.get("inductor_cumulative_compile_time_us")
),
"code_gen_time_s": us_to_s(
metrics.get("inductor_code_gen_cumulative_compile_time_us")
),
"remote_cache_time_saved_s": us_to_s(
metrics.get("distributed_ephemeral_timeout_us")
),
"remote_fx_graph_cache_get_time_ms": us_to_ms(
metrics.get("remote_fx_graph_cache_get_time_us")
),
"remote_fx_graph_cache_put_time_ms": us_to_ms(
metrics.get("remote_fx_graph_cache_put_time_us")
),
"structured_logging_overhead_s": us_to_s(
metrics.get("structured_logging_overhead_us")
),
}
all_metrics = {**legacy_metrics, **metrics}
# Processing before logging:
all_metrics["inductor_fx_remote_cache_hit_keys"] = collection_to_str(
all_metrics.get("inductor_fx_remote_cache_hit_keys")
)
all_metrics["inductor_fx_remote_cache_miss_keys"] = collection_to_str(
all_metrics.get("inductor_fx_remote_cache_miss_keys")
)
all_metrics["triton_kernel_compile_times_us"] = collection_to_json_str(
all_metrics.get("triton_kernel_compile_times_us")
)
compile_id = all_metrics.get("compile_id")
all_metrics["compile_id"] = str(compile_id) if compile_id else None
return cls(**all_metrics)
DEFAULT_COMPILATION_METRICS_LIMIT = 64
_compilation_metrics: collections.deque[CompilationMetrics] = collections.deque(
maxlen=DEFAULT_COMPILATION_METRICS_LIMIT
)
def add_compilation_metrics_to_chromium(c: CompilationMetrics) -> None:
"""
These are the common fields in CompilationMetrics that existed before
metrics_context, and aren't set by MetricsContext.set(). We add the subset
of them that make sense in `dynamo`/toplevel events in PT2 Compile Events
directly.
If you're tempted to add to this list, consider using CompileEventLogger.compilation_metric()
instead, which will automatically also add it to tlparse and PT2 Compile Events.
TODO: Get rid of this function and replace it with CompileEventLogger directly instead.
"""
event_logger = get_chromium_event_logger()
event_name = event_logger.get_outermost_event()
if not event_name:
return
event_logger.add_event_data(
event_name=event_name,
frame_key=c.frame_key,
co_name=c.co_name,
co_filename=c.co_filename,
co_firstlineno=c.co_firstlineno,
cache_size=c.cache_size,
accumulated_cache_size=c.accumulated_cache_size,
guard_count=c.guard_count,
shape_env_guard_count=c.shape_env_guard_count,
graph_op_count=c.graph_op_count,
graph_node_count=c.graph_node_count,
graph_input_count=c.graph_input_count,
fail_type=c.fail_type,
fail_reason=c.fail_reason,
fail_user_frame_filename=c.fail_user_frame_filename,
fail_user_frame_lineno=c.fail_user_frame_lineno,
# Sets aren't JSON serializable
non_compliant_ops=list(c.non_compliant_ops)
if c.non_compliant_ops is not None
else None,
compliant_custom_ops=list(c.compliant_custom_ops)
if c.compliant_custom_ops is not None
else None,
restart_reasons=list(c.restart_reasons)
if c.restart_reasons is not None
else None,
dynamo_time_before_restart_s=c.dynamo_time_before_restart_s,
has_guarded_code=c.has_guarded_code,
dynamo_config=c.dynamo_config,
)
def _get_dynamo_config_for_logging() -> Optional[str]:
def clean_for_json(d: dict[str, Any]) -> dict[str, Any]:
blocklist = {
"TYPE_CHECKING",
"log_file_name",
"verbose",
"repro_after",
"repro_level",
"repro_forward_only",
"repro_tolerance",
"repro_ignore_non_fp",
"same_two_models_use_fp64",
"base_dir",
"debug_dir_root",
"_save_config_ignore",
"log_compilation_metrics",
"inject_BUILD_SET_unimplemented_TESTING_ONLY",
"_autograd_backward_strict_mode_banned_ops",
"reorderable_logging_functions",
"ignore_logger_methods",
"traceable_tensor_subclasses",
"_custom_ops_profile",
}
return {
key: sorted(value) if isinstance(value, set) else value
for key, value in d.items()
if key not in blocklist
}
config_dict = clean_for_json(config.get_config_copy())
return json.dumps(config_dict, sort_keys=True)
def _scrubbed_inductor_config_for_logging() -> Optional[str]:
"""
Method to parse and scrub uninteresting configs from inductor config
"""
# TypeSafeSerializer for json.dumps()
# Skips complex types as values in config dict
class TypeSafeSerializer(json.JSONEncoder):
def default(self, o):
try:
return super().default(o)
except Exception:
return "Value is not JSON serializable"
keys_to_scrub: set[Any] = set()
inductor_conf_str = None
inductor_config_copy = (
torch._inductor.config.get_config_copy() if torch._inductor.config else None
)
if inductor_config_copy is not None:
try:
for key, val in inductor_config_copy.items():
if not isinstance(key, str):
keys_to_scrub.add(key)
# Convert set() to list for json.dumps()
if isinstance(val, set):
inductor_config_copy[key] = list(val)
# Evict unwanted keys
for key in keys_to_scrub:
del inductor_config_copy[key]
# Stringify Inductor config
inductor_conf_str = json.dumps(
inductor_config_copy,
cls=TypeSafeSerializer,
skipkeys=True,
sort_keys=True,
)
except Exception:
# Don't crash because of runtime logging errors
inductor_conf_str = "Inductor Config is not JSON serializable"
return inductor_conf_str
def record_compilation_metrics(
start_time_ns: int,
end_time_ns: int,
metrics: dict[str, Any],
exc_type: Optional[type[BaseException]],
exc_value: Optional[BaseException],
):
if torch._inductor.utils.should_use_remote_fx_graph_cache():
try:
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
remote_cache_version = REMOTE_CACHE_VERSION
inductor_fx_remote_cache_backend_type = "_ManifoldCache"
except ModuleNotFoundError:
remote_cache_version = None
inductor_fx_remote_cache_backend_type = None
else:
inductor_fx_remote_cache_backend_type = None
remote_cache_version = None
# Populate the compile_id from the metrics context if it's set. Otherwise,
# look for it in the current compile context.
compile_id = metrics.get("compile_id")
if not compile_id:
compile_id = torch._guards.CompileContext.current_compile_id()
common_metrics = {
"compile_id": compile_id,
"start_time_us": start_time_ns // 1000,
"end_time_us": end_time_ns // 1000,
"duration_us": (end_time_ns - start_time_ns) // 1000,
"fail_type": exc_type.__qualname__ if exc_type else None,
"fail_reason": str(exc_value) if exc_value else None,
"structured_logging_overhead_us": to_int_us(
torch._logging.get_structured_logging_overhead()
),
"dynamo_config": _get_dynamo_config_for_logging(),
"inductor_config": _scrubbed_inductor_config_for_logging(),
"cuda_version": torch.version.cuda,
"triton_version": triton.__version__ if has_triton() else "",
"remote_cache_version": remote_cache_version,
"inductor_fx_remote_cache_backend_type": inductor_fx_remote_cache_backend_type,
}
compilation_metrics = CompilationMetrics.create({**common_metrics, **metrics})
_compilation_metrics.append(compilation_metrics)
name = "compilation_metrics"
if compilation_metrics.is_forward is False:
name = "bwd_" + name
if compilation_metrics.is_runtime is True:
name = name + "_runtime"
torch._logging.trace_structured(
name,
lambda: {
k: list(v) if isinstance(v, set) else v
for k, v in dataclasses.asdict(compilation_metrics).items()
},
# NB: Because compilation metrics *includes* the logging overhead time,
# we can't both *measure* the logging overhead of compilation metrics
# without making it inconsistent with compilation metrics itself, so
# we ignore the (hopefully small) time spent logging compilation metrics
record_logging_overhead=False,
# These may be runtime logs, e.g., runtime autotunning, so we provide
# the CompileId from the compilation metrics in case it's not available
# in the current trace.
compile_id=compile_id,
)
# If there's a chromium event in flight, add the CompilationMetrics to it.
add_compilation_metrics_to_chromium(compilation_metrics)
# Finally log the compilation metrics.
if config.log_compilation_metrics:
log_compilation_event(compilation_metrics)
# record_compilation_metrics is called by the singleton MetricsContext exit handler.
_METRICS_CONTEXT = MetricsContext(on_exit=record_compilation_metrics)
_RUNTIME_METRICS_CONTEXT = RuntimeMetricsContext(on_exit=record_compilation_metrics)
def set_compilation_metrics_limit(new_size: int) -> None:
global _compilation_metrics
while len(_compilation_metrics) > new_size:
_compilation_metrics.popleft()
new_deque = collections.deque(_compilation_metrics, maxlen=new_size)
_compilation_metrics = new_deque
def clear_compilation_metrics() -> None:
global _compilation_metrics
_compilation_metrics.clear()
def get_compilation_metrics() -> list[CompilationMetrics]:
return list(_compilation_metrics)
class ChromiumEventLogger:
"""Logs chromium events to structured logs. tlparse will concatenate these into a perfetto UI link.
See https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview#heading=h.yr4qxyxotyw for
a specification of the Chromium Event JSON format.
"""
def get_stack(self) -> list[str]:
"""
The main event stack, with every chromium event.
Logged to tlparse.
"""
if hasattr(self.tls, "stack"):
return self.tls.stack
else:
self.tls.stack = []
return self.tls.stack
def get_outermost_event(self) -> Optional[str]:
"""
Get the outermost event name (i.e. the longest running event)
or None if the stack is empty.
"""
stack = self.get_stack()
return stack[0] if stack else None
def get_pt2_compile_substack(self):
"""
A smaller subset of the main stack that gets used to log
PT2 Compile Events internally.
"""
if hasattr(self.tls, "pt2_compile_substack"):
return self.tls.pt2_compile_substack
else:
self.tls.pt2_compile_substack = []
return self.tls.pt2_compile_substack
def get_event_data(self) -> dict[str, Any]:
if not hasattr(self.tls, "event_data"):
self.tls.event_data = {}
return self.tls.event_data
def __init__(self):
self.tls = threading.local()
# Generate a unique id for this logger, which we can use in scuba to filter down
# to a single python run.
self.id_ = str(uuid.uuid4())
# TODO: log to init/id tlparse after I add support for it
log.info("ChromiumEventLogger initialized with id %s", self.id_)
def try_add_event_data(self, event_name: str, **kwargs) -> None:
"""
Same as add_event_data, but will silently not log if the event isn't in the stack.
"""
if event_name not in self.get_stack():
return
self.add_event_data(event_name, **kwargs)
def add_event_data(
self,
event_name: str,
**kwargs,
) -> None:
"""
Adds additional metadata info to an in-progress event
This metadata is recorded in the END event
"""
if event_name not in self.get_stack():
raise RuntimeError(
f"Event {repr(event_name)} not in {self.get_stack()}. "
"Cannot add metadata to events that aren't in progress. "
"Please make sure the event has started and hasn't ended."
)
event_data = self.get_event_data()
if event_name not in event_data:
event_data[event_name] = {}
event_data[event_name].update(kwargs)
def increment(self, event_name: str, key: str, value: int):
"""
Increment an integer event data field by the given amount
"""
if event_name not in self.get_stack():
raise RuntimeError(
f"Event {repr(event_name)} not in {self.get_stack()}. "
"Cannot add metadata to events that aren't in progress. "
"Please make sure the event has started and hasn't ended."
)
event_data = self.get_event_data()
if event_name not in event_data:
event_data[event_name] = {}
if key not in event_data[event_name]:
event_data[event_name][key] = 0
event_data[event_name][key] += value
def add_to_set(
self,
event_name: str,
key: str,
value: Any,
):
"""
Add a value to a set within a event_name's metadata if it exists
"""
if event_name not in self.get_stack():
raise RuntimeError(
f"Event {repr(event_name)} not in {self.get_stack()}. "
"Cannot add metadata to events that aren't in progress. "
"Please make sure the event has started and hasn't ended."
)
event_data = self.get_event_data()
if event_name not in event_data:
event_data[event_name] = {}
if key not in event_data[event_name]:
event_data[event_name][key] = set()
event_data[event_name][key].add(value)
def log_event_start(
self,
event_name: str,
time_ns: int,
metadata: dict[str, Any],
log_pt2_compile_event: bool = False,
compile_id: Optional[CompileId] = None,
) -> None:
"""
Logs the start of a single event.
:param str event_name Name of event to appear in trace
:param time_ns Timestamp in nanoseconds
:param metadata: Any extra metadata associated with this event
:param log_pt2_compile_event: If True, log to pt2_compile_events
:param compile_id: Explicit compile_id (rather than using the current context)
"""
compile_id = compile_id or torch._guards.CompileContext.current_compile_id()
metadata["compile_id"] = str(compile_id)
self._log_timed_event(
event_name,
time_ns,
"B",
metadata,
)
self.get_stack().append(event_name)
# Add metadata from start event
self.add_event_data(event_name, **metadata)
if log_pt2_compile_event:
self.get_pt2_compile_substack().append(event_name)
def reset(self) -> None:
# We this on every compile in case a compile crashes or restarts and we haven't
# cleared the stack.
stack = self.get_stack()
substack = self.get_pt2_compile_substack()
stack.clear()
substack.clear()
event_data = self.get_event_data()
event_data.clear()
def log_event_end(
self,
event_name: str,
time_ns: int,
metadata: dict[str, Any],
start_time_ns: int,
log_pt2_compile_event: bool,
compile_id: Optional[CompileId] = None,
) -> None:
"""
Logs the end of a single event. This function should only be
called after log_event_start with the same event_name.
:param event_name: Name of event to appear in trace
:param time_ns: Timestamp in nanoseconds
:param metadata: Any extra metadata associated with this event
:param start_time_ns: The start time timestamp in nanoseconds
:param log_pt_compile_event: If True, log to pt2_compile_events
:param compile_id: Explicit compile_id (rather than using the current context)
"""
compile_id = compile_id or torch._guards.CompileContext.current_compile_id()
metadata["compile_id"] = str(compile_id)
# Grab metadata collected during event span
all_event_data = self.get_event_data()
if event_name in all_event_data:
event_metadata = all_event_data[event_name]
del all_event_data[event_name]
else:
event_metadata = {}
# Add the passed in metadata
event_metadata.update(metadata)
event = self._log_timed_event(
event_name,
time_ns,
"E",
event_metadata,
)
def pop_stack(stack):
while event_name != stack[-1]:
# If the event isn't the most recent one to end, pop
# off the stack until it is.
# Since event_name in self.stack, this pop is always safe
log.warning(
"ChromiumEventLogger: Detected overlapping events, fixing stack"
)
stack.pop()
event_stack = self.get_stack()
# These stack health checks currently never happen,
# but they're written this way to future proof any weird event
# overlaps in the future.
if event_name not in event_stack:
# Something went wrong, we never called start on this event,
# or it was skipped due to overlapping events below
log.warning("ChromiumEventLogger: Start event not in stack, ignoring")
return
pop_stack(event_stack)
if log_pt2_compile_event:
pt2_compile_substack = self.get_pt2_compile_substack()
pop_stack(pt2_compile_substack)
log_chromium_event_internal(
event, pt2_compile_substack, self.id_, start_time_ns
)
# Pop actual event off of stack
pt2_compile_substack.pop()
# Finally pop the actual event off the stack
event_stack.pop()
def _log_timed_event(
self,
event_name: str,
time_ns: int,
phase: str,
metadata: Optional[dict[str, Any]] = None,
) -> dict[str, Any]:
"""
Logs a timed event in chromium format. See log_event_start, log_event_end, etc.
"""
event = {
"name": event_name,
"ts": time_ns / 1000, # Chromium events are in micro seconds
"args": metadata,
"ph": phase,
# These categories are needed in all chromium traces
"cat": "dynamo_timed",
"tid": 0,
"pid": 0, # pid should be specified on all logs, we don't personally care about the actual process id
}
torch._logging.trace_structured(
"chromium_event",
payload_fn=lambda: event,
suppress_context=False,
expect_trace_id=False, # Not every chromium event will have a trace_id
)
record_chromium_event_internal(event)
return event
def log_instant_event(
self,
event_name: str,
time_ns: int,
metadata: Optional[dict[str, Any]] = None,
# By default, an instant event isn't logged internally, only to structured logging.
log_pt2_compile_event: bool = False,
) -> None:
"""
Log an instant event with no associated duration.
:param str event_name: Name of event to appear in trace
:param int time_ns Timestamp in nanoseconds
:param Optional[Dict[str, Any]] metadata: Any extra metadata associated with this event
:param str cname optional color for the arrow in the trace
"""
if metadata is None:
metadata = {}
compile_id = str(torch._guards.CompileContext.current_compile_id())
metadata["compile_id"] = compile_id
event = {
"name": event_name,
"ts": time_ns / 1000,
"args": metadata,
"ph": "i",
# These categories are needed in all chromium traces
"cat": "dynamo_timed",
"tid": 0,
"pid": 0,
"s": "p", # We use "process" level instant events so they all appear on the same row in the trace.
}
torch._logging.trace_structured(
"chromium_event",
payload_fn=lambda: event,
suppress_context=False,
expect_trace_id=True,
)
if log_pt2_compile_event:
# Log an instant event with the same start and end time
log_chromium_event_internal(
event, self.get_pt2_compile_substack(), self.id_, time_ns
)
CHROMIUM_EVENT_LOG: Optional[ChromiumEventLogger] = None
def get_chromium_event_logger() -> ChromiumEventLogger:
global CHROMIUM_EVENT_LOG
if CHROMIUM_EVENT_LOG is None:
CHROMIUM_EVENT_LOG = ChromiumEventLogger()
return CHROMIUM_EVENT_LOG
@contextmanager
def chromium_event_timed(
event_name: str,
reset_event_log_on_exit: bool = False,
log_pt2_compile_event: bool = False,
) -> Generator[Any, None, None]:
"""
Context manager that creates a chromium start and end event. Chromium event
logging is integrated with dynamo_timed, so you probably want to use that
instead. Use this context manager only if you want to avoid dynamo_timed.
"""
chromium_event_log = get_chromium_event_logger()
chromium_start_time = time.time_ns()
chromium_event_log.log_event_start(
event_name,
chromium_start_time,
{},
log_pt2_compile_event,
)
try:
yield
finally:
chromium_event_log.log_event_end(
event_name,
time.time_ns(),
{},
chromium_start_time,
log_pt2_compile_event,
)
if reset_event_log_on_exit:
chromium_event_log.reset()
@dataclasses.dataclass
class CleanupHook:
"""Remove a global variable when hook is called"""
scope: dict[str, Any]
name: str
def __call__(self, *args):
# Make sure we're not shutting down
if CleanupManager is not None:
CleanupManager.count -= 1
del self.scope[self.name]
@staticmethod
def create(scope, name, val):
assert name not in scope
CleanupManager.count += 1
scope[name] = val
return CleanupHook(scope, name)
class CleanupManager(ExactWeakKeyDictionary):
count = 0
instance: ClassVar[CleanupManager]
def _remove_id(self, idx):
for hook in self.values[idx]:
hook()
super()._remove_id(idx)
CleanupManager.instance = CleanupManager()
def clone_tensor(x):
"""Clone the tensor and its gradient"""
y = x.clone().requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = x.grad.clone()
return y
def clone_input(x, *, dtype=None):
"""copy while preserving strides"""
# TODO: this is questionable
if is_fake(x):
# this func fails on fake tensors in __torch_dispatch__
return x
def torch_clone(x):
y = torch.clone(x)
if x.is_leaf:
y.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = clone_input(x.grad, dtype=dtype)
if hasattr(x, "_dynamo_dynamic_indices"):
y._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
return y
with torch.no_grad():
if x.device.type == "xla":
# Access data_ptr() for a xla tensor will cause crash
return torch_clone(x)
# Handle sparse storage (no stride).
if x.layout is torch.sparse_coo:
return torch.sparse_coo_tensor(
torch_clone(x._indices()),
torch_clone(x._values()),
x.shape,
is_coalesced=x.is_coalesced(),
)
elif is_sparse_compressed(x):
if x.layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices = x.crow_indices()
plain_indices = x.col_indices()
else:
compressed_indices = x.ccol_indices()
plain_indices = x.row_indices()
return torch.sparse_compressed_tensor(
torch_clone(compressed_indices),
torch_clone(plain_indices),
torch_clone(x.values()),
x.shape,
layout=x.layout,
)
needed_size = sum(
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
)
if x.is_quantized:
result = torch.empty_quantized((needed_size + 32,), x)
else:
result = torch.empty(
needed_size + 32, dtype=dtype or x.dtype, device=x.device
)
cache_line_offset = (
(x.data_ptr() - result.data_ptr()) % 32
) // x.element_size()
result.as_strided_(x.size(), x.stride(), cache_line_offset)
try:
result.copy_(x.clone())
if x.is_leaf:
result.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
result.grad = clone_input(x.grad, dtype=dtype)
except RuntimeError:
# RuntimeError: unsupported operation: more than one element of the written-to
# tensor refers to a single memory location. Please clone() the tensor before
# performing the operation.
return torch_clone(x)
if hasattr(x, "_dynamo_dynamic_indices"):
result._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
return result
def clone_inputs(example_inputs):
res: Union[dict[Any, Any], list[Any]]
if type(example_inputs) is dict:
res = dict(example_inputs)
for key, value in res.items():
if isinstance(value, tuple):
res[key] = clone_inputs(value)
else:
assert isinstance(value, torch.Tensor), type(value)
res[key] = clone_input(value)
return res
res = list(example_inputs)
for i in range(len(res)):
if isinstance(res[i], torch.Tensor):
res[i] = clone_input(res[i])
return res
def skip_frame_if_in_functorch_mode(val: torch.Tensor):
try:
val.data_ptr() # will throw for functorch tensors
except RuntimeError as e:
from .exc import SkipFrame
# This will be GradTrackingTensor/BatchedTensor/etc
functorch_subclass_name = re.sub(r"\(.*", "", repr(val))
raise SkipFrame(
f"torch.compile cannot be run in context: {functorch_subclass_name}"
) from e
@contextmanager
def preserve_rng_state():
disable_functorch = torch._C._DisableFuncTorch
disable_current_modes = torch.utils._python_dispatch._disable_current_modes
with disable_current_modes(), disable_functorch():
rng_state = torch.clone(torch.random.get_rng_state())
skip_frame_if_in_functorch_mode(rng_state)
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
try:
yield
finally:
with torch.utils._python_dispatch._disable_current_modes():
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
def is_jit_model(model0):
return isinstance(
model0,
(
torch.jit._trace.TopLevelTracedModule,
torch.jit._script.RecursiveScriptModule,
torch.jit.ScriptFunction,
torch.jit.ScriptModule,
),
)
def torchscript(model, example_inputs, verbose=False):
if is_jit_model(model):
# already done?
return model
try:
return torch.jit.trace(model, example_inputs)
except Exception:
try:
return torch.jit.script(model)
except Exception:
if verbose:
log.exception("jit error")
else:
log.error("Both torch.jit.trace and torch.jit.script failed")
return None
def getfile(obj):
try:
return inspect.getfile(obj)
except (TypeError, OSError):
return None
def is_namedtuple(obj):
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
return is_namedtuple_cls(type(obj))
def is_namedtuple_cls(cls):
"""Test if an object is a namedtuple or a (torch.return_types|torch.autograd.forward_ad).* quasi-namedtuple"""
try:
if issubclass(cls, tuple):
module = getattr(cls, "__module__", None)
if module in ("torch.return_types", "torch.autograd.forward_ad"):
return True
if isinstance(getattr(cls, "_fields", None), tuple) and callable(
getattr(cls, "_make", None)
):
# The subclassing style namedtuple can have an extra base `typing.Generic`
bases = tuple(t for t in cls.__bases__ if t is not Generic)
if bases == (tuple,):
# This is a namedtuple type directly created by `collections.namedtuple(...)`
return True
if bases and any(
(
# Subclass of namedtuple
is_namedtuple_cls(t)
# For subclasses of namedtuple, the __new__ method should not be customized
and cls.__new__ is t.__new__
)
for t in bases
):
return True
except TypeError:
pass
return False
@functools.lru_cache(1)
def namedtuple_fields(cls) -> tuple[str, ...]:
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
if cls is slice:
return ("start", "stop", "step")
assert issubclass(cls, tuple)
if hasattr(cls, "_fields"):
# normal namedtuples
return cls._fields
@dataclasses.dataclass
class Marker:
index: int
# frustrating ones e.g. torch.return_types.max
assert cls.__module__ == "torch.return_types"
obj = cls(map(Marker, range(cls.n_fields)))
fields: dict[str, int] = {}
for name in dir(obj):
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
fields[name] = getattr(obj, name).index
assert len(fields) == cls.n_fields
return tuple(sorted(fields, key=fields.get)) # type: ignore[arg-type]
def checkpoint_params(gm):
with torch.no_grad():
rng_state = torch.clone(torch.random.get_rng_state())
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
saved_state = [
(param, param._version, torch.clone(param))
for param in itertools.chain(gm.parameters(), gm.buffers())
]
def restore():
with torch.no_grad():
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
for param, version, original_value in saved_state:
if param._version != version:
param.copy_(original_value)
return restore
def timed(model, example_inputs, times=1):
if torch.cuda.is_available():
synchronize = torch.cuda.synchronize
else:
synchronize = nothing
synchronize()
gc.collect()
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize()
t1 = time.perf_counter()
return result, t1 - t0 # type: ignore[possibly-undefined]
def check_is_cuda(gm, example_inputs):
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
@lru_cache(32)
def rot_n_helper(n):
assert n > 1
vars = [f"v{i}" for i in range(n)]
rotated = reversed(vars[-1:] + vars[:-1])
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
fn.__name__ = f"rot_{n}_helper"
return fn
common_constant_types: set[type] = {
int,
float,
complex,
bool,
str,
bytes,
type(None),
Ellipsis.__class__,
NotImplemented.__class__,
types.CodeType,
# Commonly used immutable types from torch.
torch.device,
torch.dtype,
torch.memory_format,
torch.layout,
torch.finfo,
torch.iinfo,
torch.nn.attention.SDPBackend,
torch.cuda._CudaDeviceProperties,
}
if has_triton_package():
import triton
common_constant_types.add(triton.language.dtype)
"""
Difference between is_safe_constant and common_constant_types.
* common_constant_types: Constants would be wrapped by VariableBuilder.wrap_literal
as ConstantVariable.
* is_safe_constant: Constants can be loaded by LOAD_CONST bytecode.
"""
def is_safe_constant(v):
if istype(v, (tuple, frozenset)):
return all(map(is_safe_constant, v))
return isinstance(
v,
(
enum.Enum,
type,
torch.Size,
typing._GenericAlias, # type: ignore[attr-defined]
types.GenericAlias,
),
) or istype(
v,
common_constant_types | {slice},
)
@functools.lru_cache(None)
def common_constants():
return {
# We zero-one specialize shapes, so specialize these constants
# too
0,
1,
}
def is_torch_sym(value):
return isinstance(value, (torch.SymBool, torch.SymInt)) and not isinstance(
value.node, torch.nested._internal.nested_int.NestedIntNode
)
def is_int_specialization_case(value, source):
from .source import is_from_defaults
return not TracingContext.get().force_unspec_int_unbacked_size_like and (
# Assume integers from global variables want to be specialized
not source.guard_source().is_local()
# Assume that integers that came from NN modules want to be
# specialized (as we don't expect users to be changing the
# NN modules on the fly), unless explicitly disabled
or (
source.guard_source().is_specialized_nn_module()
and not config.allow_unspec_int_on_nn_module
)
or (
source.guard_source().is_unspecialized_builtin_nn_module()
and not config.allow_unspec_int_on_nn_module
)
or is_from_defaults(source)
# TODO: Delete this condition when rollout is done. NB: this
# condition never evaluates True in open source
or (
not justknobs_check("pytorch/dynamo:enable_unspecialize_zero_one_plain_int")
and value in common_constants()
)
)
def specialize_symnode(arg):
from .variables import ConstantVariable, LazyVariableTracker, SymNodeVariable
# Guard and specialize
if isinstance(arg, LazyVariableTracker) and not arg.is_realized():
# Find if the arg would be realized as SymNodeVariable later on. If yes,
# realize it and specialize. Else return the arg.
source = arg.original_source()
value = arg.original_value()
is_symnode_vt = is_torch_sym(value) or (
not config.specialize_int
and type(value) is int
and not is_int_specialization_case(value, source)
)
if not is_symnode_vt:
return arg
if isinstance(arg, SymNodeVariable):
return ConstantVariable.create(arg.evaluate_expr())
return arg
def guard_if_dyn(arg):
from .variables import ConstantVariable
arg = specialize_symnode(arg)
if isinstance(arg, ConstantVariable):
return arg.as_python_constant()
return arg
def check_constant_args(args, kwargs):
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
def check_unspec_python_args(args, kwargs):
from .variables.constant import ConstantVariable
from .variables.tensor import UnspecializedPythonVariable
unspec_count = 0
for x in itertools.chain(args, kwargs.values()):
if isinstance(x, UnspecializedPythonVariable):
unspec_count += 1
elif not isinstance(x, ConstantVariable):
return False
return unspec_count > 0
def check_unspec_or_constant_args(args, kwargs):
# A fused version of:
# return check_constant_args(args, kwargs) or check_unspec_python_args(args, kwargs)
from .variables.tensor import UnspecializedPythonVariable
for x in itertools.chain(args, kwargs.values()):
if not (x.is_python_constant() or isinstance(x, UnspecializedPythonVariable)):
return False
return True
def check_numpy_ndarray_args(args, kwargs):
from .variables.tensor import NumpyNdarrayVariable
return any(
isinstance(x, NumpyNdarrayVariable)
for x in itertools.chain(args, kwargs.values())
)
dict_keys: type[KeysView[Any]] = type({}.keys())
dict_values: type[ValuesView[Any]] = type({}.values())
odict_values: type[ValuesView[Any]] = type(OrderedDict().values())
tuple_iterator: type[Iterator[Any]] = type(iter(()))
range_iterator: type[Iterator[Any]] = type(iter(range(0)))
tuple_iterator_len = tuple_iterator.__length_hint__ # type: ignore[attr-defined]
object_new = object.__new__
dict_new = dict.__new__
dict_methods = {
method
for method in itertools.chain(dict.__dict__.values(), OrderedDict.__dict__.values())
if callable(method)
}
tuple_new = tuple.__new__
tuple_methods = {method for method in tuple.__dict__.values() if callable(method)}
list_methods = {method for method in list.__dict__.values() if callable(method)}
list_getitem = list.__getitem__
str_methods = {method for method in str.__dict__.values() if callable(method)}
def builtin_dict_keys(d):
# Avoids overridden keys method of the dictionary
assert isinstance(d, dict)
return dict.keys(d)
def get_items_from_dict(obj):
# Get items without calling the user defined __getitem__ or keys method.
assert isinstance(obj, dict)
if istype(obj, (dict, OrderedDict)):
return obj.items()
elif isinstance(obj, OrderedDict):
return [(k, OrderedDict.__getitem__(obj, k)) for k in OrderedDict.keys(obj)]
else:
return [(k, dict.__getitem__(obj, k)) for k in dict.keys(obj)]
def nn_module_new(cls):
obj = object_new(cls)
torch.nn.Module.__init__(obj)
return obj
def product(it):
return functools.reduce(operator.mul, it, 1)
def tuple_iterator_getitem(it, index):
_, (obj,), start = it.__reduce__()
return obj[start + index]
iter_next = next
def normalize_range_iter(range_iter) -> tuple[int, int, int]:
_, (range_obj,), maybe_idx = range_iter.__reduce__()
# In 3.12+, `maybe_idx` could be None, and `range_obj.start` would've been
# already incremented by the current index.
start = range_obj.start + (maybe_idx or 0)
stop = range_obj.stop
step = range_obj.step
return (start, stop, step)
def to_subclass(t, cls):
return t.as_subclass(cls)
dict_getitem = dict.__getitem__
def dict_keys_getitem(d, n):
# Call dict(d) to prevent calling overridden __iter__/keys
dict_class = dict
if isinstance(d, OrderedDict):
dict_class = OrderedDict
return next(itertools.islice(dict_class.keys(d), n, n + 1))
def enum_repr(value, local):
# enum class can override __str__ method. Use __class__ and name attribute
# to extract the class name and key name.
name = value.__class__.__name__
val = value.name
scope = "L" if local else "G"
local_name = f'{scope}["{name}"].{val}'
return local_name
def set_example_value(node, example_value):
# NB: example_value is a bit of a misnomer, because this is always a fake
# tensor of some sort. Furthermore, these example values serve as the
# runtime state of Dynamo tracing, which means if metadata mutation
# occurs, the example_value gets directly updated (so you can't rely on
# this to accurately reflect what the state of the value was at the time
# the program was traced).
node.meta["example_value"] = example_value
shape_env = TracingContext.get().fake_mode.shape_env
if (
symbol_to_path
:= torch.fx.experimental.symbolic_shapes.compute_unbacked_bindings(
shape_env, example_value
)
):
node.meta["unbacked_bindings"] = symbol_to_path
def _get_fake_tensor(vt):
fake_tensor = vt.as_proxy().node.meta.get("example_value")
if not is_fake(fake_tensor):
from . import graph_break_hints
from .exc import unimplemented_v2
unimplemented_v2(
gb_type="Cannot check Tensor object identity without its fake value",
context=str(fake_tensor),
explanation="TensorVariable is missing a fake example_value.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
return fake_tensor
def iter_contains(items, search, tx, check_tensor_identity=False):
from .variables import (
BuiltinVariable,
ConstantVariable,
TensorVariable,
VariableTracker,
)
if search.is_python_constant():
found_const = any(
x.is_python_constant()
and x.as_python_constant() == search.as_python_constant()
for x in items
)
return ConstantVariable.create(found_const)
must_check_tensor_id = False
if check_tensor_identity and isinstance(search, TensorVariable):
must_check_tensor_id = True
# Match of Tensor means match of FakeTensor
search = _get_fake_tensor(search)
found: Optional[VariableTracker] = None
for x in items:
if must_check_tensor_id:
if isinstance(x, TensorVariable):
if search is _get_fake_tensor(x): # Object equivalence
return ConstantVariable.create(True)
else:
check = BuiltinVariable(operator.eq).call_function(tx, [x, search], {})
if found is None:
found = check
else:
found = BuiltinVariable(operator.or_).call_function(
tx, [check, found], {}
)
if found is None:
found = ConstantVariable.create(False)
return found
def key_is_id(k):
"""Returns whether it indexes dictionaries using its id"""
return isinstance(k, (torch.Tensor, torch.nn.Module, MethodWrapperType))
def key_to_id(value):
return [id(k) if key_is_id(k) else k for k in value.keys()]
def const_repr(x, *, local) -> str:
from .trace_rules import is_builtin_callable
if isinstance(x, (list, tuple)):
elems_repr = ",".join(const_repr(s, local=local) for s in x)
if isinstance(x, list):
return f"[{elems_repr}]"
else:
assert isinstance(x, tuple)
if len(x) == 1:
return f"({elems_repr},)"
else:
return f"({elems_repr})"
elif isinstance(x, enum.Enum):
# To workaround repr(Enum) returning invalid global reference before python 3.11
# by calling enum_repr and removing quotes to render enum in guard code.
return enum_repr(x, local=local).replace("'", "")
elif is_builtin_callable(x):
return x.__name__
elif isinstance(x, type):
def fullname(o):
klass = o.__class__
module = klass.__module__
if module == "builtins":
return klass.__qualname__ # avoid outputs like 'builtins.str'
return module + "." + klass.__qualname__
return fullname(x)
else:
return f"{x!r}"
def dict_keys_repr(const_keys, *, local) -> str:
keys_str = ",".join(const_repr(s, local=local) for s in const_keys)
return "[" + keys_str + "]"
GLOBAL_KEY_PREFIX = "__dict_key"
from torch._subclasses import UnsupportedFakeTensorException # noqa: F401
def get_safe_global_name(tx, root, obj):
# The global_mangled_class_name should be different for different
# invocations of torch.compile. Otherwise, we can run into a situation
# where multiple torch.compile invocations re-use the same global name,
# but the global's lifetime is tied to the first invocation (and
# may be deleted when the first torch.compile invocation is deleted)
# We mangle it based off of the output_graph's id.
return f"{root}_{id(obj)}_c{tx.output.compile_id}"
def is_in(item: Any, *containers) -> bool:
for container in containers:
if item in container:
return True
return False
def get_unique_name_wrt(prefix: str, *containers, requires_suffix=False) -> str:
"""
Return a name that starts with `prefix` and is not in any of the
`containers` (e.g., map, set).
"""
if not requires_suffix and not is_in(prefix, *containers):
return prefix
for i in itertools.count():
candidate = f"{prefix}_{i}"
if not is_in(candidate, *containers):
return candidate
raise AssertionError("unreachable")
def wrap_fake_exception(fn):
try:
return fn()
except UnsupportedFakeTensorException as e:
from .exc import unimplemented_v2
msg = f"Encountered exception ({e.reason}) during fake tensor propagation."
log.warning(msg)
unimplemented_v2(
gb_type="Fake tensor propagation exception",
context=str(e.reason),
explanation=msg,
hints=[],
from_exc=e,
)
def deepcopy_to_fake_tensor(obj, fake_mode):
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
return wrap_fake_exception(lambda: copy.deepcopy(obj))
def rmse(ref, res):
"""
Calculate root mean squared error
"""
return torch.sqrt(torch.mean(torch.square(ref - res)))
def same(
ref,
res,
fp64_ref=None,
cos_similarity=False,
tol=1e-4,
equal_nan=False,
exact_dtype=True,
relax_numpy_equality=False,
ignore_non_fp=False,
log_error=log.error,
use_larger_multiplier_for_smaller_tensor=False,
force_max_multiplier: bool = False,
):
"""Check correctness to see if ref and res match"""
if fp64_ref is None:
fp64_ref = ref
if isinstance(
ref, (list, tuple, collections.deque, torch.nn.ParameterList, torch.Size)
):
assert isinstance(res, (list, tuple, collections.deque)), (
f"type mismatch {type(ref)} {type(res)}"
)
if len(ref) != len(res):
log_error("Length mismatch")
return False
return len(ref) == len(res) and all(
same(
ai,
bi,
fp64_refi,
cos_similarity,
tol,
equal_nan,
exact_dtype,
relax_numpy_equality,
ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
force_max_multiplier=force_max_multiplier,
)
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
)
elif type(ref).__name__ == "QuestionAnsweringModelOutput":
# This skips checking accuracy for start_logits/end_logits.
# Tentatively, start_logits/end_logits appear to be very prone to
# inaccuracies and is somewhat subsumed by checking the loss.
return same(
ref.loss,
res.loss,
fp64_ref.loss,
cos_similarity,
tol,
equal_nan,
exact_dtype,
relax_numpy_equality,
ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
force_max_multiplier=force_max_multiplier,
)
elif isinstance(ref, dict):
assert isinstance(res, dict)
assert set(ref.keys()) == set(res.keys()), (
f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
)
for k in sorted(ref.keys()):
if not (
same(
ref[k],
res[k],
fp64_ref[k],
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
force_max_multiplier=force_max_multiplier,
)
):
log_error("Accuracy failed for key name %s", k)
return False
return True
elif isinstance(ref, set):
assert isinstance(res, set)
assert set(ref) == set(res), f"elements mismatch {set(ref)} == {set(res)}"
return True
elif isinstance(ref, (torch.Tensor, float)):
assert not isinstance(ref, torch._subclasses.FakeTensor)
assert not isinstance(res, torch._subclasses.FakeTensor)
def to_tensor(t):
return t if isinstance(t, torch.Tensor) else torch.tensor(t)
ref, res, fp64_ref = (to_tensor(val) for val in (ref, res, fp64_ref))
if ref.is_sparse:
assert res.is_sparse
ref = ref.to_dense()
res = res.to_dense()
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
if exact_dtype:
if ref.dtype != res.dtype:
log_error("dtype mismatch %s, %s", ref.dtype, res.dtype)
return False
if ref.dtype == torch.bool:
if ignore_non_fp:
return True
# triton stores bool as int8, so add this for more accurate checking
r = torch.allclose(
ref.to(dtype=torch.uint8),
res.to(dtype=torch.uint8),
atol=tol,
rtol=tol,
equal_nan=equal_nan,
)
if not r:
log_error("Accuracy failed: uint8 tensor did not match")
return r
if cos_similarity:
ref = ref.flatten().to(torch.float32)
res = res.flatten().to(torch.float32)
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
# early exit that handles zero/nan better
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
return True
score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
if score < 0.99:
log.warning("Similarity score=%s", score.detach().cpu().item())
return score >= 0.99
else:
if not exact_dtype:
ref = ref.to(res.dtype)
# First try usual allclose
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
return True
# Check error from fp64 version
if fp64_ref.dtype == torch.float64:
# Fix a corner case that res and fp64_ref does not contains NaN and match (with loose tolerance)
# while the ref contains NaN. In this case, RMSE should not match any ways.
# But res is 'BETTER' than ref so we count it pass.
#
# This happens for Super_SloMo when loop ordering after fusion is enabled:
# https://gist.github.com/shunting314/11f235c70f7db0d52718d26f4a701cab
loose_tol = 1e-2 * 4
if (
not fp64_ref.isnan().any()
and not res.isnan().any()
and ref.isnan().any()
and torch.allclose(
fp64_ref.to(dtype=res.dtype),
res,
atol=loose_tol,
rtol=loose_tol,
equal_nan=equal_nan,
)
):
return True
ref_error = rmse(fp64_ref, ref).item()
# ref unable to produce this with stable numerics in this precision, ignore
if math.isnan(ref_error):
log.warning(
"Found nan in reference. Consider running in higher precision."
)
res_error = rmse(fp64_ref, res).item()
def get_multiplier():
# In some particular cases, we expect high difference in results.
# At the moment one of this cases is inductor freezing bfloat16 convolution const folding.
# In case of it the res_error is at least one order of magnitude higher.
if force_max_multiplier:
return 10.0
# In the case of using AMP (Automatic Mixed Precision), certain models have
# failed the benchmark's correctness check. However, the end-to-end model's
# accuracy when comparing AMP with FP32 is within a difference of less than 0.1%.
# Thus, it's possible that the correctness check failures for these models are
# false alarms. We use multiplier of 3 instead of 2 to avoid these false alarms.
multiplier = (
3.0 if res.dtype in (torch.float16, torch.bfloat16) else 2.0
)
if use_larger_multiplier_for_smaller_tensor and (
fp64_ref.numel() <= 10
):
multiplier = 10.0
elif use_larger_multiplier_for_smaller_tensor and (
fp64_ref.numel() <= 500
):
multiplier = 5.0
elif (
fp64_ref.numel() < 1000
or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
# large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
or tol >= 2 * 1e-2
):
# In the presence of noise, noise might dominate our error
# metric for smaller tensors.
# Similary, for 1x1 kernels, there seems to be high noise with amp.
multiplier = 3.0
return multiplier
multiplier = get_multiplier()
passes_test = res_error <= (multiplier * ref_error + tol / 10.0)
if (
not passes_test
and equal_nan
and math.isnan(ref_error)
and math.isnan(res_error)
# Some unit test for the accuracy minifier relies on
# returning false in this case.
and not torch._inductor.config.cpp.inject_relu_bug_TESTING_ONLY
):
passes_test = True
if not passes_test:
log_error(
"RMSE (res-fp64): %.5f, (ref-fp64): %.5f and shape=%s. res.dtype: %s, multiplier: %f, tol: %f"
", use_larger_multiplier_for_smaller_tensor: %d",
res_error,
ref_error,
res.size(),
res.dtype,
multiplier,
tol,
use_larger_multiplier_for_smaller_tensor,
)
return passes_test
if ignore_non_fp:
return True
log_error("Accuracy failed: allclose not within tol=%s", tol)
return False
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
if ignore_non_fp:
return True
r = ref == res
if not r:
log_error("Accuracy failed (%s): %s != %s", type(ref), ref, res)
return r
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
if relax_numpy_equality and not (
is_numpy_int_type(res) or is_numpy_float_type(res)
):
ref = ref.item()
r = (type(ref) is type(res)) and (ref == res)
if not r:
log_error("Accuracy failed (numpy): %s != %s", ref, res)
return r
elif is_numpy_ndarray(ref):
return (type(ref) is type(res)) and same(
torch.as_tensor(ref),
torch.as_tensor(res),
fp64_ref,
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
elif type(ref).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
"LongformerMaskedLMOutput",
"Instances",
"SquashedNormal",
"Boxes",
"Normal",
"TanhTransform",
"Foo",
"Variable",
):
assert type(ref) is type(res)
return all(
same(
getattr(ref, key),
getattr(res, key),
getattr(fp64_ref, key),
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
for key in ref.__dict__.keys()
)
else:
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
def format_func_info(code):
short_filename = code.co_filename.split("/")[-1]
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
@contextlib.contextmanager
def disable_cache_limit():
prior = config.recompile_limit
config.recompile_limit = sys.maxsize
prior_acc_limit = config.accumulated_recompile_limit
config.accumulated_recompile_limit = sys.maxsize
try:
yield
finally:
config.recompile_limit = prior
config.accumulated_recompile_limit = prior_acc_limit
# map from transformed code back to original user code
orig_code_map = ExactWeakKeyDictionary()
# keep a record of code_obj -> list of guard failure reasons for logging
guard_failures: collections.defaultdict[Any, list[Any]] = collections.defaultdict(list)
# Keep a record of graph break reasons for logging
graph_break_reasons: list[torch._dynamo.output_graph.GraphCompileReason] = []
# keep record of compiled code, if we are in "error if recompile"
# to track code that dynamo has compiled previously
seen_code_map = ExactWeakKeyDictionary()
# return same dir unless user changes config between calls
@functools.lru_cache(None)
def _get_debug_dir(root_dir):
dir_name = (
"run_"
+ datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
# use pid to avoid conflicts among ranks
+ "-pid_"
+ str(os.getpid())
)
return os.path.join(root_dir, dir_name)
def get_debug_dir():
debug_root = config.debug_dir_root
return _get_debug_dir(debug_root)
def extract_fake_example_value(node, required=True):
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
return node.meta["example_value"]
elif required:
from torch._dynamo.exc import unimplemented_v2
from . import graph_break_hints
unimplemented_v2(
gb_type="Missing FakeTensor example value",
context=str(node),
explanation=f"`FakeTensor` example value was required for {node} but not available.",
hints=[*graph_break_hints.DYNAMO_BUG],
)
else:
return None
def ensure_graph_fake(e, tx):
assert maybe_get_fake_mode(e) is tx.fake_mode
return e
def get_fake_values_from_nodes(tx, nodes, allow_non_graph_fake):
def visit(n: torch.fx.Node):
if n.op == "call_function" and "example_value" not in n.meta:
# fake tensor validity is checked inside get_fake_value using
# ensure_graph_fake
return get_fake_value(n, tx, allow_non_graph_fake)
elif n.op == "get_attr" and "example_value" not in n.meta:
assert n.target in tx.output.nn_modules
gm = tx.output.nn_modules[n.target]
assert isinstance(gm, torch.fx.GraphModule)
return gm
out = n.meta["example_value"]
if not allow_non_graph_fake and isinstance(out, torch.Tensor):
return ensure_graph_fake(out, tx)
return out
return torch.fx.node.map_arg(nodes, visit)
def get_fake_value(node, tx, allow_non_graph_fake=False):
"""
Run the computation represented by `node` using fake tensors and return the result.
allow_non_graph_fake: whether to allow the return result to be:
1. non-fake or 2. fake that is not created by this instance of Dynamo.
If `True`, you must be prepared to deal with such return values, ideally
by further wrapping them as this graph's fakes.
"""
from torch.utils._sympy.value_ranges import ValueRangeError
from .exc import (
TorchRuntimeError,
unimplemented_v2,
Unsupported,
UserError,
UserErrorType,
)
op = node.op
# FX Node should always return the same fake value
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
return node.meta["example_value"]
args, kwargs = get_fake_values_from_nodes(
tx, (node.args, node.kwargs), allow_non_graph_fake
)
nnmodule = None
if op == "call_method" and len(args) > 0 and isinstance(args[0], torch.nn.Module):
# If the first argument is nn.Module, should copy to fake mode.
args = (deepcopy_to_fake_tensor(args[0], tx.fake_mode),) + tuple(args[1:])
if op == "call_module":
nnmodule = tx.output.nn_modules[node.target]
if is_lazy_module(nnmodule) and hasattr(nnmodule, "_initialize_hook"):
# In the case of a lazy module, we want to run
# the pre-hooks which initialize it.
# Afterwards, lazy module deletes its pre-hooks
# to avoid treating it as lazy on subsequent recompile.
nnmodule._infer_parameters(nnmodule, args)
# no matter it's lazy module or not, we should copy to fake mode.
nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)
if node.name in ["interpolate", "is_integer", "wrapped_gradient"] or any(
isinstance(a, complex) for a in args
):
# We need to specialize symfloats for now. Eventually we should do a tensorify pass in dynamo.
args = tuple(
float(arg)
if isinstance(arg, torch.SymFloat) and arg.node.hint is not None
else arg
for arg in args
)
try:
with tx.fake_mode, enable_python_dispatcher():
ret_val = wrap_fake_exception(
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
)
except Unsupported:
raise
except RuntimeError as e:
cause: BaseException = e
if e.__cause__ is not None:
cause = e.__cause__
if isinstance(
cause, torch._subclasses.fake_tensor.DataDependentOutputException
):
# capture_scalar_outputs only works for these ops right now
# see torch/_subclasses/fake_impls.py
if cause.func in (
torch.ops.aten.item.default,
torch.ops.aten._local_scalar_dense.default,
):
# does this actually get triggered?
hints = [
"Enable tracing of data-dependent output operators with "
"`torch._dynamo.config.capture_scalar_outputs = True`",
]
else:
hints = [
"Consider wrapping the operator into a PyTorch-understood custom operator "
"(see https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html)",
]
unimplemented_v2(
gb_type="Data dependent operator",
context=str(cause.func),
explanation=f"Operator `{cause.func}` has a non-Tensor output "
"whose value is dependent on the data of Tensor inputs.",
hints=hints,
)
elif isinstance(
cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
):
if not torch._dynamo.config.capture_dynamic_output_shape_ops:
unimplemented_v2(
gb_type="Dynamic shape operator",
context=str(cause.func),
explanation=f"Operator `{cause.func}`'s output shape depends on input Tensor data.",
hints=[
"Enable tracing of dynamic shape operators with "
"`torch._dynamo.config.capture_dynamic_output_shape_ops = True`",
],
)
else:
unimplemented_v2(
gb_type="Dynamic shape operator (no meta kernel)",
context=str(cause.func),
explanation=f"Operator `{cause.func}` does not have a meta kernel that supports dynamic output shapes",
hints=[
"Please report an issue to PyTorch",
],
)
elif isinstance(
cause, torch._subclasses.fake_tensor.UnsupportedOperatorException
):
op = cause.func
import_suggestion = ""
if isinstance(op, torch._ops.OpOverload):
maybe_pystub = torch._C._dispatch_pystub(
op._schema.name, op._schema.overload_name
)
if maybe_pystub is not None:
module, ctx = maybe_pystub
import_suggestion = (
f"It's possible that the support was implemented in "
f"module `{module}` and you may need to `import {module}`"
f"({ctx}), otherwise "
)
unimplemented_v2(
gb_type="Operator does not support running with fake tensors",
context=f"unsupported operator: {cause.func}",
explanation="",
hints=[
f"{import_suggestion}see "
"https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit#heading=h.64r4npvq0w0"
" for how to fix",
],
)
elif isinstance(
cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
):
raise UserError( # noqa: B904
UserErrorType.CONSTRAINT_VIOLATION,
str(cause),
case_name="constrain_as_size_example",
)
elif isinstance(cause, ValueRangeError):
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, e.args[0]) from e
elif isinstance(cause, TypeError) and "argument" in str(cause):
unimplemented_v2(
gb_type="TypeError when making fake tensor call",
context=f"TypeError {node.target}: {cause}",
explanation="",
hints=[],
)
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
if not allow_non_graph_fake:
_ = pytree.tree_map_only(
torch.Tensor, functools.partial(ensure_graph_fake, tx=tx), ret_val
)
return ret_val
_current_node = threading.local()
def get_current_node():
return getattr(_current_node, "value", None)
@contextmanager
def set_current_node(node):
old = get_current_node()
_current_node.value = node
try:
yield
finally:
_current_node.value = old
def run_node(tracer, node, args, kwargs, nnmodule):
"""
Runs a given node, with the given args and kwargs.
Behavior is dictated by a node's op.
run_node is useful for extracting real values out of nodes.
See get_real_value for more info on common usage.
Note: The tracer arg is only used for 'get_attr' ops
Note: The nnmodule arg is only used for 'call_module' ops
Nodes that are not call_function, call_method, call_module, or get_attr will
raise an AssertionError.
"""
op = node.op
with set_current_node(node):
def make_error_message(e):
return (
f"Dynamo failed to run FX node with fake tensors: {op} {node.target}(*{args}, **{kwargs}): got "
+ repr(e)
)
from .exc import Unsupported
try:
if op == "call_function":
return node.target(*args, **kwargs)
elif op == "call_method":
if not hasattr(args[0], node.target):
from .exc import unimplemented_v2
unimplemented_v2(
gb_type="Missing attribute when running call_method node",
context="",
explanation=make_error_message("attribute not defined"),
hints=[],
)
return getattr(args[0], node.target)(*args[1:], **kwargs)
elif op == "call_module":
assert nnmodule is not None
return nnmodule(*args, **kwargs)
elif op == "get_attr":
return tracer.output_graph.get_submodule(node.target)
elif op == "placeholder":
assert "example_value" in node.meta
return node.meta["example_value"]
except (NotImplementedError, UnsupportedFakeTensorException) as e:
# NB: mimic how wrap_fake_exception does it
from .exc import unimplemented_v2
hints = []
if isinstance(e, NotImplementedError):
hints = [
"If the op is a PyTorch op, please file an issue to PyTorch.",
]
unimplemented_v2(
gb_type="NotImplementedError/UnsupportedFakeTensorException when running FX node",
context="",
explanation=make_error_message(e),
hints=hints,
from_exc=e,
)
except Unsupported:
raise
except Exception as e:
raise RuntimeError(make_error_message(e)).with_traceback(
e.__traceback__
) from e
raise AssertionError(op)
def get_real_value(node, tracer):
"""
Run the actual computation represented by `node` and return the result.
This will execute any dependent nodes in the graph as well.
"""
from .exc import TorchRuntimeError
cache = tracer.real_value_cache
if node in cache:
return cache[node]
op = node.op
args, kwargs = torch.fx.node.map_arg( # type: ignore[misc]
(node.args, node.kwargs),
lambda n: get_real_value(n, tracer),
)
if op == "placeholder" and "grapharg" in node.meta:
return node.meta["grapharg"].example
if op == "call_module":
nn_module = tracer.output_graph.nn_modules[node.target]
if not is_lazy_module(nn_module):
nn_module = copy.deepcopy(nn_module)
else:
# In the case of a lazy module, we want to run
# the pre-hooks which initialize it
nn_module(*args, **kwargs)
else:
nn_module = None
try:
real_value = run_node(tracer, node, args, kwargs, nn_module)
cache[node] = real_value
except RuntimeError as e:
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
return real_value
def assert_no_fake_params_or_buffers(gm):
from torch._subclasses.fake_tensor import FakeTensorConfig, is_fake
def stack_or_hint(t):
if FakeTensorConfig.debug:
import traceback
return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
else:
return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."
for name, buffer in gm.named_buffers():
assert not is_fake(buffer), (
f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
)
for name, param in gm.named_parameters():
assert not is_fake(param), (
f"Unexpected fake param {name} {stack_or_hint(param)}"
)
def fqn(obj: Any):
"""
Returns the fully qualified name of the object.
"""
return f"{obj.__module__}.{obj.__qualname__}"
def ifdynstaticdefault(count1, count2):
if torch._dynamo.config.assume_static_by_default:
return count1
else:
return count2
def import_submodule(mod: types.ModuleType):
"""
Ensure all the files in a given submodule are imported
"""
for filename in sorted(os.listdir(os.path.dirname(cast(str, mod.__file__)))):
if filename.endswith(".py") and filename[0] != "_":
importlib.import_module(f"{mod.__name__}.{filename[:-3]}")
def object_has_getattribute(value: Any):
return class_has_getattribute(type(value))
def class_has_getattribute(cls: type):
try:
if isinstance(
inspect.getattr_static(cls, "__getattribute__"),
types.FunctionType,
):
return True
except AttributeError:
pass
return False
def get_custom_getattr(value: Any, ignore_nn_module_getattr: bool = False):
try:
getattr_fn = inspect.getattr_static(type(value), "__getattr__")
except AttributeError:
getattr_fn = None
if ignore_nn_module_getattr and getattr_fn is torch.nn.Module.__getattr__:
# ignore this case of getattr
getattr_fn = None
return getattr_fn
class TensorStaticReason(enum.Enum):
PARAMETER = 2
NOT_TENSOR = 4
NN_MODULE_PROPERTY = 5
def tensor_static_reason_to_message(reason: TensorStaticReason):
if reason == TensorStaticReason.PARAMETER:
return "mark_dynamic on parameter, parameters are always static today."
if reason == TensorStaticReason.NOT_TENSOR:
return "mark_dynamic on a non tensor, how did this happen?"
if reason == TensorStaticReason.NN_MODULE_PROPERTY:
return "tensor is static because it is nn module associated."
raise AssertionError(f"Illegal reason {reason}")
def tensor_always_has_static_shape(
tensor: Union[torch.Tensor, Any],
is_tensor: bool,
tensor_source: Source,
) -> tuple[bool, Optional[TensorStaticReason]]:
"""
Given a tensor, source, and is_tensor flag, determine if a shape should be static.
Args:
tensor - the real tensor to evaluate, parameters force a static shape.
is_tensor - internal dynamo check, essentially "is_tensor": target_cls is TensorVariable,
tensors not in a TensorVariable for whatever reason are forced static.
Returns a tuple, where the first element is the bool of whether or not this tensor should have a static shape.
The second element is a TensorStaticReason, useful for passing to tensor_static_reason_to_message if needed.
"""
from .source import is_from_unspecialized_param_buffer_source
if (
tensor_source.guard_source().is_specialized_nn_module()
or tensor_source.guard_source().is_unspecialized_builtin_nn_module()
) and config.force_nn_module_property_static_shapes:
return True, TensorStaticReason.NN_MODULE_PROPERTY
if (
type(tensor) is torch.nn.Parameter
or is_from_unspecialized_param_buffer_source(tensor_source)
) and config.force_parameter_static_shapes:
return True, TensorStaticReason.PARAMETER
if not is_tensor:
return True, TensorStaticReason.NOT_TENSOR
return False, None
def lazy_format_graph_tabular(fn_name, gm):
def inner():
try:
from tabulate import tabulate # TODO: Check that this is installed
except ImportError:
return (
"Tabulate module missing, please install tabulate to log the graph in tabular format, logging code instead:\n"
+ str(lazy_format_graph_code(fn_name, gm))
)
node_specs = [
[n.op, n.name, n.target, n.args, n.kwargs] for n in gm.graph.nodes
]
graph_str = tabulate(
node_specs, headers=["opcode", "name", "target", "args", "kwargs"]
)
return _format_graph_code(fn_name, gm.forward.__code__.co_filename, graph_str)
return LazyString(inner)
def format_bytecode(prefix, name, filename, line_no, code):
return f"{prefix} {name} {filename} line {line_no} \n{dis.Bytecode(code).dis()}\n"
forward_hook_names = ["_forward_pre_hooks", "_forward_hooks"]
backward_hook_names = ["_backward_pre_hooks", "_backward_hooks"]
state_dict_hook_names = [
"_state_dict_pre_hooks",
"_state_dict_hooks",
"_load_state_dict_pre_hooks",
"_load_state_dict_post_hooks",
]
all_hook_names = forward_hook_names + backward_hook_names + state_dict_hook_names
def nn_module_has_global_hooks():
# This is limited to backward hooks for now because NNModuleVariable
# supports fwd hooks underneath.
return len(torch.nn.modules.module._global_backward_hooks) or len(
torch.nn.modules.module._global_backward_pre_hooks
)
def nn_module_get_all_hooks(
mod,
check_forward_hooks=False,
check_backward_hooks=False,
check_state_dict_hooks=False,
):
"""
Sometimes its useful to differentiate between types of hooks such as forward/backward/pre
hooks executed during module.__call__, and state_dict hooks which are executed separately.
"""
hook_dicts_to_check = []
check_all_hooks = (
not check_forward_hooks
and not check_backward_hooks
and not check_state_dict_hooks
)
if check_forward_hooks or check_all_hooks:
hook_dicts_to_check.extend(forward_hook_names)
if check_backward_hooks or check_all_hooks:
hook_dicts_to_check.extend(backward_hook_names)
if check_state_dict_hooks:
hook_dicts_to_check.extend(state_dict_hook_names)
all_hooks = []
for hook_dict_name in hook_dicts_to_check:
hooks = getattr(mod, hook_dict_name, [])
for hook_name in hooks:
hook = hooks[hook_name]
all_hooks.append(hook)
return all_hooks
def nnmodule_has_hooks(
mod,
check_forward_hooks=False,
check_backward_hooks=False,
check_state_dict_hooks=False,
):
"""
Helper function to check if a module has any hooks attached to it.
"""
hooks = nn_module_get_all_hooks(
mod,
check_forward_hooks=check_forward_hooks,
check_backward_hooks=check_backward_hooks,
check_state_dict_hooks=check_state_dict_hooks,
)
return bool(hooks)
def to_numpy_helper(value):
"""Convert tensor and tnp.ndarray to numpy.ndarray."""
if is_fake(value):
return value
if isinstance(value, tnp.ndarray):
return to_numpy_helper(value.tensor)
elif isinstance(value, torch.Tensor):
return value.numpy(force=True)
elif isinstance(value, (tuple, list)):
return type(value)(to_numpy_helper(obj) for obj in value)
else:
return value
def numpy_to_tensor(value):
"""Convert tnp.ndarray to tensor, leave other types intact. If a list/tuple, loop through it to convert."""
assert np is not None
if isinstance(value, np.ndarray):
return torch.as_tensor(value)
if isinstance(value, tnp.ndarray):
return value.tensor
elif isinstance(value, (tuple, list)):
return type(value)(numpy_to_tensor(obj) for obj in value)
else:
return value
class numpy_to_tensor_wrapper:
def __init__(self, f):
self.f = f
self.__name__ = "wrapped_" + self.f.__name__
def __repr__(self) -> str:
return f"<Wrapped function <original {self.f.__name__}>>"
def __call__(self, *args, **kwargs):
out = self.f(*args, **kwargs)
return numpy_to_tensor(out)
def numpy_attr_wrapper(obj, name):
if isinstance(obj, tnp.ndarray):
out = getattr(obj, name)
return numpy_to_tensor(out)
elif isinstance(obj, torch.Tensor):
out = getattr(tnp.ndarray(obj), name)
return numpy_to_tensor(out)
class numpy_method_wrapper:
"""Convert obj from torch.Tensor to tnp.ndarray and call method. Then convert result back to torch.Tensor."""
def __init__(self, method: str):
self.method = method
self.__name__ = "wrapped_" + self.method
def __repr__(self) -> str:
return f"<Wrapped method <original {self.method}>>"
def __call__(self, *args, **kwargs):
obj = args[0]
if isinstance(obj, torch.Tensor):
obj = tnp.ndarray(obj)
method_callable = getattr(obj, self.method)
out = method_callable(*args[1:], **kwargs)
return numpy_to_tensor(out)
class numpy_operator_wrapper:
"""Implements dunder methods for tnp.ndarray via functions from the operator library"""
def __init__(self, op: Callable[..., Any]):
self.op = op
self.__name__ = f"wrapped_{op.__name__}"
def __repr__(self) -> str:
return f"<Wrapped operator <original {self.__name__}>>"
def __call__(self, *args, **kwargs):
assert not kwargs
args = (
tnp.ndarray(arg) if isinstance(arg, torch.Tensor) else arg for arg in args
)
out = self.op(*args)
return numpy_to_tensor(out)
def defake(x):
if not isinstance(x, FakeTensor):
return x
size: torch._prims_common.ShapeType
stride: torch._prims_common.StrideType
if x._has_symbolic_sizes_strides:
size = []
for s in x.size():
if isinstance(s, torch.SymInt):
size.append(s.node.shape_env.size_hint(s.node.expr))
else:
size.append(s)
stride = []
for s in x.stride():
if isinstance(s, torch.SymInt):
stride.append(s.node.shape_env.size_hint(s.node.expr))
else:
stride.append(s)
else:
size = x.size()
stride = x.stride()
y = torch.empty_strided(
size,
stride,
dtype=x.dtype,
device=x.device,
requires_grad=x.requires_grad,
)
y.zero_()
return y
def is_utils_checkpoint(obj):
# Lazy import to avoid circular dependencies
import torch.utils.checkpoint
return obj is torch.utils.checkpoint.checkpoint
def is_invoke_subgraph(obj):
from torch._higher_order_ops.invoke_subgraph import invoke_subgraph_placeholder
return obj is invoke_subgraph_placeholder
def build_invoke_subgraph_variable(**options):
from .variables.higher_order_ops import TorchHigherOrderOperatorVariable
return TorchHigherOrderOperatorVariable.make(
torch._higher_order_ops.invoke_subgraph,
**options,
)
def build_checkpoint_variable(**options):
import torch._higher_order_ops.wrap as higher_order_ops
from .variables.higher_order_ops import TorchHigherOrderOperatorVariable
# TODO - This is a temporary situation where we have two versions of
# checkpointing implementation. We will converge on one and remove the other.
activation_checkpoint_op: torch._ops.HigherOrderOperator = (
higher_order_ops.tag_activation_checkpoint
)
if torch._functorch.config.functionalize_rng_ops:
activation_checkpoint_op = higher_order_ops.wrap_activation_checkpoint
return TorchHigherOrderOperatorVariable.make(
activation_checkpoint_op,
**options,
)
def is_compile_supported(device_type):
from .eval_frame import is_dynamo_supported
compile_supported = is_dynamo_supported()
if device_type == "cpu":
pass
elif device_type in ["cuda", "xpu"] and compile_supported:
compile_supported = has_triton()
else:
compile_supported = False
return compile_supported
# The following 3.11 source code functions are adapted from
# https://github.com/python/cpython/blob/v3.11.4/Lib/traceback.py
# in order to output source code corresponding to bytecode in 3.11+.
# We need our own versions since we want to support multiline expressions.
def _fix_offset(str: str, offset: int) -> int:
"""
Convert byte offset `offset` of `str` into character offset.
Byte offset is used for 3.11+ instruction column data.
Takes things like unicode characters into consideration.
Unchanged from CPython implementation.
"""
as_utf8 = str.encode("utf-8")
return len(as_utf8[:offset].decode("utf-8", errors="replace"))
@dataclasses.dataclass
class _Anchors:
# inclusive
left_end_lineno: int
left_end_offset: int
right_start_lineno: int
# exclusive
right_start_offset: int
def _extract_anchors_from_expr(segment: str) -> Optional[_Anchors]:
"""
Given source code `segment` corresponding to a bytecode
instruction, determine:
- for binary ops, the location of the binary op
- for indexing, the location of the brackets.
`segment` is expected to be a valid Python expression
"""
assert sys.version_info >= (3, 11)
import ast
try:
# Without brackets, `segment` is parsed as a statement.
# We expect an expression, so wrap `segment` in
# brackets to handle multi-line expressions.
tree = ast.parse("(\n" + segment + "\n)")
except SyntaxError:
return None
if len(tree.body) != 1:
return None
lines = segment.split("\n")
# get character index given byte offset
def normalize(lineno, offset):
return _fix_offset(lines[lineno], offset)
# Gets the next valid character index in `lines`, if
# the current location is not valid. Handles empty lines.
def next_valid_char(lineno, col):
while lineno < len(lines) and col >= len(lines[lineno]):
col = 0
lineno += 1
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
# Get the next valid character index in `lines`.
def increment(lineno, col):
col += 1
lineno, col = next_valid_char(lineno, col)
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
# Get the next valid character at least on the next line
def nextline(lineno, col):
col = 0
lineno += 1
lineno, col = next_valid_char(lineno, col)
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
statement = tree.body[0]
if isinstance(statement, ast.Expr):
expr = statement.value
if isinstance(expr, ast.BinOp):
# ast gives locations for BinOp subexpressions, e.g.
# ( left_expr ) + ( right_expr )
# left^^^^^ right^^^^^
# -2 since end_lineno is 1-indexed and because we added an extra
# bracket to `segment` when calling ast.parse
cur_lineno = cast(int, expr.left.end_lineno) - 2
cur_col = normalize(cur_lineno, expr.left.end_col_offset)
cur_lineno, cur_col = next_valid_char(cur_lineno, cur_col)
# Heuristic to find the operator character.
# The original CPython implementation did not look for ), \, or #,
# leading to incorrect anchor location, e.g.
# (x) + (y)
# ~~^~~~~~~
while (ch := lines[cur_lineno][cur_col]).isspace() or ch in ")\\#":
if ch in "\\#":
cur_lineno, cur_col = nextline(cur_lineno, cur_col)
else:
cur_lineno, cur_col = increment(cur_lineno, cur_col)
# binary op is 1 or 2 characters long, on the same line
right_col = cur_col + 1
if (
right_col < len(lines[cur_lineno])
and not (ch := lines[cur_lineno][right_col]).isspace()
and ch not in "\\#"
):
right_col += 1
# right_col can be invalid since it is exclusive
return _Anchors(cur_lineno, cur_col, cur_lineno, right_col)
elif isinstance(expr, ast.Subscript):
# ast gives locations for value and slice subexpressions, e.g.
# ( value_expr ) [ slice_expr ]
# value^^^^^ slice^^^^^
# subscript^^^^^^^^^^^^^^^^^^^^
# find left bracket (first '[' after value)
left_lineno = cast(int, expr.value.end_lineno) - 2
left_col = normalize(left_lineno, expr.value.end_col_offset)
left_lineno, left_col = next_valid_char(left_lineno, left_col)
while lines[left_lineno][left_col] != "[":
left_lineno, left_col = increment(left_lineno, left_col)
# find right bracket (final character of expression)
right_lineno = cast(int, expr.end_lineno) - 2
right_col = normalize(right_lineno, expr.end_col_offset)
return _Anchors(left_lineno, left_col, right_lineno, right_col)
elif isinstance(expr, ast.Call):
# ( func_expr ) (args, kwargs)
# func^^^^^
# call^^^^^^^^^^^^^^^^^^^^^^^^
# find left bracket (first '(' after func)
left_lineno = cast(int, expr.func.end_lineno) - 2
left_col = normalize(left_lineno, expr.func.end_col_offset)
left_lineno, left_col = next_valid_char(left_lineno, left_col)
while lines[left_lineno][left_col] != "(":
left_lineno, left_col = increment(left_lineno, left_col)
# find right bracket (final character of expression)
right_lineno = cast(int, expr.end_lineno) - 2
right_col = normalize(right_lineno, expr.end_col_offset)
return _Anchors(left_lineno, left_col, right_lineno, right_col)
return None
def get_instruction_source_311(code: types.CodeType, inst: dis.Instruction) -> str:
"""
Python 3.11+ only. Returns lines of source code (from code object `code`)
corresponding to `inst`'s location data, and underlines relevant code to `inst`.
Example: CALL on `g`:
f(g(
^^
h(x)))
^^^^^
We need our own implementation in < 3.13 since `format_frame_summary` in
Python's `traceback` module doesn't handle multi-line expressions
(and their anchor extraction code is not completely correct).
"""
if sys.version_info >= (3, 13):
# multiline traceback implemented in 3.13+
frame_summary = traceback.FrameSummary(
code.co_filename,
inst.positions.lineno,
code.co_name,
end_lineno=inst.positions.end_lineno,
colno=inst.positions.col_offset,
end_colno=inst.positions.end_col_offset,
)
result = traceback.format_list([frame_summary])[0]
# remove first line containing filename info
result = "\n".join(result.splitlines()[1:])
# indent lines with original indentation
orig_lines = [
linecache.getline(code.co_filename, lineno).rstrip()
for lineno in range(inst.positions.lineno, inst.positions.end_lineno + 1)
]
orig_lines_dedent = textwrap.dedent("\n".join(orig_lines)).splitlines()
indent_len = len(orig_lines[0]) - len(orig_lines_dedent[0])
indent = orig_lines[0][:indent_len]
result = textwrap.indent(textwrap.dedent(result), indent)
return result
assert inst.positions is not None
if inst.positions.lineno is None:
return ""
# The rstrip + "\n" pattern is used throughout this function to handle
# linecache.getline errors. Error lines are treated as empty strings "", but we want
# to treat them as blank lines "\n".
first_line = linecache.getline(code.co_filename, inst.positions.lineno).rstrip()
if inst.positions.end_lineno is None:
return first_line
if inst.positions.col_offset is None or inst.positions.end_col_offset is None:
return first_line
# character index of the start of the instruction
start_offset = _fix_offset(first_line, inst.positions.col_offset)
# character index of the end of the instruction
# compute later since end may be a different line
end_offset = None
# expression corresponding to the instruction so we can get anchors
segment = ""
# underline markers to be printed - start with `~` marker and replace with `^` later
markers = []
# Compute segment and initial markers
if inst.positions.end_lineno == inst.positions.lineno:
end_offset = _fix_offset(first_line, inst.positions.end_col_offset)
segment = first_line[start_offset:end_offset]
markers.append(" " * start_offset + "~" * (end_offset - start_offset))
else:
segment = first_line[start_offset:] + "\n"
markers.append(" " * start_offset + "~" * (len(first_line) - start_offset))
last_line = linecache.getline(
code.co_filename, inst.positions.end_lineno
).rstrip()
end_offset = _fix_offset(last_line, inst.positions.end_col_offset)
for lineno in range(inst.positions.lineno + 1, inst.positions.end_lineno):
line = linecache.getline(code.co_filename, lineno).rstrip()
segment += line + "\n"
# don't underline leading spaces
num_spaces = len(line) - len(line.lstrip())
markers.append(" " * num_spaces + "~" * (len(line) - num_spaces))
segment += last_line[:end_offset]
num_spaces = len(last_line) - len(last_line.lstrip())
markers.append(" " * num_spaces + "~" * (end_offset - num_spaces))
anchors: Optional[_Anchors] = None
try:
anchors = _extract_anchors_from_expr(segment)
except AssertionError:
pass
# replace `~` markers with `^` where necessary
if anchors is None:
markers = [marker.replace("~", "^") for marker in markers]
else:
# make markers mutable
mutable_markers: list[list[str]] = [list(marker) for marker in markers]
# anchor positions do not take start_offset into account
if anchors.left_end_lineno == 0:
anchors.left_end_offset += start_offset
if anchors.right_start_lineno == 0:
anchors.right_start_offset += start_offset
# Turn `~`` markers between anchors to `^`
for lineno in range(len(markers)):
for col in range(len(mutable_markers[lineno])):
if lineno < anchors.left_end_lineno:
continue
if lineno == anchors.left_end_lineno and col < anchors.left_end_offset:
continue
if (
lineno == anchors.right_start_lineno
and col >= anchors.right_start_offset
):
continue
if lineno > anchors.right_start_lineno:
continue
if mutable_markers[lineno][col] == "~":
mutable_markers[lineno][col] = "^"
# make markers into strings again
markers = ["".join(marker) for marker in mutable_markers]
result = ""
for i in range(len(markers)):
result += (
linecache.getline(code.co_filename, inst.positions.lineno + i).rstrip()
+ "\n"
)
result += markers[i] + "\n"
return result
def get_static_address_type(t):
if isinstance(t, torch.Tensor):
return getattr(t, "_dynamo_static_input_type", None)
return None
def is_rng_state_getter_or_setter(value):
getters = (
# The following two functions are not identical, so don't remove anyone!
torch._C.Generator.get_state,
torch.default_generator.get_state,
torch.get_rng_state,
torch.cuda.get_rng_state,
)
setters = (
torch._C.Generator.set_state,
torch.default_generator.set_state,
torch.set_rng_state,
torch.cuda.set_rng_state,
)
return value in (*setters, *getters)
def is_tensor_base_attr_getter(value):
return (
isinstance(value, types.MethodWrapperType)
and value.__name__ == "__get__"
and value.__self__.__objclass__ is torch._C._TensorBase # type: ignore[attr-defined]
)
def is_torch_function_object(value):
return hasattr(value, "__torch_function__")
def has_torch_function(vt: torch._dynamo.variables.base.VariableTracker) -> bool:
from torch._dynamo.variables import UserDefinedObjectVariable
from torch._dynamo.variables.torch_function import TensorWithTFOverrideVariable
# Note on lazy vars: The value will either be realized or not throughout the course of execution
# if the value has a torch function, it will eventually be realized so we can realize it here
# if the value does not have a torch function, it may or may not be realized
# if it is realized it will be used and guards will be installed properly
# if it is not used, guards won't be installed, and it doesn't matter
# if the value has a torch function or not, so we should *not* realize it.
# NB: We technically know that if is_realized is False, LazyVariableTracker has the peek_value method
# but mypy does not unfortunately
if vt.is_realized() or (
hasattr(vt, "peek_value") and hasattr(vt.peek_value(), "__torch_function__")
):
if isinstance(vt, TensorWithTFOverrideVariable):
return True
return isinstance(vt, UserDefinedObjectVariable) and hasattr(
vt.value, "__torch_function__"
)
return False
# see note [Tensor Fakification and Symbol Caching]
def to_fake_tensor(t, fake_mode):
symbolic_context = None
source = None
if tracing_context := torch._guards.TracingContext.try_get():
if t in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[t]
source = symbolic_context.tensor_source
return fake_mode.from_tensor(
t, static_shapes=False, symbolic_context=symbolic_context, source=source
)
# NB: this works for both classes and instances
def is_frozen_dataclass(value):
return (
not object_has_getattribute(value)
and not class_has_getattribute(value)
and is_dataclass(value)
and hasattr(value, "__dataclass_params__")
and hasattr(value.__dataclass_params__, "frozen")
and value.__dataclass_params__.frozen
)
def get_first_attr(obj, *attrs):
"""
Return the first available attribute or throw an exception if none is present.
"""
for attr in attrs:
if hasattr(obj, attr):
return getattr(obj, attr)
raise AssertionError(f"{obj} does not has any of the attributes: {attrs}")
@contextlib.contextmanager
def maybe_enable_compiled_autograd(should_enable, fullgraph=True, dynamic=True):
if not should_enable:
yield
else:
def compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
torch._dynamo.utils.counters["compiled_autograd"]["compiles"] += 1
return torch._inductor.compile(gm_, example_inputs_)
return torch.compile(
gm, backend=inner_compiler, fullgraph=fullgraph, dynamic=dynamic
)
with torch._dynamo.compiled_autograd._enable(compiler_fn) as ctx:
yield ctx
def invalid_removeable_handle():
# need a subclass so weakref works
class Invalid(dict): # type: ignore[type-arg]
pass
return RemovableHandle(Invalid())
# Returns a "proxy" (new object with the same class and dict) for (non-GraphModule) nn.Module's.
# Attribute changes to the original object/proxy will be reflected in the other.
# This is useful for cases where we want a keep-alive reference to a module without increasing
# its reference count.
def nn_module_proxy(mod):
if not isinstance(mod, torch.nn.Module):
return mod
if isinstance(mod, torch.fx.GraphModule):
# Dynamo-generated GM's shouldn't contain user-created GM's
return mod
proxy = mod.__class__.__new__(mod.__class__)
proxy.__dict__ = mod.__dict__
return proxy
class GmWrapper(torch.nn.Module):
def __init__(self, gm, unflatten_fn):
super().__init__()
self.gm = gm
self.unflatten_fn = unflatten_fn
def forward(self, *args):
args: list[Any] = list(args)
return self.gm(*self.unflatten_fn(args))
def flatten_graph_inputs(gm: torch.fx.GraphModule, inputs, compile_gm):
"""
Mutate inputs so that they are flat and wrap gm such that it
accepts those inputs. This is needed for graphs that take
bumpy inputs.
"""
inputs_idx_to_clear = [
i
for i, node in enumerate(gm.graph.nodes)
if node.op == "placeholder" and node.meta.get("steal_arg", False)
]
if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
# fast path, avoid pytree overhead
# compiled autograd inputs are always a list of tensors, maybe followed by symints
assert inputs_idx_to_clear == [0]
assert isinstance(inputs[0], list)
boxed_inputs_count = len(inputs[0])
def flatten_fn(args):
return args[0] + list(args[1:])
def unflatten_fn(flat_args):
return (flat_args[:boxed_inputs_count], *flat_args[boxed_inputs_count:])
compiled_fn = compile_gm(GmWrapper(gm, unflatten_fn), flatten_fn(inputs))
else:
# slow path, don't know inputs structure
flat_inputs, spec = pytree.tree_flatten(inputs)
unflatten_fn = functools.partial(pytree.tree_unflatten, treespec=spec)
compiled_fn = compile_gm(GmWrapper(gm, unflatten_fn), flat_inputs)
# note this doesn't check the spec, assuming it is the same
flatten_fn = pytree.arg_tree_leaves
def wrapper(*args):
flat_args = flatten_fn(args)
# flat_args is a new list, so we need to clear references from the old list
for i in inputs_idx_to_clear:
args[i].clear()
# this call is boxed to avoid increasing refcount until we reach aot_module_simplified forward
return compiled_fn(flat_args)
return wrapper
def get_locals_to_steal(maybe_gm):
if not isinstance(maybe_gm, torch.fx.GraphModule) or not hasattr(maybe_gm, "meta"):
return []
return maybe_gm.meta.get("locals_to_steal", [])
def set_locals_to_steal(gm, locals_to_steal):
gm.meta["locals_to_steal"] = locals_to_steal
class Lit:
def __init__(self, s):
self.s = s
def __repr__(self) -> str:
return self.s
warn_once_cache: set[str] = set()
def warn_once(msg, stacklevel=1):
# Dynamo causes all warnings.warn (in user code and in Dynamo code) to print all the time.
# https://github.com/pytorch/pytorch/issues/128427.
# warn_once is a workaround: if the msg has been warned on before, then we will not
# warn again.
# NB: it's totally ok to store a cache of all the strings: this is what warnings.warn does as well.
if msg in warn_once_cache:
return
warn_once_cache.add(msg)
warnings.warn(msg, stacklevel=stacklevel + 1)
def strip_color_from_string(text):
# This regular expression matches ANSI escape codes
ansi_escape = re.compile(r"\x1B[@-_][0-?]*[ -/]*[@-~]")
return ansi_escape.sub("", text)
@contextlib.contextmanager
def _disable_saved_tensors_hooks_during_tracing():
# See NOTE: [Deferring tensor pack/unpack hooks until runtime]
try:
prior = torch._C._autograd._saved_tensors_hooks_set_tracing(True)
yield
finally:
torch._C._autograd._saved_tensors_hooks_set_tracing(prior)
def is_parameter_freezing():
return torch._inductor.config.freezing and not torch.is_grad_enabled()
def get_torch_function_mode_stack():
return [
get_torch_function_mode_stack_at(i) for i in range(_len_torch_function_stack())
]
def get_torch_function_mode_stack_at(ind):
assert ind < _len_torch_function_stack() and ind >= 0
return torch._C._get_function_stack_at(ind)
def set_torch_function_mode_stack(stack):
for _ in range(_len_torch_function_stack()):
_pop_torch_function_stack()
for mode in stack:
_push_on_torch_function_stack(mode)
def clear_torch_function_mode_stack():
for _ in range(_len_torch_function_stack()):
_pop_torch_function_stack()
# call from C dynamo in order to inspect values in pdb
def _breakpoint_for_c_dynamo(*args):
breakpoint()
def verify_guard_fn_signature(value):
fn = value.__metadata_guard__
sig = inspect.signature(fn)
if len(sig.parameters) != 2:
from .exc import InternalTorchDynamoError
raise InternalTorchDynamoError(
"Tensor subclass method __metadata_guard__ must take exactly two subclass metadata arguments"
)
if fn.__self__ != value.__class__:
from .exc import InternalTorchDynamoError
raise InternalTorchDynamoError(
"Tensor subclass method __metadata_guard__ must be a classmethod"
)
def does_not_override_dict_iter_methods(user_cls):
return (
user_cls.items in (dict.items, OrderedDict.items)
and user_cls.values in (dict.values, OrderedDict.values)
and user_cls.keys in (dict.keys, OrderedDict.keys)
and user_cls.__iter__ in (dict.__iter__, OrderedDict.__iter__)
)
# Helper functions below are to prevent __torch_function__
# calls from happening in the middle of __torch_function__
# compiled bytecode
# They will be skipped which is the desired result
def call_size(x, i):
@torch._dynamo.disable(recursive=True)
def fn(x, i):
return x.size(i)
return fn(x, i)
def call_stride(x, i):
@torch._dynamo.disable(recursive=True)
def fn(x, i):
return x.stride(i)
return fn(x, i)
def call_storage_offset(x):
@torch._dynamo.disable(recursive=True)
def fn(x):
return x.storage_offset()
return fn(x)
# Helper function to extract relevant parts of a tensor's __dict__ to store in node meta.
# To avoid ref cycles, it's important that no tensors are present here, so leave those out.
def _extract_tensor_dict(t):
KEYS_TO_COPY = [
"_dynamo_static_input_type",
"tag",
]
tensor_dict = {
key: copy.copy(t.__dict__[key]) for key in KEYS_TO_COPY if key in t.__dict__
}
return tensor_dict
# This is useful for reconstructing within the Dynamo graph the non-graph-input objects
# whose lifetime is governed by the user.
# e.g. torch.cuda.Event is a prime example.
user_obj_id_to_weakref: dict[int, weakref.ReferenceType[object]] = {}
def get_user_object_from_id(obj_id):
obj = user_obj_id_to_weakref[obj_id]()
assert obj is not None, "User object is no longer alive"
return obj
def store_user_object_weakref(obj):
obj_id = id(obj)
user_obj_id_to_weakref[obj_id] = weakref.ref(obj)
class CompileTimeInstructionCounter:
_counter: int = 0
_id: int = -1
_depth = 0
@classmethod
def start(cls) -> None:
cls._depth = cls._depth + 1
if cls._depth == 1:
cls._id = _instruction_counter.start()
@classmethod
def end(cls) -> None:
cls._depth = cls._depth - 1
if cls._depth == 0:
cls._counter += _instruction_counter.end(cls._id)
cls._id = -1
@classmethod
def clear(cls) -> None:
cls._counter = 0
@classmethod
def value(cls) -> int:
return cls._counter
@classmethod
@contextmanager
def record(cls):
try:
if config.record_compile_time_instruction_count:
cls.start()
yield
finally:
if config.record_compile_time_instruction_count:
cls.end()
def set_feature_use(feature: str, usage: bool):
"""
Records whether we are using a feature
Generally a feature is a JK.
"""
# Note that sometimes (tests etc...) we're not in a context which we can record into
if get_metrics_context().in_progress():
get_metrics_context().set_key_value("feature_usage", feature, usage)
_ddp_optimization_mode: tuple[str, ...] = (
"ddp_optimizer",
"python_reducer", # experimental mode
"no_optimization",
)
def get_optimize_ddp_mode():
optimize_ddp = config.optimize_ddp
if isinstance(optimize_ddp, bool):
mode = "ddp_optimizer" if optimize_ddp else "no_optimization"
elif isinstance(optimize_ddp, str):
mode = optimize_ddp
else:
raise ValueError(
f"Invalid dynamo config optimize_ddp type {type(optimize_ddp)=}"
)
assert mode in _ddp_optimization_mode, (
f"Invalid dynamo config optimize_ddp value {mode=}"
)
return mode
|