File size: 16,197 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
"""Testing utilities and infrastructure for Dynamo.
This module provides a comprehensive set of testing utilities including:
- Test result collection and validation
- Graph manipulation and comparison tools
- Test case management and execution helpers
- Specialized test decorators for different Python versions and features
- RNG state management
- Compilation counting and monitoring
- Debug utilities for bytecode transformation
The utilities in this module are used across Dynamo's test suite to ensure
consistent testing patterns and proper test isolation.
"""
import contextlib
import dis
import functools
import logging
import os.path
import random
import re
import sys
import types
import unittest
from collections.abc import Sequence
from typing import Any, Callable, Optional, overload, TypeVar, Union
from typing_extensions import ParamSpec
from unittest.mock import patch
import torch
from torch import fx
from torch._dynamo.backends.debugging import aot_eager
from torch._dynamo.output_graph import OutputGraph
from . import config, eval_frame, optimize_assert, reset
from .bytecode_transformation import (
create_instruction,
debug_checks,
is_generator,
transform_code_object,
)
from .guards import CheckFunctionManager, CompileId, GuardedCode
from .types import ConvertFrameReturn, DynamoFrameType, wrap_guarded_code
from .utils import same
np: Optional[types.ModuleType] = None
try:
import numpy as np
except ModuleNotFoundError:
np = None
unsupported = eval_frame.unsupported
three = 3
log = logging.getLogger(__name__)
_P = ParamSpec("_P")
def clone_me(x: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
if x is None:
return None
return x.detach().clone().requires_grad_(x.requires_grad)
def remove_optimized_module_prefix(name: str) -> str:
return re.sub(r"^_orig_mod[.]", "", name)
def extract_graph_and_tracker(fn, *args, **kwargs): # type: ignore[no-untyped-def]
from torch._dynamo.symbolic_convert import InstructionTranslator
gm = None
region_tracker = None
def extract_graph_backend(_gm, *args, **kwargs): # type: ignore[no-untyped-def]
nonlocal gm
nonlocal region_tracker
gm = _gm
region_tracker = InstructionTranslator.current_tx().output.region_tracker
return _gm
torch.compile(backend=extract_graph_backend, fullgraph=True)(fn)(*args, **kwargs)
return gm.graph, region_tracker # type: ignore[union-attr]
def collect_results(
model: torch.nn.Module, prediction: Any, loss: Any, example_inputs: Any
) -> list[Any]:
results = []
results.append(prediction)
results.append(loss)
# if isinstance(loss, torch.Tensor) and loss.item() > 1:
# log.warning(
# f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
# )
grads = {}
params = {}
for name, param in model.named_parameters():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
param_copy = param
grad = param.grad
# Treat None and zero grad as same
if param.grad is None:
grad = torch.zeros_like(param)
grads[name + ".grad"] = grad
params[name] = param_copy
results.append(grads)
results.append(params)
buffers = {}
for name, buffer in model.named_buffers():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
buffers[name] = buffer
results.append(buffers)
for example in example_inputs:
if isinstance(example, (tuple, list)):
results.extend(inp.grad for inp in example if isinstance(inp, torch.Tensor))
else:
if isinstance(example, torch.Tensor):
results.append(example.grad)
return results
def requires_bwd_pass(out: Any) -> bool:
if isinstance(out, torch.Tensor):
return out.requires_grad
elif isinstance(out, (list, tuple)):
return any(requires_bwd_pass(x) for x in out)
elif out is None:
return False
elif isinstance(out, int):
return False
raise NotImplementedError("Don't know how to reduce", type(out))
@overload
def reduce_to_scalar_loss(out: torch.Tensor) -> torch.Tensor: ...
@overload
def reduce_to_scalar_loss(
out: Union[list[Any], tuple[Any, ...], dict[Any, Any]],
) -> float: ...
def reduce_to_scalar_loss(out: Any) -> Union[torch.Tensor, float]:
"""Reduce the output of a model to get scalar loss"""
if isinstance(out, torch.Tensor):
# Mean does not work on integer tensors
return out.sum() / out.numel()
elif isinstance(out, (list, tuple)):
return sum(reduce_to_scalar_loss(x) for x in out) / len(out)
elif type(out).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
):
return reduce_to_scalar_loss(out.logits)
elif type(out).__name__ == "SquashedNormal":
return out.mean.sum()
elif isinstance(out, dict):
return sum(reduce_to_scalar_loss(value) for value in out.values()) / len(
out.keys()
)
raise NotImplementedError("Don't know how to reduce", type(out))
def debug_dir() -> str:
path = os.path.join(os.path.dirname(__file__), "../debug")
if not os.path.exists(path):
os.mkdir(path)
return path
def debug_dump(name: str, code: types.CodeType, extra: str = "") -> None:
with open(os.path.join(debug_dir(), name), "w") as fd:
fd.write(
f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
)
def debug_insert_nops(
frame: DynamoFrameType, cache_size: int, hooks: Any, _: Any, *, skip: int = 0
) -> ConvertFrameReturn:
"""used to debug jump updates"""
def insert_nops(instructions: list[Any], code_options: Any) -> None:
instructions.insert(0, create_instruction("NOP"))
instructions.insert(0, create_instruction("NOP"))
metrics_context = torch._dynamo.utils.get_metrics_context()
with torch._dynamo.utils.dynamo_timed("debug_insert_nops"), metrics_context:
if is_generator(frame.f_code):
return ConvertFrameReturn()
debug_checks(frame.f_code)
code = transform_code_object(frame.f_code, insert_nops)
graph = OutputGraph(
code_options={},
compiler_fn=None,
root_tx=None,
export=False,
export_constraints=None,
frame_state={"_id": 0},
# TODO: shouldn't this be f_locals/f_globals from frame?
local_scope=locals(),
global_scope=globals(),
f_code=frame.f_code,
torch_function_mode_stack=[],
)
return wrap_guarded_code(
GuardedCode(
code,
CheckFunctionManager(frame.f_code, graph).guard_manager, # type: ignore[arg-type]
CompileId(frame_id=0, frame_compile_id=0),
)
)
class CompileCounter:
def __init__(self) -> None:
self.frame_count = 0
self.op_count = 0
def __call__(
self, gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
return gm.forward
def clear(self) -> None:
self.frame_count = 0
self.op_count = 0
class CompileCounterWithBackend:
def __init__(self, backend: str) -> None:
self.frame_count = 0
self.op_count = 0
self.backend = backend
self.graphs: list[torch.fx.GraphModule] = []
def __call__(
self, gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
from .backends.registry import lookup_backend
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
self.graphs.append(gm)
return lookup_backend(self.backend)(gm, example_inputs)
def clear(self) -> None:
self.frame_count = 0
self.op_count = 0
self.graphs = []
# Equivalent to backend="eager", but also records graphs that
# we can assert on
class EagerAndRecordGraphs:
def __init__(self) -> None:
self.graphs: list[torch.fx.GraphModule] = []
def __call__(
self, gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
self.graphs.append(gm)
return gm.forward
class AotEagerAndRecordGraphs:
def __init__(self) -> None:
self.graphs: list[torch.fx.GraphModule] = []
self.fw_graphs: list[torch.fx.GraphModule] = []
self.bw_graphs: list[torch.fx.GraphModule] = []
def __call__(
self, gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
self.graphs.append(gm)
def fw_compiler(
gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
self.fw_graphs.append(gm)
return gm.forward
def bw_compiler(
gm: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
self.bw_graphs.append(gm)
return gm.forward
return aot_eager(
gm,
example_inputs,
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
)
def strip_comment(code: str) -> str:
return re.sub(r"(?m)^ *#.*\n?", "", code)
def remove_trailing_space(code: str) -> str:
return "\n".join([line.rstrip() for line in code.split("\n")])
def normalize_gm(gm_str: str) -> str:
# strip comments as comments have path to files which may differ from
# system to system.
return remove_trailing_space(strip_comment(gm_str))
def empty_line_normalizer(code: str) -> str:
"""
Normalize code: remove empty lines.
"""
normal_code = re.sub(r"[\r\n]+", "\n", code)
return normal_code
def standard_test(
self: Any,
fn: Callable[..., Any],
nargs: int,
expected_ops: Optional[int] = None,
expected_ops_dynamic: Optional[int] = None,
expected_frame_count: int = 1,
) -> None:
if not config.assume_static_by_default and expected_ops_dynamic is not None:
expected_ops = expected_ops_dynamic
actual = CompileCounter()
args1 = [torch.randn(10, 10) for _ in range(nargs)]
args2 = [torch.randn(10, 10) for _ in range(nargs)]
correct1 = fn(*args1)
correct2 = fn(*args2)
reset()
opt_fn = optimize_assert(actual)(fn)
val1a = opt_fn(*args1)
val2a = opt_fn(*args2)
val1b = opt_fn(*args1)
val2b = opt_fn(*args2)
reset()
self.assertTrue(same(val1a, correct1))
self.assertTrue(same(val1b, correct1))
self.assertTrue(same(val2a, correct2))
self.assertTrue(same(val2b, correct2))
self.assertEqual(actual.frame_count, expected_frame_count)
if expected_ops is not None:
self.assertEqual(actual.op_count, expected_ops)
def dummy_fx_compile(
gm: fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable[..., Any]:
return gm.forward
def format_speedup(
speedup: float,
pvalue: float,
is_correct: bool = True,
pvalue_threshold: float = 0.1,
) -> str:
if not is_correct:
return "ERROR"
if pvalue > pvalue_threshold:
return f"{speedup:.3f}x SAME"
return f"{speedup:.3f}x p={pvalue:.2f}"
def rand_strided(
size: Sequence[int],
stride: Sequence[int],
dtype: torch.dtype = torch.float32,
device: Union[str, torch.device] = "cpu",
extra_size: int = 0,
) -> torch.Tensor:
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(size, stride))
+ 1
+ extra_size
)
if dtype.is_floating_point:
if dtype.itemsize == 1:
"""
normal distribution kernel is not implemented for fp8..
Workaround that by creating a fp16 tensor and then cast.
"""
buffer = torch.randn(needed_size, dtype=torch.float16, device=device).to(
dtype=dtype
)
else:
buffer = torch.randn(needed_size, dtype=dtype, device=device)
else:
buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
return torch.as_strided(buffer, size, stride)
_T = TypeVar("_T")
def check_dynamic_shape_capture() -> bool:
# This also mirrors config from `test/dynamo/test_dynamic_shapes.py:make_dynamic_cls`
return not config.assume_static_by_default
def _make_fn_with_patches(fn: Callable[_P, _T], *patches: Any) -> Callable[_P, _T]:
@functools.wraps(fn)
def _fn(*args: _P.args, **kwargs: _P.kwargs) -> _T:
with contextlib.ExitStack() as stack:
for module, attr, val in patches:
stack.enter_context(patch.object(module, attr, val))
return fn(*args, **kwargs)
return _fn
def make_test_cls_with_patches(
cls: type,
cls_prefix: str,
fn_suffix: str,
*patches: Any,
xfail_prop: Optional[str] = None,
decorator: Callable[[Callable[..., Any]], Callable[..., Any]] = lambda x: x,
) -> type:
DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {})
DummyTestClass.__qualname__ = DummyTestClass.__name__
for name in dir(cls):
if name.startswith("test_"):
fn = getattr(cls, name)
if not callable(fn):
setattr(DummyTestClass, name, getattr(cls, name))
continue
new_name = f"{name}{fn_suffix}"
new_fn = _make_fn_with_patches(fn, *patches)
new_fn.__name__ = new_name
if xfail_prop is not None and hasattr(fn, xfail_prop):
new_fn = unittest.expectedFailure(new_fn)
setattr(DummyTestClass, new_name, decorator(new_fn))
# NB: Doesn't handle slots correctly, but whatever
elif not hasattr(DummyTestClass, name):
setattr(DummyTestClass, name, getattr(cls, name))
return DummyTestClass
# test Python 3.11+ specific features
def skipIfNotPy311(fn: Callable[..., Any]) -> Callable[..., Any]:
if sys.version_info >= (3, 11):
return fn
return unittest.skip(fn)
def skipIfNotPy312(fn: Callable[..., Any]) -> Callable[..., Any]:
if sys.version_info >= (3, 12):
return fn
return unittest.skip("Requires Python 3.12+")(fn)
def xfailIfPy312(fn: Callable[..., Any]) -> Callable[..., Any]:
if sys.version_info >= (3, 12):
return unittest.expectedFailure(fn)
return fn
def skipIfPy312(fn: Callable[..., Any]) -> Callable[..., Any]:
if sys.version_info >= (3, 12):
return unittest.skip("Not supported in Python 3.12+")(fn)
return fn
def requiresPy310(fn: Callable[..., Any]) -> Callable[..., Any]:
if sys.version_info >= (3, 10):
return fn
else:
return unittest.skip("Requires Python 3.10+")(fn)
# Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py
# and test/dynamo/test_dynamic_shapes.py
def expectedFailureDynamic(fn: Callable[..., Any]) -> Callable[..., Any]:
fn._expected_failure_dynamic = True # type: ignore[attr-defined]
return fn
# Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py
def expectedFailureCodegenDynamic(fn: Callable[..., Any]) -> Callable[..., Any]:
fn._expected_failure_codegen_dynamic = True # type: ignore[attr-defined]
return fn
# Controls test generated in test/inductor/test_cpp_wrapper.py
def expectedFailureDynamicWrapper(fn: Callable[..., Any]) -> Callable[..., Any]:
fn._expected_failure_dynamic_wrapper = True # type: ignore[attr-defined]
return fn
def reset_rng_state(use_xla: bool = False) -> None:
torch.manual_seed(1337)
random.seed(1337)
if np:
np.random.seed(1337)
if use_xla:
import torch_xla.core.xla_model as xm
xm.set_rng_state(1337, str(xm.xla_device()))
|