File size: 126,420 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
# mypy: allow-untyped-defs

"""
Core guard system for Dynamo that detects when compiled code needs to be recompiled due to
changes in program state. Guards are conditions that must remain true for previously-compiled
code to be valid for reuse.

This module provides the infrastructure for creating, managing and checking guards, including:
- Guard creation and composition
- Guard state management and invalidation
- Guard checking and failure handling
- Utilities for guard optimization and debugging
- Integration with Dynamo's compilation caching

The guard system is critical for Dynamo's ability to efficiently reuse compiled code while
maintaining correctness by detecting when recompilation is necessary due to changes in
program state, tensor properties, or control flow.
"""

from __future__ import annotations

import ast
import builtins
import collections
import dataclasses
import enum
import functools
import importlib
import inspect
import logging
import math
import sys
import textwrap
import types
import warnings
import weakref
from contextlib import contextmanager
from copy import deepcopy
from inspect import currentframe
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
from weakref import ReferenceType

import torch
import torch.overrides
import torch.utils._device
from torch._C._dynamo.eval_frame import code_framelocals_names
from torch._C._dynamo.guards import (
    check_obj_id,
    check_type_id,
    dict_version,
    DictGuardManager,
    install_no_tensor_aliasing_guard,
    install_object_aliasing_guard,
    install_storage_overlapping_guard,
    install_symbolic_shape_guard,
    profile_guard_manager,
    RootGuardManager,
)
from torch._dynamo.source import (
    IndexedSource,
    is_from_flatten_script_object_source,
    is_from_local_source,
    is_from_optimizer_source,
    TensorProperty,
    TensorPropertySource,
)
from torch._dynamo.utils import CompileEventLogger
from torch._guards import (
    CompileContext,
    CompileId,
    DuplicateInputs,
    Guard,
    GuardBuilderBase,
    GuardEnvExpr,
    GuardSource,
    Source,
    StorageOverlap,
)
from torch._logging import structured
from torch._utils_internal import justknobs_check
from torch.fx.experimental.symbolic_shapes import (
    EqualityConstraint,
    is_symbolic,
    SYMPY_INTERP,
)
from torch.utils._ordered_set import OrderedSet
from torch.utils._traceback import format_frame, report_compile_source_on_error
from torch.utils.weak import TensorWeakRef

from . import config, convert_frame, exc, mutation_guard
from .eval_frame import set_guard_error_hook
from .source import (
    AttrProxySource,
    AttrSource,
    CallFunctionNoArgsSource,
    CallMethodItemSource,
    ChainedSource,
    ConstantSource,
    ConstDictKeySource,
    DefaultsSource,
    DictGetItemSource,
    FlattenScriptObjectSource,
    FloatTensorSource,
    FSDPNNModuleSource,
    GenericAttrSource,
    GetItemSource,
    GlobalSource,
    GlobalStateSource,
    GlobalWeakRefSource,
    GradSource,
    ListGetItemSource,
    LocalSource,
    NNModuleSource,
    NumpyTensorSource,
    OptimizerSource,
    ScriptObjectQualifiedNameSource,
    ShapeEnvSource,
    SubclassAttrListSource,
    TorchFunctionModeStackSource,
    TupleIteratorGetItemSource,
    TypeSource,
    UnspecializedBuiltinNNModuleSource,
    UnspecializedNNModuleSource,
    UnspecializedParamBufferSource,
    WeakRefCallSource,
)
from .types import (  # noqa: F401
    CacheEntry,
    DynamoFrameType,
    ExtraState,
    GuardedCode,
    GuardFail,
    GuardFn,
)
from .utils import (
    builtin_dict_keys,
    common_constant_types,
    dict_keys,
    get_custom_getattr,
    get_torch_function_mode_stack,
    get_torch_function_mode_stack_at,
    guard_failures,
    istype,
    key_is_id,
    key_to_id,
    normalize_range_iter,
    orig_code_map,
    tensor_always_has_static_shape,
    tuple_iterator_getitem,
    tuple_iterator_len,
    unpatched_nn_module_getattr,
    verify_guard_fn_signature,
)


guard_manager_testing_hook_fn: Optional[Callable[[Any, Any], Any]] = None

try:
    import numpy as np
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]


if TYPE_CHECKING:
    from sympy import Symbol


log = logging.getLogger(__name__)
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
recompiles_verbose_log = torch._logging.getArtifactLogger(
    __name__, "recompiles_verbose"
)
verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards")


class GuardManagerWrapper:
    """
    A helper class that contains the root guard manager. An instance of this
    class is stored in the Dynamo cache entry, so that the cache entry can
    access the RootGuardManager stored in the "root" attribute and directly call
    the check_nopybind from C++.
    """

    def __init__(self, root=None):
        if root is None:
            self.root = RootGuardManager()
        else:
            self.root = root

        self.diff_guard_root = None
        self.closure_vars = None
        self.args = None
        self.code_parts = []
        self.verbose_code_parts = None
        self.global_scope = None
        self.guard_fail_fn = None
        self.cache_entry = None
        self.extra_state = None
        self.id_matched_objs = {}
        self.no_tensor_aliasing_sources = []

        self.print_no_tensor_aliasing_guard = True

        self.diff_guard_sources: OrderedSet[str] = OrderedSet()

    @contextmanager
    def _preserve_print_no_tensor_aliasing_flag(self):
        self.print_no_tensor_aliasing_guard = True
        try:
            yield
        finally:
            self.print_no_tensor_aliasing_guard = True

    def collect_diff_guard_sources(self):
        # At the time of finalize, we have only marked guard managers with
        # TENSOR_MATCH guards as diff guard managers. So, we do a tree traversal
        # and collect all the nodes in the tree (branches) that lead to tensor
        # guards.

        # After a recompilation, some of guard managers will have a fail_count >
        # 0, so we collect them as well. Later on, we accumulate the diff guard
        # sources for all the guard managers.

        def visit_dict_manager(node):
            is_diff_guard_node = (
                node.get_source() in self.diff_guard_sources or node.fail_count() > 0
            )
            for idx, (key_mgr, val_mgr) in sorted(
                node.get_key_value_managers().items()
            ):
                is_diff_guard_node |= visit(key_mgr) | visit(val_mgr)

            if is_diff_guard_node:
                self.diff_guard_sources.add(node.get_source())

            return is_diff_guard_node

        def visit_manager(node):
            assert not isinstance(node, DictGuardManager)

            is_diff_guard_node = (
                node.get_source() in self.diff_guard_sources or node.fail_count() > 0
            )
            for child_mgr in node.get_child_managers():
                is_diff_guard_node |= visit(child_mgr)

            if is_diff_guard_node:
                self.diff_guard_sources.add(node.get_source())

            return is_diff_guard_node

        def visit(node):
            if node is None:
                return False
            if isinstance(node, DictGuardManager):
                return visit_dict_manager(node)
            return visit_manager(node)

        visit(self.root)

        return self.diff_guard_sources

    def finalize(self):
        self.collect_diff_guard_sources()
        self.populate_diff_guard_manager()

    def populate_diff_guard_manager(self):
        self.diff_guard_root = self.clone_with_chosen_sources(self.diff_guard_sources)

        # Ensure that that C++ side points to the updated diff guard manager.
        # When a new GuardManagerWrapper is created, it does not have a
        # cache_entry attribute, so it relies on the CacheEntry constructor to
        # set the diff_guard_root in C++.  But once it is saved in the Dynamo
        # cache, C++ side adds a cache_entry attribute. On recompiles, this
        # cache_entry is visible, so we update the C++ side to point to the
        # update guard manager.
        if self.cache_entry:
            self.cache_entry.update_diff_guard_root_manager()

    def clone_with_chosen_sources(self, chosen_sources):
        def filter_fn(node_mgr):
            return node_mgr.get_source() in chosen_sources

        return self.root.clone_manager(filter_fn)

    def get_guard_lines(self, guard):
        guard_name = guard.__class__.__name__
        parts = guard.verbose_code_parts()
        parts = [guard_name + ": " + part for part in parts]
        return parts

    def get_manager_line(self, guard_manager, accessor_str=None):
        source = guard_manager.get_source()
        t = guard_manager.__class__.__name__
        s = t + ": source=" + source
        if accessor_str:
            s += ", " + accessor_str
        return s

    def construct_dict_manager_string(self, mgr, body):
        for idx, (key_mgr, val_mgr) in sorted(mgr.get_key_value_managers().items()):
            body.writeline(f"KeyValueManager pair at index={idx}")
            with body.indent():
                if key_mgr:
                    body.writeline(f"KeyManager: {self.get_manager_line(key_mgr)}")
                    self.construct_manager_string(key_mgr, body)

                if val_mgr:
                    body.writeline(f"ValueManager: {self.get_manager_line(val_mgr)}")
                    self.construct_manager_string(val_mgr, body)

    def construct_manager_string(self, mgr, body):
        with body.indent():
            for guard in mgr.get_leaf_guards():
                if isinstance(guard, torch._C._dynamo.guards.NO_TENSOR_ALIASING):  # type: ignore[attr-defined]
                    if self.print_no_tensor_aliasing_guard:
                        self.print_no_tensor_aliasing_guard = False
                        body.writelines(self.get_guard_lines(guard))
                    else:
                        body.writelines(
                            [
                                guard.__class__.__name__,
                            ]
                        )
                else:
                    body.writelines(self.get_guard_lines(guard))

            # This works for both DictGuardManager and SubclassedDictGuardManager
            if isinstance(mgr, DictGuardManager):
                self.construct_dict_manager_string(mgr, body)

            # General case of GuardManager/RootGuardManager
            for accessor, child_mgr in zip(
                mgr.get_accessors(), mgr.get_child_managers()
            ):
                body.writeline(
                    self.get_manager_line(child_mgr, f"accessed_by={accessor.repr()}")
                )
                self.construct_manager_string(child_mgr, body)

    def __str__(self):
        from torch._inductor.utils import IndentedBuffer

        class IndentedBufferWithPrefix(IndentedBuffer):
            def prefix(self):
                return "| " * (self._indent * self.tabwidth)

            def writeline(self, line, skip_prefix=False):
                if skip_prefix:
                    super().writeline(line)
                else:
                    super().writeline("+- " + line)

        with self._preserve_print_no_tensor_aliasing_flag():
            body = IndentedBufferWithPrefix()
            body.tabwidth = 1
            body.writeline("", skip_prefix=True)
            body.writeline("TREE_GUARD_MANAGER:", skip_prefix=True)
            body.writeline("RootGuardManager")
            self.construct_manager_string(self.root, body)
            if hasattr(self.root, "get_epilogue_lambda_guards"):
                for guard in self.root.get_epilogue_lambda_guards():
                    body.writelines(self.get_guard_lines(guard))
            return body.getvalue()

    def check(self, x):
        # Only needed for debugging purposes.
        return self.root.check(x)

    def check_verbose(self, x):
        # Only needed for debugging purposes.
        return self.root.check_verbose(x)

    def populate_code_parts_for_debugging(self):
        # This should be called when the guard manager is fully populated
        tensor_aliasing_guard_seen = False

        def get_code_parts(leaf_guard):
            code_parts = []
            for verbose_code_part in leaf_guard.verbose_code_parts():
                code_part = verbose_code_part.split("#")[0].rstrip()
                code_parts.append(code_part)
            return code_parts

        def visit(mgr):
            nonlocal tensor_aliasing_guard_seen
            for guard in mgr.get_leaf_guards():
                if isinstance(guard, torch._C._dynamo.guards.NO_TENSOR_ALIASING):  # type: ignore[attr-defined]
                    if not tensor_aliasing_guard_seen:
                        self.code_parts.extend(get_code_parts(guard))
                        tensor_aliasing_guard_seen = True
                else:
                    self.code_parts.extend(get_code_parts(guard))

            for child_mgr in mgr.get_child_managers():
                visit(child_mgr)

        visit(self.root)


def from_numpy(a):
    # If not numpy array, piggy back on e.g. tensor guards to check type
    # Re-enable torch function since we disable it on leaf guards
    # we need it to properly construct the tensor if a default device is set
    with torch.overrides._enable_torch_function():
        return torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a


# For user stack printing
@functools.lru_cache(None)
def uninteresting_files():
    import torch._dynamo.external_utils
    import torch._dynamo.polyfills

    mods = [torch._dynamo.external_utils, torch._dynamo.polyfills]

    from torch._dynamo.polyfills.loader import POLYFILLED_MODULES

    mods.extend(POLYFILLED_MODULES)

    return {inspect.getfile(m) for m in mods}


_CLOSURE_VARS: Optional[dict[str, object]] = None


def _get_closure_vars():
    global _CLOSURE_VARS
    if _CLOSURE_VARS is None:
        _CLOSURE_VARS = {
            "___check_type_id": check_type_id,
            "___check_obj_id": check_obj_id,
            "___odict_getitem": collections.OrderedDict.__getitem__,
            "___key_to_id": key_to_id,
            "___dict_version": dict_version,
            "___dict_contains": lambda a, b: dict.__contains__(b, a),
            "___tuple_iterator_len": tuple_iterator_len,
            "___normalize_range_iter": normalize_range_iter,
            "___tuple_iterator_getitem": tuple_iterator_getitem,
            "___get_torch_function_mode_stack_at": get_torch_function_mode_stack_at,
            "__math_isnan": math.isnan,
            "__numpy_isnan": None if np is None else np.isnan,
            "inf": float("inf"),
            "__load_module": importlib.import_module,
            "utils_device": torch.utils._device,
            "device": torch.device,
            "___from_numpy": from_numpy,
            "___as_tensor": torch._as_tensor_fullprec,
            "torch": torch,
            "inspect": inspect,
        }
    return _CLOSURE_VARS


def _ast_unparse(node: ast.AST) -> str:
    return ast.unparse(node).replace("\n", "")


strip_function_call = torch._C._dynamo.strip_function_call


def get_verbose_code_part(code_part: str, guard: Guard) -> str:
    extra = ""
    if guard is not None:
        if guard.user_stack:
            for fs in reversed(guard.user_stack):
                if fs.filename not in uninteresting_files():
                    extra = f"  # {format_frame(fs, line=True)}"
                    break
        elif guard.stack:
            extra = f"  # {format_frame(guard.stack.summary()[-1])}"
    return f"{code_part:<60}{extra}"


def get_verbose_code_parts(
    code_parts: Union[str | list[str]], guard: Guard
) -> list[str]:
    if not isinstance(code_parts, list):
        code_parts = [code_parts]
    return [get_verbose_code_part(code_part, guard) for code_part in code_parts]


def convert_to_concrete_values(size_or_stride):
    converted: list[Optional[int]] = []
    for dim in size_or_stride:
        if not is_symbolic(dim):
            converted.append(dim)
        else:
            assert isinstance(dim, torch.SymInt)
            converted.append(dim.node.maybe_as_int())
    return converted


def get_tensor_guard_code_part(value, name, sizes, strides):
    pytype = type(value)
    dispatch_key = (
        torch._C._dispatch_keys(value) | torch._C._dispatch_tls_local_include_set()
    ) - torch._C._dispatch_tls_local_exclude_set()
    dtype = value.dtype
    device_index = value.device.index
    requires_grad = value.requires_grad
    guard_str = (
        f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, "
        f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})"
    )
    return guard_str


def get_key_index(dct, key):
    # Ensure that we call dict.keys and not value.keys (which can call
    # overridden keys method). In the C++ guards, we relied on PyDict_Next
    # to traverse the dictionary, which uses the internal data structure and
    # does not call the overridden keys method.
    return list(builtin_dict_keys(dct)).index(key)


def get_key_index_source(source, index):
    return f"list(dict.keys({source}))[{index}]"


@dataclasses.dataclass(frozen=True)
class NNModuleAttrAccessorInfo:
    # Represents where is the attr name is present in the nn module attribute
    # access

    # Tells that the attribute can be accessed via __dict__
    present_in_generic_dict: bool = False

    # Either the actual name or _parameters/_buffers/_modules
    l1_key: Optional[str] = None

    # Actual paramter/buffer/submodule name
    l2_key: Optional[str] = None


def getitem_on_dict_manager(
    source, base_guard_manager, base_example_value, example_value, guard_manager_enum
):
    base_source_name = source.base.name()
    if isinstance(source.index, ConstDictKeySource):
        index = source.index.index
    else:
        assert isinstance(base_example_value, dict)
        index = get_key_index(base_example_value, source.index)

    key_source = get_key_index_source(base_source_name, index)

    # Ensure that we call dict.keys and not value.keys (which can call
    # overridden keys method). In the C++ guards, we relied on PyDict_Next
    # to traverse the dictionary, which uses the internal data structure and
    # does not call the overridden keys method.
    key_example_value = list(builtin_dict_keys(base_example_value))[index]
    if isinstance(key_example_value, (int, str)):
        value_source = f"{base_source_name}[{key_example_value!r}]"
    else:
        value_source = f"{base_source_name}[{key_source}]"
    if not isinstance(source.index, ConstDictKeySource):
        # We have to insert a key manager guard here
        # TODO - source debug string is probably wrong here.
        base_guard_manager.get_key_manager(
            index=index,
            source=key_source,
            example_value=source.index,
            guard_manager_enum=GuardManagerType.GUARD_MANAGER,
        ).add_equals_match_guard(
            source.index, [f"{key_source} == {key_example_value!r}"]
        )

    return base_guard_manager.get_value_manager(
        index=index,
        source=value_source,
        example_value=example_value,
        guard_manager_enum=guard_manager_enum,
    )


def match_on_id_for_tensor(guard):
    source = guard.originating_source
    # For numpy tensors, always use TENSOR_MATCH because __from_numpy leads
    # to a new tensor everytime and therefore id differs.
    if isinstance(source, NumpyTensorSource):
        return False

    if guard.is_specialized_nn_module():
        return True

    return source.is_dict_key() and not isinstance(source, GradSource)


# The ready to eval generated code (possibly multiple parts) for a guard, plus
# the original guard object that created it for provenance
@dataclasses.dataclass
class GuardCodeList:
    code_list: list[str]
    guard: Guard


class GuardManagerType(enum.Enum):
    GUARD_MANAGER = 1
    DICT_GUARD_MANAGER = 2


@functools.lru_cache(None)
def code_framelocals_names_reversed_cached(code: types.CodeType):
    return list(reversed(code_framelocals_names(code)))


class GuardBuilder(GuardBuilderBase):
    def __init__(
        self,
        f_code: types.CodeType,
        id_ref: Callable[[Any, str], str],
        source_ref: Callable[[Source], str],
        lookup_weakrefs: Callable[[object], ReferenceType[object]],
        local_scope: dict[str, object],
        global_scope: dict[str, object],
        guard_manager: GuardManagerWrapper,
        check_fn_manager: CheckFunctionManager,
    ):
        self.f_code = f_code
        self.id_ref = id_ref
        self.source_ref = source_ref
        self.lookup_weakrefs = lookup_weakrefs
        self.scope: dict[str, dict[str, object]] = {"L": local_scope, "G": global_scope}
        self.scope["__builtins__"] = builtins.__dict__.copy()
        for (
            name,
            package_module,
        ) in torch.package.package_importer._package_imported_modules.items():
            name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
            # Write the package module into the scope so that we can import it
            self.scope["__builtins__"][name] = package_module
            # Write the demangled name to the scope so that we can use it
            self.scope[name] = package_module
        self.guard_manager = guard_manager

        self.argnames: list[str] = []
        # Code is python expression strings generated for each guard
        self.code: list[GuardCodeList] = []
        # shape_env_code is only used by builder and is used for
        # shape env code.  This exists only because we need to make sure
        # shape env guards get run after tensor match guards (since the
        # tensor match guards make sure we actually have tensors)
        self.shape_env_code: list[GuardCodeList] = []

        # Collect the guard managers and debug info to insert no tensor aliasing
        # guards.
        self.no_tensor_aliasing_names: list[str] = []
        self.no_tensor_aliasing_guard_managers: list[GuardManagerWrapper] = []

        self.check_fn_manager: CheckFunctionManager = check_fn_manager

        # Collect the ids of dicts which need key order guarding. source_name is
        # not sufficient because for nn modules, we can have different sources
        # to access the same object - self._module["param"] is same as
        # self.param.
        self.key_order_guarded_dict_ids = set()
        for source_name in self.check_fn_manager.output_graph.guard_on_key_order:
            self.key_order_guarded_dict_ids.add(id(self.get(source_name)))

        # Keep track of weak references of objects with ID_MATCH guard. This
        # info is stored alongside optimized_code and guard_manager and is used to
        # limit the number of cache entries with same ID_MATCH'd object.
        self.id_matched_objs: dict[str, ReferenceType[object]] = {}

        # Save the guard managers to avoid repeatedly traversing sources.
        self._cached_guard_managers: dict[
            str, torch._C._dynamo.guards.GuardManager
        ] = {}
        self._cached_duplicate_input_guards: set[tuple[str, str]] = set()

    def guard_on_dict_keys_and_ignore_order(self, example_value, guard):
        dict_mgr = self.get_guard_manager(guard)
        if isinstance(dict_mgr, DictGuardManager):
            raise NotImplementedError(
                "Not expecting a DictGuardManager. Seems like Dynamo incorrectly "
                f"added the dict to tx.output.guard_on_key_order for {guard.name}"
            )

        # Iterate over the dicts and install a dict_getitem_manager.
        dict_source = guard.originating_source.name()

        # Ensure that we call dict.keys and not value.keys (which can call
        # overridden keys method). In the C++ guards, we relied on PyDict_Next
        # to traverse the dictionary, which uses the internal data structure and
        # does not call the overridden keys method.
        for key in builtin_dict_keys(example_value):
            value = example_value[key]
            value_source = DictGetItemSource(guard.originating_source, index=key)
            guard_manager_enum = self.get_guard_manager_type(
                value_source, example_value
            )
            dict_mgr.dict_getitem_manager(
                key=key,
                source=f"{dict_source}[{key!r}]",
                example_value=value,
                guard_manager_enum=guard_manager_enum,
            )

    def guard_on_dict_keys_and_order(self, value, guard):
        # Add key managers for the DictGuardManager. Then add either an
        # ID_MATCH or EQUALS_MATCH guard on the key.
        dict_mgr = self.get_guard_manager(guard)
        if not isinstance(dict_mgr, DictGuardManager):
            raise NotImplementedError(
                "Expecting a DictGuardManager. Seems like Dynamo forgot "
                f"to set the right guard manager enum for {guard.name}"
            )
        assert isinstance(dict_mgr, DictGuardManager)

        # Ensure that we call dict.keys and not value.keys (which can call
        # overridden keys method). In the C++ guards, we relied on PyDict_Next
        # to traverse the dictionary, which uses the internal data structure and
        # does not call the overridden keys method.
        for idx, key in enumerate(builtin_dict_keys(value)):
            key_source = get_key_index_source(guard.name, idx)
            key_manager = dict_mgr.get_key_manager(
                index=idx,
                source=key_source,
                example_value=key,
                guard_manager_enum=GuardManagerType.GUARD_MANAGER,
            )
            if key_is_id(key):
                # Install ID_MATCH guard
                id_val = self.id_ref(key, key_source)
                key_manager.add_id_match_guard(
                    id_val,
                    get_verbose_code_parts(
                        f"__check_obj_id({key_source}, {id_val})", guard
                    ),
                )
            else:
                # Install EQUALS_MATCH guard
                key_manager.add_equals_match_guard(
                    key, get_verbose_code_parts(f"{key_source} == {key!r}", guard)
                )

    @staticmethod
    def _get_generic_dict_manager_example_value(example_value):
        # due to a bug in 3.13.0 (introduced by https://github.com/python/cpython/pull/116115,
        # reported in https://github.com/python/cpython/issues/125608,
        # fixed by https://github.com/python/cpython/pull/125611), we cannot take
        # advantage of __dict__ versions to speed up guard checks.
        if (
            config.issue_3_13_0_warning
            and sys.version_info >= (3, 13)
            and sys.version_info < (3, 13, 1)
        ):
            warnings.warn(
                "Guards may run slower on Python 3.13.0. Consider upgrading to Python 3.13.1+.",
                RuntimeWarning,
            )
            return None
        return example_value

    def getattr_on_nn_module(
        self,
        source,
        base_guard_manager,
        base_example_value,
        example_value,
        base_source_name,
        source_name,
        guard_manager_enum,
    ):
        """
        This tries to avoid calling the expensive nn module custom getattr method by
        checking if the attribute is accessible via __dict__. For attributes that
        are not accessible via __dict__ (like descriptors), we fallback to
        PyObject_GetAttr.

        There are two cases that we optimize for
        1) attributes present directly in __dict__, e.g training.
        2) parameters/buffers/modules - they can be accessed via _parameters,
        _buffers, _modules keys in __dict__. For example, mod.linear can be
        accessed as mod.__dict__["_parameters"]["linear"]

        The most common and expensive case for nn module guards is of type
        mod.submod1.submod2.submod3.training. We avoid the python getattr of nn
        modules by going through the __dict__.
        """

        def getitem_on_dict_mgr(
            mgr, key, source_name, base_example_value, example_value, guard_manager_enum
        ):
            if isinstance(mgr, DictGuardManager):
                # Case where the user code relies on key order, e.g.,
                # named_parameters
                index = get_key_index(base_example_value, key)

                # Install the key manager and add equals match guard
                key_source = f"list(dict.keys({source_name}))[{index!r}]"
                mgr.get_key_manager(
                    index=index,
                    source=key_source,
                    example_value=key,
                    guard_manager_enum=GuardManagerType.GUARD_MANAGER,
                ).add_equals_match_guard(key, [f"{key_source} == {key!r}"])

                # Install the value manager
                return mgr.get_value_manager(
                    index=index,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
            else:
                return mgr.dict_getitem_manager(
                    key=key,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )

        attr_name = source.member
        mod_dict = base_example_value.__dict__

        all_class_attribute_names: set[str] = set()
        for x in inspect.getmro(base_example_value.__class__):
            all_class_attribute_names.update(x.__dict__.keys())

        accessor_info = NNModuleAttrAccessorInfo(False, None, None)

        if attr_name in mod_dict:
            accessor_info = NNModuleAttrAccessorInfo(True, attr_name, None)
        elif "_parameters" in mod_dict and attr_name in mod_dict["_parameters"]:
            accessor_info = NNModuleAttrAccessorInfo(True, "_parameters", attr_name)
        elif "_buffers" in mod_dict and attr_name in mod_dict["_buffers"]:
            accessor_info = NNModuleAttrAccessorInfo(True, "_buffers", attr_name)
        elif (
            attr_name not in all_class_attribute_names
            and "_modules" in mod_dict
            and attr_name in mod_dict["_modules"]
        ):
            # Check test_attr_precedence test - instance attributes always take precedence unless its an nn.Module.
            accessor_info = NNModuleAttrAccessorInfo(True, "_modules", attr_name)

        if not accessor_info.present_in_generic_dict:
            # The attribute can be accessed by __getattribute__ call, so rely on
            # PyObject_GetAttr
            return base_guard_manager.getattr_manager(
                attr=source.member,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        else:
            assert accessor_info.l1_key
            l1_key = accessor_info.l1_key
            l2_key = accessor_info.l2_key

            # Set source strings for debug info
            mod_dict_source = f"{base_source_name}.__dict__"
            l1_source_name = l2_source_name = None
            l1_value = l2_value = None
            l1_guard_manager_enum = l2_guard_manager_enum = None
            if l2_key:
                l1_source = AttrSource(source.base, l1_key)
                l1_source_name = l1_source.name()
                l1_value = mod_dict[l1_key]
                # do not guard on key order for _parameters etc unless the user code
                # actually needs the key order (e.g. calling named_parameters)
                l1_guard_manager_enum = self.get_guard_manager_type(l1_source, l1_value)

                l2_source_name = source_name
                l2_value = example_value
                l2_guard_manager_enum = self.get_guard_manager_type(
                    source, example_value
                )
            else:
                l1_source_name = source_name
                l1_value = example_value
                l1_guard_manager_enum = self.get_guard_manager_type(
                    source, example_value
                )

            # Get __dict__ accessor. No need to guard on dict key order, so use base
            # Guard Manager
            mod_generic_dict_manager = base_guard_manager.get_generic_dict_manager(
                source=mod_dict_source,
                example_value=self._get_generic_dict_manager_example_value(mod_dict),
                guard_manager_enum=GuardManagerType.GUARD_MANAGER,
            )

            l1_mgr = getitem_on_dict_mgr(
                mgr=mod_generic_dict_manager,
                key=l1_key,
                source_name=l1_source_name,
                base_example_value=mod_dict,
                example_value=l1_value,
                guard_manager_enum=l1_guard_manager_enum,
            )

            if l2_key:
                return getitem_on_dict_mgr(
                    mgr=l1_mgr,
                    key=l2_key,
                    source_name=l2_source_name,
                    base_example_value=l1_value,
                    example_value=l2_value,
                    guard_manager_enum=l2_guard_manager_enum,
                )
            return l1_mgr

    def requires_key_order_guarding(self, source):
        source_name = source.name()
        if source_name == "":
            return False
        obj_id = id(self.get(source_name))
        return obj_id in self.key_order_guarded_dict_ids

    def get_guard_manager_type(self, source, example_value):
        guard_manager_enum = GuardManagerType.GUARD_MANAGER
        if self.requires_key_order_guarding(source):
            # Fix this if condition
            if isinstance(example_value, dict_keys):
                guard_manager_enum = GuardManagerType.DICT_GUARD_MANAGER
            else:
                assert isinstance(example_value, dict)
                guard_manager_enum = GuardManagerType.DICT_GUARD_MANAGER
        return guard_manager_enum

    def manager_guards_on_keys(self, mgr_enum):
        return mgr_enum == GuardManagerType.DICT_GUARD_MANAGER

    def get_global_guard_manager(self):
        return self.guard_manager.root.globals_dict_manager(
            f_globals=self.scope["G"],
            source="G",
            example_value=self.scope["G"],
            guard_manager_enum=GuardManagerType.GUARD_MANAGER,
        )

    def get_guard_manager_from_source(self, source):
        root_guard_manager = self.guard_manager.root

        example_value = None
        source_name = source.name()

        if source_name != "" and source_name in self._cached_guard_managers:
            return self._cached_guard_managers[source_name]

        if source_name != "":
            example_value = self.get(source_name)

        guard_manager_enum = self.get_guard_manager_type(source, example_value)

        # Get base manager related information
        base_source_name = None
        base_example_value = None
        base_guard_manager = None
        base_guard_manager_enum = GuardManagerType.GUARD_MANAGER
        if isinstance(source, ChainedSource):
            base_source_name = source.base.name()
            base_example_value = self.get(base_source_name)
            base_guard_manager = self.get_guard_manager_from_source(source.base)
            base_guard_manager_enum = self.get_guard_manager_type(
                source.base, base_example_value
            )

        # Use istype instead of isinstance to check for exact type of source.
        if istype(source, LocalSource):
            # Refer to index in the frame's localsplus directly.
            # NOTE: name order for a code object doesn't change.
            # NOTE: we need to find the LAST matching index because <= 3.10 contains
            # duplicate names in the case of cells: a name can be both local and cell
            # and will take up 2 slots of the frame's localsplus. The correct behavior
            # is to refer to the cell, which has a higher index.
            if config.enable_cpp_framelocals_guard_eval:
                framelocals_names_reversed = code_framelocals_names_reversed_cached(
                    self.f_code
                )
                framelocals_idx = (
                    len(framelocals_names_reversed)
                    - framelocals_names_reversed.index(source.local_name)
                    - 1
                )
                out = root_guard_manager.framelocals_manager(
                    key=(source.local_name, framelocals_idx),
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
            else:
                out = root_guard_manager.dict_getitem_manager(
                    key=source.local_name,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        elif istype(source, GlobalSource):
            # Global manager accepts a dict but it is not a DictGuardManager
            # because globals dict is big and we typically guard on a very
            # selected items on globals.
            out = self.get_global_guard_manager().dict_getitem_manager(
                key=source.global_name,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, GlobalWeakRefSource):
            out = self.get_global_guard_manager().global_weakref_manager(
                global_name=source.global_name,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, GlobalStateSource):
            # Don't do anything here. We guard on global state completely in
            # C++. So just return the root mgr.
            return root_guard_manager
        elif istype(source, ShapeEnvSource):
            return root_guard_manager
        elif istype(source, TypeSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.type_manager(
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(
            source,
            (
                OptimizerSource,
                NNModuleSource,
                UnspecializedNNModuleSource,
                UnspecializedBuiltinNNModuleSource,
                FSDPNNModuleSource,
            ),
        ):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager
        elif istype(source, TorchFunctionModeStackSource):
            out = root_guard_manager.lambda_manager(
                python_lambda=lambda _: get_torch_function_mode_stack_at(
                    source._get_index()
                ),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, GradSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.grad_manager(
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, GenericAttrSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.generic_getattr_manager(
                attr=source.member,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, (AttrSource, UnspecializedParamBufferSource)):
            assert base_guard_manager  # to make mypy happy

            if (
                isinstance(base_example_value, torch.nn.Module)
                and get_custom_getattr(base_example_value)
                is unpatched_nn_module_getattr
            ):
                out = self.getattr_on_nn_module(
                    source,
                    base_guard_manager,
                    base_example_value,
                    example_value,
                    base_source_name,
                    source_name,
                    guard_manager_enum,
                )
            else:
                out = base_guard_manager.getattr_manager(
                    attr=source.member,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        elif istype(source, DictGetItemSource):
            assert base_guard_manager  # to make mypy happy
            assert isinstance(base_example_value, (dict, collections.OrderedDict))
            if isinstance(base_guard_manager, DictGuardManager):
                assert self.manager_guards_on_keys(base_guard_manager_enum)
                out = getitem_on_dict_manager(
                    source,
                    base_guard_manager,
                    base_example_value,
                    example_value,
                    guard_manager_enum,
                )
            else:
                if isinstance(source.index, ConstDictKeySource):
                    raise RuntimeError(
                        "Expecting clean index here. Likely Dynamo forgot to mark"
                        " a dict as guard_on_key_order"
                    )
                out = base_guard_manager.dict_getitem_manager(
                    key=source.index,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        elif istype(source, TensorPropertySource):
            out = getattr(
                base_guard_manager,
                f"tensor_property_{source.prop.name.lower()}_manager",
            )(
                idx=source.idx,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, IndexedSource):
            assert base_guard_manager  # to make mypy happy

            out = base_guard_manager.indexed_manager(
                idx=source.idx,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, ListGetItemSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.list_getitem_manager(
                key=source.index,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, GetItemSource):
            assert base_guard_manager  # to make mypy happy
            assert not isinstance(
                base_example_value, (dict, collections.OrderedDict)
            ), "Use DictGetItemSource"
            if isinstance(base_example_value, list) and not source.index_is_slice:
                out = base_guard_manager.list_getitem_manager(
                    key=source.index,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
            elif isinstance(base_example_value, tuple) and not source.index_is_slice:
                out = base_guard_manager.tuple_getitem_manager(
                    key=source.index,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
            else:
                index = source.index
                if source.index_is_slice:
                    index = source.unpack_slice()
                out = base_guard_manager.getitem_manager(
                    key=index,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        elif istype(source, DefaultsSource):
            assert base_guard_manager  # to make mypy happy
            assert callable(base_example_value)
            if not source.is_kw:
                out = base_guard_manager.func_defaults_manager(
                    source=base_source_name,
                    example_value=base_example_value.__defaults__,
                    guard_manager_enum=GuardManagerType.GUARD_MANAGER,
                ).getitem_manager(
                    key=source.idx_key,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
            else:
                # kwdefauts is a dict, so use a DictGuardManager
                kwdefaults = base_example_value.__kwdefaults__
                assert base_source_name is not None
                kw_source = base_source_name + ".__kwdefaults__"

                # kwdefaults is a dict. No need to guard on dict order.
                dict_mgr = base_guard_manager.func_kwdefaults_manager(
                    source=kw_source,
                    example_value=kwdefaults,
                    guard_manager_enum=GuardManagerType.GUARD_MANAGER,
                )
                assert not isinstance(dict_mgr, DictGuardManager)

                out = dict_mgr.dict_getitem_manager(
                    key=source.idx_key,
                    source=source_name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        elif istype(source, NumpyTensorSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=from_numpy,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, SubclassAttrListSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: x.__tensor_flatten__()[0],
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, FlattenScriptObjectSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: x.__obj_flatten__(),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, ScriptObjectQualifiedNameSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: x._type().qualified_name(),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, AttrProxySource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: x.get_base(),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, CallMethodItemSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: x.item(),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, FloatTensorSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.lambda_manager(
                python_lambda=lambda x: torch._as_tensor_fullprec(x),
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, TupleIteratorGetItemSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.tuple_iterator_getitem_manager(
                index=source.index,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif isinstance(source, ConstDictKeySource):
            if not isinstance(base_guard_manager, DictGuardManager):
                raise AssertionError(
                    "ConstDictKeySource can only work on DictGuardManager"
                )
            out = base_guard_manager.get_key_manager(
                index=source.index,
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, WeakRefCallSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.weakref_call_manager(
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        elif istype(source, CallFunctionNoArgsSource):
            assert base_guard_manager  # to make mypy happy
            out = base_guard_manager.call_function_no_args_manager(
                source=source_name,
                example_value=example_value,
                guard_manager_enum=guard_manager_enum,
            )
        else:
            raise AssertionError(
                f"missing guard manager builder {source} - {source.name()}"
            )

        self._cached_guard_managers[source.name()] = out
        return out

    def get_guard_manager(self, guard: Guard):
        return self.get_guard_manager_from_source(guard.originating_source)

    def add_python_lambda_leaf_guard_to_root(
        self,
        code_parts,
        verbose_code_parts,
        closure_vars=None,
        is_epilogue=True,
    ):
        if closure_vars is None:
            closure_vars = _get_closure_vars()
        # Adds a lambda leaf guard to the root guard manager. It wraps the
        # code_parts in a function object which is then passed on to the leaf
        # guard.
        make_guard_fn_args = ", ".join(closure_vars.keys())
        _guard_body, pycode = build_guard_function(code_parts, make_guard_fn_args)
        out: dict[str, Any] = {}
        globals_for_guard_fn = {"G": self.scope["G"]}
        guards_log.debug("Python shape guard function:\n%s", pycode)
        exec(pycode, globals_for_guard_fn, out)
        guard_fn = out["___make_guard_fn"](*closure_vars.values())
        if is_epilogue:
            # Epilogue guards are run after all the other guards have finished.
            # If epilogue guards contain a getattr or getitem access, one of the
            # other guards would fail preventing the epilogue guards to run.
            self.guard_manager.root.add_epilogue_lambda_guard(
                guard_fn, verbose_code_parts
            )
        else:
            self.guard_manager.root.add_lambda_guard(guard_fn, verbose_code_parts)

    # Warning: use this with care!  This lets you access what the current
    # value of the value you are guarding on is.  You probably don't want
    # to actually durably save this value though (because it's specific
    # to this frame!)  Instead, you should be reading out some property
    # (like its type) which is what you permanently install into the
    # guard code.
    def get(self, name: str, closure_vars: Optional[dict[str, Any]] = None) -> Any:
        if closure_vars is None:
            closure_vars = _get_closure_vars()
        return eval(name, self.scope, closure_vars)

    # Registers the usage of the source name referenced by the
    # string (or stored in the Guard) as being guarded upon.  It's important
    # to call this before generating some code that makes use of 'guard',
    # because without this call, we won't actually bind the variable
    # you reference in the actual guard closure (oops!)
    def arg_ref(self, guard: Union[str, Guard]) -> str:
        name: str
        if isinstance(guard, str):
            name = guard
        else:
            name = guard.name
        base = strip_function_call(name)
        if base not in self.argnames:
            is_valid = torch._C._dynamo.is_valid_var_name(base)
            if is_valid:
                if is_valid == 2:
                    log.warning("invalid var name: %s", guard)
                self.argnames.append(base)

        return name

    def _guard_on_attribute(self, guard: Guard, attr_name: str, guard_fn):
        attr_source = AttrSource(guard.originating_source, attr_name)
        # Copy the stack info
        new_guard = Guard(
            attr_source, guard_fn, stack=guard.stack, user_stack=guard.user_stack
        )
        new_guard.create(self)

    # Note: the order of the guards in this file matters since we sort guards on the same object by lineno
    def HASATTR(self, guard: Guard):
        source = guard.originating_source
        if isinstance(source, NNModuleSource):
            source = source.base
        assert isinstance(source, AttrSource), f"invalid source {guard.name}"
        base_source = source.base
        base = base_source.name()
        attr = source.member

        ref = self.arg_ref(base)
        val = hasattr(self.get(base), attr)
        code = None
        if val:
            code = f"hasattr({ref}, {attr!r})"
        else:
            code = f"not hasattr({ref}, {attr!r})"
        self._set_guard_export_info(
            guard, [code], provided_guarded_object=self.get(base)
        )

        base_manager = self.get_guard_manager_from_source(base_source)
        if val:
            # Just install a getattr manager. GetAttrGuardAccessor itself
            # acts as hasattr guard.
            example_value = self.get(source.name())
            base_example_value = self.get(base)
            guard_manager_enum = self.get_guard_manager_type(source, example_value)

            # if the base value is nn.Module, check if we can speedup the
            # guard by going through __dict__ attrs.
            if (
                isinstance(base_example_value, torch.nn.Module)
                and get_custom_getattr(base_example_value)
                is unpatched_nn_module_getattr
            ):
                return self.getattr_on_nn_module(
                    source,
                    base_manager,
                    base_example_value,
                    example_value,
                    base,
                    source.name(),
                    guard_manager_enum,
                )
            else:
                base_manager.getattr_manager(
                    attr=attr,
                    source=guard.name,
                    example_value=example_value,
                    guard_manager_enum=guard_manager_enum,
                )
        else:
            base_manager.add_no_hasattr_guard(attr, get_verbose_code_parts(code, guard))

    def NOT_PRESENT_IN_GENERIC_DICT(self, guard: Guard, attr=None) -> None:
        assert attr is not None
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        assert isinstance(val, torch.nn.Module)

        base_manager = self.get_guard_manager(guard)

        mod_dict_source = f"{guard.name}.__dict__"
        mod_generic_dict_manager = base_manager.get_generic_dict_manager(
            source=mod_dict_source,
            example_value=self._get_generic_dict_manager_example_value(val.__dict__),
            guard_manager_enum=GuardManagerType.GUARD_MANAGER,
        )

        code = f"not ___dict_contains({attr!r}, {ref}.__dict__)"
        mod_generic_dict_manager.add_dict_contains_guard(
            False, attr, get_verbose_code_parts(code, guard)
        )

    def TYPE_MATCH(self, guard: Guard) -> None:
        # ___check_type_id is same as `id(type(x)) == y`
        t = type(self.get(guard.name))
        obj_id = self.id_ref(t, f"type({guard.name})")
        code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
        self._set_guard_export_info(guard, [code])

        self.get_guard_manager(guard).add_type_match_guard(
            obj_id, get_verbose_code_parts(code, guard)
        )

    def DICT_VERSION(self, guard: Guard):
        # ___check_dict_version is same as `dict_version(x) == y`
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        version = dict_version(self.get(guard.name))
        code = f"___dict_version({ref}) == {version}"
        self._set_guard_export_info(guard, [code])

        # TODO(anijain2305) - Delete this when DictGuardManager uses tags
        # for dicts.
        self.get_guard_manager(guard).add_dict_version_guard(
            val, get_verbose_code_parts(code, guard)
        )

    def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool):
        dict_ref = self.arg_ref(guard)

        maybe_not = "not " if invert else ""
        code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})"
        self._set_guard_export_info(guard, [code])

        self.get_guard_manager(guard).add_dict_contains_guard(
            not invert, key, get_verbose_code_parts(code, guard)
        )

    def ID_MATCH(self, guard: Guard):
        # ___check_obj_id is same as `id(x) == y`
        if isinstance(guard.originating_source, TypeSource):
            # optional optimization to produce cleaner/faster guard code
            return self.TYPE_MATCH(
                Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH)  # type: ignore[arg-type]
            )

        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        id_val = self.id_ref(val, guard.name)
        code = f"___check_obj_id({ref}, {id_val})"
        self._set_guard_export_info(guard, [code])

        self.get_guard_manager(guard).add_id_match_guard(
            id_val, get_verbose_code_parts(code, guard)
        )

        # Keep track of ID_MATCH'd objects. This will be used to modify the
        # cache size logic
        if isinstance(guard.originating_source, LocalSource):
            # TODO(anijain2305) - This is currently restricted to nn.Module objects
            # because many other ID_MATCH'd objects fail - like DeviceMesh.
            # Increase the scope of ID_MATCH'd objects.
            if isinstance(val, torch.nn.Module):
                local_name = guard.originating_source.local_name
                weak_id = self.lookup_weakrefs(val)
                if weak_id is not None:
                    self.id_matched_objs[local_name] = weak_id

    def NOT_NONE_MATCH(self, guard: Guard, value=None):
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        assert isinstance(val, torch.Tensor)
        code = f"{ref} is not None"
        self._set_guard_export_info(guard, [code])

        self.get_guard_manager(guard).add_not_none_guard(
            get_verbose_code_parts(code, guard)
        )

    def DISPATCH_KEY_SET_MATCH(self, guard: Guard):
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        assert isinstance(val, torch._C.DispatchKeySet)
        code_parts = f"{ref}.raw_repr() == {val!r}.raw_repr()"

        self.get_guard_manager(guard).add_dispatch_key_set_guard(
            val, get_verbose_code_parts(code_parts, guard)
        )

    def NAME_MATCH(self, guard: Guard):
        self._guard_on_attribute(guard, "__name__", GuardBuilder.EQUALS_MATCH)

    def DATA_PTR_MATCH(self, guard: Guard):
        # C++ guard has the type check internally
        obj = self.get(guard.name)
        code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}"
        self._set_guard_export_info(guard, [code])

        self.get_guard_manager(guard).add_data_ptr_guard(
            obj, get_verbose_code_parts(code, guard)
        )

    def DUAL_LEVEL(self, guard: Guard):
        # Invalidate dual level if current dual level is different than the one
        # in the fx graph
        dual_level = torch.autograd.forward_ad._current_level
        code = [f"torch.autograd.forward_ad._current_level == {dual_level}"]
        self._set_guard_export_info(guard, [code])
        # TODO(anijain2305) - Consider this moving this guard to C++
        forward_ad = torch.autograd.forward_ad

        def fn(x):
            return forward_ad._current_level == dual_level

        self.guard_manager.root.add_lambda_guard(
            fn, get_verbose_code_parts(code, guard)
        )

    def FUNCTORCH_STACK_MATCH(self, guard: Guard):
        # Invalidate functorch code if current level is different than
        # the one when FX graph was generated
        cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters()
        states = [ci.get_state() for ci in cis]
        code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"]
        self._set_guard_export_info(guard, code)

        # TODO(anijain2305) - Consider this moving this guard to C++
        compare_fn = torch._functorch.pyfunctorch.compare_functorch_state

        def fn(x):
            return compare_fn(states)

        self.guard_manager.root.add_lambda_guard(
            fn, get_verbose_code_parts(code, guard)
        )

    def TENSOR_SUBCLASS_METADATA_MATCH(self, guard: Guard):
        value = self.get(guard.name)
        original_metadata = deepcopy(self.get(guard.name).__tensor_flatten__()[1])
        if hasattr(value, "__metadata_guard__"):
            verify_guard_fn_signature(value)

            def metadata_checker(x):
                return value.__metadata_guard__(
                    original_metadata, x.__tensor_flatten__()[1]
                )

        else:

            def metadata_checker(x):
                return x.__tensor_flatten__()[1] == original_metadata

        global_name = f"___check_metadata_{id(metadata_checker)}_c{CompileContext.current_compile_id()}"
        self.get_guard_manager(guard).add_lambda_guard(
            metadata_checker, get_verbose_code_parts(global_name, guard)
        )

    def EQUALS_MATCH(self, guard: Guard):
        ref = self.arg_ref(guard)
        val = self.get(guard.name)
        if np:
            np_types: tuple[type[Any], ...] = (
                np.int8,
                np.int16,
                np.int32,
                np.int64,
                np.uint8,
                np.uint16,
                np.uint32,
                np.uint64,
                np.float16,
                np.float32,
                np.float64,
            )
        else:
            np_types = ()

        ok_mutable_types = (list, set)

        ok_types = tuple(
            common_constant_types
            | {
                type,
                tuple,
                frozenset,
                slice,
                range,
                dict_keys,
                torch.Size,
                *np_types,
                *ok_mutable_types,
            }
        )

        if torch.distributed.is_available():
            from torch.distributed.device_mesh import DeviceMesh
            from torch.distributed.tensor.placement_types import (
                Partial,
                Replicate,
                Shard,
            )

            ok_types = ok_types + (
                Shard,
                Replicate,
                Partial,
                DeviceMesh,
            )

        import torch.utils._pytree as pytree

        assert istype(val, ok_types) or pytree.is_constant_class(type(val)), (
            f"Unexpected type {type(val)}"
        )

        # Special case for nan because float("nan") == float("nan") evaluates to False
        if istype(val, float) and math.isnan(val):
            self.TYPE_MATCH(guard)
            code = []
            code.append(f"__math_isnan({ref})")
            self._set_guard_export_info(guard, code)

            self.get_guard_manager(guard).add_lambda_guard(
                _get_closure_vars()["__math_isnan"],
                get_verbose_code_parts(code, guard),
            )
            return

        # Python math library doesn't support complex nan, so we need to use numpy
        if istype(val, complex) and np.isnan(val):
            self.TYPE_MATCH(guard)
            code = []
            code.append(f"__numpy_isnan({ref})")
            self._set_guard_export_info(guard, code)

            self.get_guard_manager(guard).add_lambda_guard(
                _get_closure_vars()["__numpy_isnan"],
                get_verbose_code_parts(code, guard),
            )
            return

        # Construct a debug string to put into the c++ equals match guard.
        code = [f"{ref} == {val!r}"]
        if istype(val, ok_mutable_types):
            # C++ guards perform a pointer equality check to speedup guards, but the assumption is that the object
            # is immutable. For a few corner cases like sets and lists, we make a deepcopy to purposefully fail the
            # pointer equality check.
            val = deepcopy(val)
        self.get_guard_manager(guard).add_equals_match_guard(
            val, get_verbose_code_parts(code, guard)
        )
        self._set_guard_export_info(guard, code)
        return

    def CONSTANT_MATCH(self, guard: Guard):
        val = self.get(guard.name)
        if istype(val, (bool, type(None), types.CodeType)):
            self.ID_MATCH(guard)
        else:
            self.EQUALS_MATCH(guard)

    def NN_MODULE(self, guard: Guard):
        self.ID_MATCH(guard)
        val = self.get(guard.name)
        if hasattr(val, "training"):
            assert istype(val.training, bool)
            self._guard_on_attribute(guard, "training", GuardBuilder.CONSTANT_MATCH)
        else:
            exc.unimplemented_v2(
                gb_type="Attempted to guard on uninitialized nn.Module",
                context="",
                explanation="Attempted to setup an NN_MODULE guard on uninitialized "
                f"nn.Module subclass `{type(val)}`.",
                hints=[
                    "Ensure the `nn.Module` subclass instance has called `super().__init__()`.",
                ],
            )

    def FUNCTION_MATCH(self, guard: Guard):
        """things like torch.add and user defined functions"""
        return self.ID_MATCH(guard)

    def CLOSURE_MATCH(self, guard: Guard):
        """matches a closure by __code__ id."""
        val = self.get(guard.name)
        # Strictly only want user-defined functions
        if type(val) == types.FunctionType and hasattr(val, "__code__"):
            self._guard_on_attribute(guard, "__code__", GuardBuilder.HASATTR)
            self._guard_on_attribute(guard, "__code__", GuardBuilder.FUNCTION_MATCH)
        else:
            self.FUNCTION_MATCH(guard)

    def BUILTIN_MATCH(self, guard: Guard):
        return self.FUNCTION_MATCH(guard)

    def PYMODULE_MATCH(self, guard: Guard):
        return self.FUNCTION_MATCH(guard)

    def SEQUENCE_LENGTH(self, guard):
        # This guard is used to check length of PySequence objects like list,
        # tuple, collections.deque etc
        ref = self.arg_ref(guard)
        value = self.get(guard.name)

        if not isinstance(value, dict):
            # C++ DICT_LENGTH checks for type
            self.TYPE_MATCH(guard)

        code = []
        if len(value) == 0:
            code.append(f"not {ref}")
        else:
            code.append(f"len({ref}) == {len(value)}")

        self._set_guard_export_info(guard, code)
        if isinstance(value, dict):
            self.get_guard_manager(guard).add_dict_length_check_guard(
                len(value), get_verbose_code_parts(code, guard)
            )
        else:
            self.get_guard_manager(guard).add_length_check_guard(
                len(value), get_verbose_code_parts(code, guard)
            )

    def TUPLE_ITERATOR_LEN(self, guard):
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        code = []
        code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
        self._set_guard_export_info(guard, code)

        t = type(value)
        obj_id = self.id_ref(t, f"type({guard.name})")

        self.get_guard_manager(guard).add_tuple_iterator_length_guard(
            tuple_iterator_len(value), obj_id, get_verbose_code_parts(code, guard)
        )

    def RANGE_ITERATOR_MATCH(self, guard):
        ref = self.arg_ref(guard)
        value = self.get(guard.name)
        t = type(value)

        code = []
        normalized_range_iter = normalize_range_iter(value)
        code.append(f"___normalize_range_iter({ref}) == {normalized_range_iter}")
        self._set_guard_export_info(guard, code)

        t = type(value)
        obj_id = self.id_ref(t, f"type({guard.name})")

        start, stop, step = normalized_range_iter
        self.get_guard_manager(guard).add_range_iterator_match_guard(
            start, stop, step, obj_id, get_verbose_code_parts(code, guard)
        )

    # TODO(voz): Deduplicate w/ AOTAutograd dupe input guards
    def DUPLICATE_INPUT(self, guard, source_b):
        ref_a = self.arg_ref(guard)
        ref_b = self.arg_ref(source_b.name())

        if is_from_optimizer_source(
            guard.originating_source
        ) or is_from_optimizer_source(source_b):
            return

        # Check that the guard has not been inserted already
        key = (ref_a, ref_b)
        if key in self._cached_duplicate_input_guards:
            return

        self._cached_duplicate_input_guards.add((ref_a, ref_b))
        self._cached_duplicate_input_guards.add((ref_b, ref_a))

        code = [f"{ref_b} is {ref_a}"]
        self._set_guard_export_info(guard, code)

        install_object_aliasing_guard(
            self.get_guard_manager(guard),
            self.get_guard_manager_from_source(source_b),
            get_verbose_code_parts(code, guard),
        )

    def WEAKREF_ALIVE(self, guard):
        code = [f"{self.arg_ref(guard)} is not None"]

        self._set_guard_export_info(guard, code)
        self.get_guard_manager(guard).add_not_none_guard(
            get_verbose_code_parts(code, guard)
        )

    def MAPPING_KEYS_CHECK(self, guard):
        """Guard on the key order of types.MappingProxyType object"""
        ref = self.arg_ref(guard)
        value = self.get(guard.name)

        code = []
        code.append(f"list({ref}.keys()) == {list(value.keys())}")
        self._set_guard_export_info(guard, code)
        self.get_guard_manager(guard).add_mapping_keys_guard(value, code)

    def DICT_KEYS_MATCH(self, guard):
        """Insert guard to check that the keys of a dict are same"""
        ref = self.arg_ref(guard)
        value = self.get(guard.name)

        if value is torch.utils._pytree.SUPPORTED_NODES:
            # For SUPPORTED_NODES, we can guard on the dictionary version (PEP509).
            self.DICT_VERSION(guard)
            return

        self.SEQUENCE_LENGTH(guard)

        code = []
        # Ensure that we call dict.keys and not value.keys (which can call
        # overridden keys method). In the C++ guards, we relied on PyDict_Next
        # to traverse the dictionary, which uses the internal data structure and
        # does not call the overridden keys method.
        code.append(f"list(dict.keys({ref})) == {list(builtin_dict_keys(value))!r}")
        self._set_guard_export_info(guard, code)

        if self.requires_key_order_guarding(guard.originating_source):
            self.guard_on_dict_keys_and_order(value, guard)
        else:
            self.guard_on_dict_keys_and_ignore_order(value, guard)

    def EMPTY_NN_MODULE_HOOKS_DICT(self, guard):
        """Special guard to skip guards on empty hooks. This is controlled by skip_nnmodule_hook_guards"""
        if config.skip_nnmodule_hook_guards:
            # This is unsafe if you add/remove a hook on nn module variable
            return
        self.SEQUENCE_LENGTH(guard)

    def OBJECT_MUTATION(self, guard: Guard):
        mutation_guard.watch(self.get(guard.name), self.check_fn_manager)

    def GRAD_MODE(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def TORCH_FUNCTION_STATE(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def FSDP_TRAINING_STATE(self, guard: Guard):
        pass  # we always guard on this via GlobalStateGuard()

    def DEFAULT_DEVICE(self, guard: Guard):
        """Guard on CURRENT_DEVICE per torch.utils._device"""
        assert guard.source is GuardSource.GLOBAL
        import torch.utils._device as m

        code = [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
        self._set_guard_export_info(guard, code)

        self.get_guard_manager(guard).add_default_device_guard(
            get_verbose_code_parts(code, guard)
        )

    def SHAPE_ENV(self, guard: Guard):
        # Let's handle ShapeEnv guards.  To do this, we will resolve
        # shape variables to sources from tracked_fakes.  This must happen after
        # tensor checks.
        assert guard.name == ""
        output_graph = self.check_fn_manager.output_graph
        # NB: self.output_graph can be None in the debug_nops tests
        fs = output_graph.tracked_fakes
        input_contexts = [a.symbolic_context for a in fs]

        def get_sources(t_id, dim):
            # Looks up base sources mapped to a tensor id and uses them to create
            # sources for the corresponding tensor dimension.
            return [
                TensorPropertySource(source, TensorProperty.SIZE, dim)
                for source in output_graph.tracked_fakes_id_to_source[t_id]
            ]

        if output_graph.export_constraints:
            names: dict[str, tuple[int, int]] = {}
            source_pairs: list[tuple[Source, Source]] = []
            derived_equalities: list[  # type: ignore[type-arg]
                tuple[Source, Union[Source, Symbol], Callable]
            ] = []
            phantom_symbols: dict[str, Symbol] = {}
            relaxed_sources: set[Source] = set()
            for constraint in output_graph.export_constraints:
                if constraint.t_id in output_graph.tracked_fakes_id_to_source:
                    torch.export.dynamic_shapes._process_equalities(
                        constraint,
                        get_sources,
                        output_graph.shape_env,
                        names,
                        source_pairs,
                        derived_equalities,
                        phantom_symbols,
                        relaxed_sources,
                    )
                else:
                    log.warning("Untracked tensor used in export constraints")
            equalities_inputs = EqualityConstraint(
                source_pairs=source_pairs,
                derived_equalities=derived_equalities,
                phantom_symbols=list(phantom_symbols.values()),
                relaxed_sources=relaxed_sources,
                warn_only=False,
            )
        else:
            equalities_inputs = None

        def _get_code_parts(langs):
            return output_graph.shape_env.produce_guards_verbose(
                [a.fake for a in fs],
                [a.source for a in fs],
                input_contexts=input_contexts,
                equalities_inputs=equalities_inputs,
                source_ref=self.source_ref,
                # Export keeps static.
                ignore_static=(not self.check_fn_manager.output_graph.export),
                langs=langs,
            )

        if config.enable_cpp_symbolic_shape_guards:
            # For exporting we need the python code parts
            python_code_parts, verbose_code_parts, cpp_code_parts = _get_code_parts(
                ("python", "verbose_python", "cpp")
            )
        else:
            python_code_parts, verbose_code_parts = _get_code_parts(
                ("python", "verbose_python")
            )

        # When exporting, we may work with the shape constraints some more in
        # postprocessing, so don't freeze yet
        if not self.check_fn_manager.output_graph.export:
            output_graph.shape_env.freeze()
        for code in python_code_parts.exprs:
            self._set_guard_export_info(guard, [code])

        # Make ShapeEnv guards available for testing.
        if compile_context := CompileContext.try_get():
            compile_context.shape_env_guards.extend(verbose_code_parts.exprs)

        if config.enable_cpp_symbolic_shape_guards:
            import ctypes

            from torch._inductor.codecache import CppCodeCache

            assert cpp_code_parts  # type: ignore[possibly-undefined]
            code_parts, source_to_symbol = (
                cpp_code_parts.exprs,
                cpp_code_parts.source_to_symbol,
            )

            if not code_parts:
                return

            int_source_to_symbol = []
            float_source_to_symbol = []

            python_fallback = False
            for source, symbol in source_to_symbol.items():
                if isinstance(source, ConstantSource):
                    python_fallback = True
                else:
                    example_value = self.get(
                        source.name(),
                        closure_vars={**SYMPY_INTERP, **_get_closure_vars()},
                    )
                    if isinstance(example_value, int):
                        int_source_to_symbol.append((source, symbol))
                    elif isinstance(example_value, float):
                        float_source_to_symbol.append((source, symbol))
                    else:
                        # SymInts/SymFloats go through python guard as we only support
                        # int64_t/double in C++ guards for now.
                        python_fallback = True

            if not python_fallback:
                source_to_symbol = dict(int_source_to_symbol + float_source_to_symbol)
                try:
                    guard_managers = [
                        self.get_guard_manager_from_source(IndexedSource(source, i))
                        for i, source in enumerate(source_to_symbol)
                    ]

                    int_symbols_str = ", ".join(
                        f"{symbol} = int_values[{i}]"
                        for i, (_, symbol) in enumerate(int_source_to_symbol)
                    )
                    float_symbols_str = ", ".join(
                        f"{symbol} = float_values[{i}]"
                        for i, (_, symbol) in enumerate(float_source_to_symbol)
                    )

                    if int_symbols_str:
                        int_symbols_str = f"int64_t {int_symbols_str};"
                    if float_symbols_str:
                        float_symbols_str = f"double {float_symbols_str};"

                    func_str = textwrap.dedent(
                        f"""
                    #include <cstdint>
                    #include <cmath>
                    #include <c10/util/generic_math.h>

                    extern "C" int8_t guard(int64_t *int_values, double *float_values) {{
                      {int_symbols_str}
                      {float_symbols_str}
                      return ({") && (".join(code_parts)});
                    }}
                    """
                    )
                    guards_log.debug(
                        "C++ shape guard function: %s %s",
                        func_str,
                        verbose_code_parts.exprs,
                    )
                    clib = CppCodeCache.load(func_str)
                    cguard = ctypes.cast(clib.guard, ctypes.c_void_p).value
                    assert cguard
                except torch._inductor.exc.InvalidCxxCompiler:
                    # No valid C++ compiler to compile the shape guard
                    pass
                else:
                    install_symbolic_shape_guard(
                        guard_managers,
                        len(int_source_to_symbol),
                        len(float_source_to_symbol),
                        cguard,
                        clib,
                        verbose_code_parts.exprs,
                    )
                    return

        # Install all the symbolic guards in one python lambda guard. These are run
        # at the very end of the RootGuardManager via epilogue guards.
        # TODO(anijain2305,williamwen42) - Consider moving this to C++.
        if python_code_parts.exprs:
            self.add_python_lambda_leaf_guard_to_root(
                python_code_parts.exprs,
                verbose_code_parts.exprs,
                closure_vars={**SYMPY_INTERP, **_get_closure_vars()},
            )

    def TENSOR_MATCH(self, guard: Guard, value=None):
        if config._unsafe_skip_fsdp_module_guards and guard.is_fsdp_module():
            return
        # For tensors that are part of the Dynamo extracted Fx graph module, an
        # ID_MATCH suffices. Once we turn on inline_inbuilt_nn_modules, these
        # will be lifted as inputs and have a TENSOR_MATCH guard.
        if match_on_id_for_tensor(guard):
            self.ID_MATCH(guard)
        else:
            if isinstance(value, TensorWeakRef):
                value = value()

            value = value if value is not None else self.get(guard.name)
            assert isinstance(value, torch.Tensor)

            tensor_name = self.arg_ref(guard)
            # [Note - On Export Tensor Guards]
            #
            # In eager mode, tensor guards are evaluated through C++, in guards.cpp
            # see [Note - On Eager Tensor Guards] for more info.
            #
            # In export mode, we instead maintain parallel logic between C++ and python
            # here, with an exception of checking the dispatch key - with the idea that a dispatch key
            # is an entirely runtime notion that would make no sense to keep in an exported graph.
            #
            # Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
            # not entirely true.
            # For example, suppose one of the input tensors had the negative dispatch key.
            # You should end up with a graph that is specialized for tensors that have a negative dispatch key.
            # If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
            # Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
            # support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
            # TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
            # subset of keys during export.
            #
            # The list of tensor fields and calls we care about can be found in `terms` below.
            # TODO(voz): We are missing storage offset in all our tensor guards?
            code: list[str] = []
            if self.check_fn_manager.output_graph.export:
                self.TYPE_MATCH(guard)
                terms = [
                    "dtype",
                    "device",
                    "requires_grad",
                    "ndimension()",
                ]

                for term in terms:
                    real_value = self.get(tensor_name + "." + term)
                    if istype(real_value, (torch.device, torch.dtype)):
                        # copy pasted from EQUALS_MATCH
                        code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}")
                    else:
                        code.append(f"{tensor_name}.{term} == {real_value}")
            else:
                guard_manager = self.get_guard_manager(guard)

                # skip_no_tensor_aliasing_guards_on_parameters bring
                # unsoundness. If you compile a function with two different
                # parameters, but later on you pass on same tensor as two
                # different outputs (aliasing), Dynamo will not detect this.
                # But we deliberately take this soundness hit because this
                # usecase is quite rare and there is substantial reduction in
                # guard overhead.
                # For numpy tensors, since those are ephemeral, we dont have to
                # insert aliasing guards on them
                if not (
                    config.skip_no_tensor_aliasing_guards_on_parameters
                    and istype(value, torch.nn.Parameter)
                ) and not isinstance(guard.originating_source, NumpyTensorSource):
                    # Keep track of all the tensor guard managers to insert
                    # NoAliasing check at the end.
                    self.no_tensor_aliasing_names.append(tensor_name)
                    self.no_tensor_aliasing_guard_managers.append(guard_manager)

                output_graph = self.check_fn_manager.output_graph
                metadata = output_graph.input_source_to_sizes_strides[
                    guard.originating_source
                ]
                size = convert_to_concrete_values(metadata["size"])
                stride = convert_to_concrete_values(metadata["stride"])

                verbose_code_parts = get_verbose_code_parts(
                    get_tensor_guard_code_part(value, tensor_name, size, stride),
                    guard,
                )
                guard_manager.add_tensor_match_guard(
                    value,
                    size,
                    stride,
                    tensor_name,
                    verbose_code_parts,
                )

                # We consider TENSOR_MATCH guard to be important enough to be
                # included in diff guard manager by default.
                if not isinstance(value, torch.nn.Parameter):
                    self.check_fn_manager.guard_manager.diff_guard_sources.add(
                        guard.name
                    )

            # A frame is valid for reuse with dynamic dimensions if the new
            # (user-requested) dynamic dimensions are a subset of the old
            # (already compiled) dynamic dimensions.
            #
            # It's a little non-obvious why you'd want this: in particular,
            # if an already compiled frame matches all of the guards, why
            # not just use it, why force a recompile?
            #
            # We force it for two reasons:
            #
            #   - The user *required* us to compile with a new dynamic dimension,
            #     we should not ignore that and serve up the old, specialized
            #     frame.  Listen to the user!
            #
            #   - In fact, we are obligated to *raise an error* if we fail to
            #     make the requested dimension dynamic.  If we don't
            #     recompile, we can't tell if that dimension can actually be
            #     made dynamic.
            #
            # If the new dynamic dims are a subset of the old, we already know
            # we can make them dynamic (since we made them dynamic in old).
            # This is slightly unsound, because maybe your input size is
            # [s0, s0, s1] and so you can do it dynamic if you say dynamic
            # dims {0, 1, 2} but you can't if you only do {0, 2} (because now
            # the second s0 is specialized).  But we're not entirely sure if
            # this is a good idea anyway lol... (if you want to try removing
            # this logic, be my guest!  -- ezyang 2024)
            #
            assert guard.source is not None
            static, _reason = tensor_always_has_static_shape(
                value, is_tensor=True, tensor_source=guard.originating_source
            )

            if not static:
                if hasattr(value, "_dynamo_dynamic_indices"):
                    dynamic_indices = value._dynamo_dynamic_indices
                    code_part = f"(({tensor_name}._dynamo_dynamic_indices.issubset({dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)"  # noqa: B950
                    code.append(code_part)
                    self.get_guard_manager(guard).add_dynamic_indices_guard(
                        dynamic_indices, get_verbose_code_parts(code_part, guard)
                    )
                # In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
                # raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
                else:
                    code_part = (
                        f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
                    )
                    code.append(code_part)
                    self.get_guard_manager(guard).add_no_hasattr_guard(
                        "_dynamo_dynamic_indices",
                        get_verbose_code_parts(code_part, guard),
                    )
            if len(code) > 0:
                self._set_guard_export_info(guard, code)

    # A util that in the case of export, adds data onto guards
    def _set_guard_export_info(self, guard, code_list, provided_guarded_object=None):
        # WARNING: It is important that cur_frame/caller do NOT stay in
        # the current frame, because they will keep things live longer
        # than they should.  See TestMisc.test_release_module_memory
        cur_frame = currentframe()
        assert cur_frame is not None
        caller = cur_frame.f_back
        del cur_frame
        assert caller is not None
        func_name = caller.f_code.co_name
        del caller
        # We use func_name for export, so might as well get a nice defensive check out of it
        assert func_name in self.__class__.__dict__, (
            f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
        )

        # Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
        if provided_guarded_object is None:
            name = guard.name
            guarded_object = None if not name else self.get(name)
        else:
            guarded_object = provided_guarded_object

        guarded_object_type = (
            weakref.ref(type(guarded_object)) if guarded_object is not None else None
        )
        obj_ref = None
        # Not necessary to have weakref for Enum type, but there is a bug that
        # makes hasattr(guarded_object.__class__, "__weakref__") return True.
        supports_weakref = (
            getattr(guarded_object.__class__, "__weakrefoffset__", 0) != 0
        )
        # See D64140537 for why we are checking for tuple.
        if supports_weakref and not isinstance(guarded_object, (enum.Enum, tuple)):
            obj_ref = weakref.ref(guarded_object)

        guard.set_export_info(
            func_name,
            guarded_object_type,
            code_list,
            obj_ref,
        )


# Common Sub-Expression Elimination for Python expressions.
#
# There are 2 steps to this pass:
#     1. Count the frequency of each sub-expression (i.e. inner
#        node in the AST tree)
#
#     2. Replace those that occur more than once by a fresh variable 'v'.
#        'v' will be defined in the 'preface' list (output argument to
#        'NodeTransformer')
#
# NB: the use of 'ast.unparse' while visiting the nodes makes this pass
# quadratic on the depth of the tree.
#
# NB: this pass creates a new variable for each AST node that is repeated
# more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c'
# and 'a.b' are also used 10 times. So, there will be a new variable for
# each of them.
class PyExprCSEPass:
    # Maximum number of times a given expression can be used without being
    # replaced by a fresh variable.
    USE_THRESHOLD = 1

    # Ad-Hoc: AST nodes this pass focuses on.
    ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript)

    @dataclasses.dataclass
    class Config:
        expr_count: dict[str, int]
        expr_to_name: dict[str, str]

    class ExprCounter(ast.NodeVisitor):
        def __init__(self, config: PyExprCSEPass.Config) -> None:
            self._config = config

        def visit(self, node: ast.AST) -> Any:
            if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
                self._config.expr_count[_ast_unparse(node)] += 1
            super().visit(node)

    class Replacer(ast.NodeTransformer):
        def __init__(
            self,
            config: PyExprCSEPass.Config,
            gen_name: Callable[[], str],
        ) -> None:
            super().__init__()
            self._config = config
            self._gen_name = gen_name
            self.preface: list[str] = []

        def visit(self, node: ast.AST) -> Any:
            if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
                expr = _ast_unparse(node)

                # Replacement only occurs if a given expression is used more
                # than once.
                if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD:
                    if expr not in self._config.expr_to_name:
                        # Parent 'visit' is called so that we CSE the inner expressions first.
                        #
                        # The resulting expression is used as right-hand-side of the variable
                        # assignment. i.e. we are CSE-ing the children before the parents.
                        #
                        # Indexing still uses the old 'node', since that's what was counted
                        # by the 'NodeVisitor'.
                        node_ = super().visit(node)
                        expr_ = _ast_unparse(node_)
                        var_name = self._gen_name()
                        self.preface.append(f"{var_name} = {expr_}")
                        self._config.expr_to_name[expr] = var_name
                    else:
                        var_name = self._config.expr_to_name[expr]
                    return ast.Name(var_name, ast.Load())

            return super().visit(node)

    def __init__(self) -> None:
        self._counter = 0
        self._config = self.Config(
            expr_count=collections.defaultdict(lambda: 0), expr_to_name={}
        )

    def _new_var(self, prefix: str = "_var") -> str:
        name = f"{prefix}{self._counter}"
        self._counter += 1
        return name

    def count(self, exprs: list[str]) -> None:
        counter = self.ExprCounter(self._config)
        for e in exprs:
            try:
                counter.visit(ast.parse(e))
            except SyntaxError as ex:
                log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e)
                raise

    def replace(self, expr: str) -> tuple[list[str], str]:
        replacer = self.Replacer(self._config, self._new_var)
        new_node = replacer.visit(ast.parse(expr))
        return replacer.preface, _ast_unparse(new_node)


def must_add_nn_module_guards(guard):
    # For config.guard_nn_modules=False, we can skip all the guards that
    # originate from inside of nn module except for a few categories.
    return (
        # Guard for defaults
        isinstance(guard.originating_source, DefaultsSource)
        # Guard using dict tags if the config flag is set
        or (
            config.guard_nn_modules_using_dict_tags
            and guard.create_fn is GuardBuilder.NN_MODULE
        )
    )


class DeletedGuardManagerWrapper(GuardManagerWrapper):
    def __init__(self, reason):
        super().__init__()
        self.invalidation_reason = reason

    def populate_diff_guard_manager(self):
        self.diff_guard_root = None


# NB: Naively, you'd expect this to only be a function that produces
# the callable that constitutes the guard.  However, there is some
# delicate handling for invalidating this check function when the
# locals/globals get invalidated, so there's some extra state
# we have to hold in this manager class.
class CheckFunctionManager:
    def __init__(
        self,
        f_code,
        output_graph=None,
        cache_entry=None,
        guard_fail_fn: Optional[Callable[[GuardFail], None]] = None,
    ):
        guards = output_graph.guards if output_graph else None
        self._weakrefs: dict[int, ReferenceType[object]] = {}

        existing_diff_guard_sources = (
            update_diff_guard_managers_for_existing_cache_entries(cache_entry)
        )
        self.guard_manager = GuardManagerWrapper()
        self.guard_manager.diff_guard_sources = existing_diff_guard_sources
        self.output_graph = output_graph
        w_builder = None

        # NB: Until we trace device contexts, we need to use the stack recorded at the beginning of tracing
        # in case a set default device call was made in the graph.
        self.torch_function_mode_stack = (
            output_graph.torch_function_mode_stack if output_graph else None
        )

        def source_ref(source):
            guard_source = source.guard_source()
            if guard_source is GuardSource.CONSTANT:
                # No need to track constants
                return source.name()
            assert w_builder
            r_builder = w_builder()
            assert r_builder is not None
            return r_builder.arg_ref(source.name())

        builder = GuardBuilder(
            f_code,
            self.id_ref,
            source_ref,
            self.lookup_weakrefs,
            output_graph.local_scope,
            output_graph.global_scope,
            self.guard_manager,
            self,
        )

        # Break retain cycle. See test_release_scope_memory
        def cleanup_builder(weak_b):
            b = weak_b()
            if b:
                b.scope = None

        # Break retain cycle. See test_release_input_memory
        w_builder = weakref.ref(builder, cleanup_builder)

        guard_on_nn_modules = config.guard_nn_modules and justknobs_check(
            "pytorch/compiler:guard_nn_modules"
        )

        if not justknobs_check("pytorch/compiler:guard_nn_modules"):
            log.warning("guard_nn_modules is turned off using justknobs killswitch")

        for guard in sorted(guards or (), key=Guard.sort_key):
            if (
                not guard_on_nn_modules
                and guard.is_specialized_nn_module()
                # Default func args must be guarded on.
                # TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
                and "__defaults__" not in guard.name
                and "__kwdefaults__" not in guard.name
                and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
            ):
                continue

            guard.create(builder)

        self.compile_check_fn(builder, guards, guard_fail_fn)

        # Keep track of weak references of objects with ID_MATCH guard. This
        # info is stored alongside optimized_code and guard_manager and is used to
        # limit the number of cache entries with same ID_MATCH'd object.
        # TODO(anijain2305) - Currently this information is stored as an attr on
        # the guard_manager itself to avoid changing CacheEntry data structure in
        # eval_frame.c. In future, we should probably replace guard_manager with a
        # queryable data structure such that this information is already present
        # in some form.
        self.guard_manager.id_matched_objs = builder.id_matched_objs

        guards_log.debug("%s", self.guard_manager)
        self.guard_manager.id_matched_objs = builder.id_matched_objs

        # Check that the guard returns True. False means that we will always
        # recompile.
        # TODO(anijain2305, ydwu4) - Skipping export because of following test
        # python -s test/dynamo/test_export.py -k test_export_with_symbool_inputs
        latency = 0.0
        if not output_graph.export:
            if not self.guard_manager.check(output_graph.local_scope):
                reasons = get_guard_fail_reason_helper(
                    self.guard_manager,  # type: ignore[arg-type]
                    output_graph.local_scope,
                    CompileContext.current_compile_id(),
                )
                raise AssertionError(f"Guard check failed: {reasons}")

            if guard_manager_testing_hook_fn is not None:
                guard_manager_testing_hook_fn(
                    self.guard_manager, output_graph.local_scope
                )

            # NB for developers: n_iters is chosen to be 50 to achieve
            # statistical significance.  If you are working on a guard
            # optimization, it might be a good idea to increase this number for
            # more stabiilty during development.
            latency = profile_guard_manager(
                self.guard_manager.root, output_graph.local_scope, 50
            )
            guards_log.debug("Guard eval latency = %s us", f"{latency:.2f}")
            # Note: We use `increment_toplevel` instead of `compilation_metric`
            # here.  This is because, in scenarios where `torch._dynamo.reset`
            # is invoked, the same frame ID and compile ID may be reused during
            # a new compilation cycle.  This behavior causes issues with
            # `compilation_metric`, as it expects the metric field to be empty.
            # Ideally, we would overwrite the existing entry in such cases, but
            # we currently lack an API to support overwriting metrics.  However,
            # since these situations are rare and typically impractical to
            # account for, we simply increment at the toplevel instead.
            CompileEventLogger.increment_toplevel("guard_latency_us", int(latency))

        # TODO: don't do the string rep, do something more structured here
        torch._logging.trace_structured(
            "dynamo_cpp_guards_str",
            payload_fn=lambda: f"{self.guard_manager}\nGuard latency = {latency:.2f} us",
        )
        # NB - We have to very careful of cleaning up here. Because of the
        # invalidate function, we can create a weakref finalizer that keeps
        # `self` alive for very long. Sometimes by mistake, we can run
        # invalidate for a type/object (check id_ref method) that Python can
        # leak by design, preventing us from calling the finalizer. In that
        # case, the `self` will be alive even though the cache entry will be
        # deleted (check invalidate method), which can cause a memory leak,
        # e.g., not setting output_graph = None can keep hold of nn_modules.
        self._weakrefs.clear()
        self.output_graph = None

    def compile_check_fn(self, builder, guards_out, guard_fail_fn):
        # see parallel handling of ".0" / "___implicit0" in _eval_frame.c
        largs = builder.argnames
        largs += ["**___kwargs_ignored"]

        guards_log.debug("GUARDS:")

        code_parts = []
        verbose_code_parts = []
        structured_guard_fns: list[Callable[[], dict[str, Any]]] = []

        torch_function_mode_stack_check_fn = make_torch_function_mode_stack_guard(
            self.torch_function_mode_stack
        )

        # Insert the global_state guard
        self.guard_manager.root.add_global_state_guard(["___check_global_state()"])

        self.guard_manager.root.add_torch_function_mode_stack_guard(
            self.torch_function_mode_stack,
            ["___check_torch_function_mode_stack()"],
        )
        # Clear references to torch_function modes held in the list
        self.torch_function_mode_stack = None

        def add_code_part(code_part, guard, log_only=False):
            verbose_code_part = get_verbose_code_part(code_part, guard)
            guards_log.debug("%s", verbose_code_part)

            structured_guard_fns.append(
                lambda: {
                    "code": code_part,
                    "stack": (
                        structured.from_traceback(guard.stack.summary())
                        if guard and guard.stack
                        else None
                    ),
                    "user_stack": (
                        structured.from_traceback(guard.user_stack)
                        if guard and guard.user_stack
                        else None
                    ),
                }
            )

            if verbose_guards_log.isEnabledFor(logging.DEBUG):
                maybe_stack = ""
                maybe_user_stack = ""
                if guard is not None:
                    if guard.stack:
                        maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}"
                    if guard.user_stack:
                        maybe_user_stack = (
                            f"\nUser stack:\n{''.join(guard.user_stack.format())}"
                        )
                verbose_guards_log.debug(
                    "Guard: %s%s%s",
                    code_part,
                    maybe_stack,
                    maybe_user_stack,
                )

            if not log_only:
                code_parts.append(code_part)
                verbose_code_parts.append(verbose_code_part)

        seen = set()
        for gcl in builder.code:
            for code in gcl.code_list:
                if code not in seen:
                    # If Cpp guard manager is enabled, we don't need to add to
                    # code_parts.
                    add_code_part(code, gcl.guard, True)
                    seen.add(code)

        no_tensor_aliasing_names = builder.no_tensor_aliasing_names
        check_tensors_fn = None
        check_tensors_verbose_fn = None

        if len(no_tensor_aliasing_names) > 1:
            # Install tensor aliasing guard. TENSOR_MATCH guards are already
            # installed for cpp guard manager.
            install_no_tensor_aliasing_guard(
                builder.no_tensor_aliasing_guard_managers,
                no_tensor_aliasing_names,
                ["check_no_aliasing(" + ", ".join(no_tensor_aliasing_names) + ")"],
            )

        aotautograd_guards: list[GuardEnvExpr] = (
            self.output_graph.tracing_context.guards_context.aotautograd_guards
            if self.output_graph
            else []
        )

        # TODO(anijain2305) - There is a duplicate logic in Dynamo to find
        # aliased input tensors. So most probably we don't need this here.
        # Revisit.
        for guard in aotautograd_guards:
            if isinstance(guard, DuplicateInputs):
                source_a = guard.input_source_a
                source_b = guard.input_source_b
                code_part = f"{source_a.name()} is {source_b.name()}"
                install_object_aliasing_guard(
                    builder.get_guard_manager_from_source(source_a),
                    builder.get_guard_manager_from_source(source_b),
                    [code_part],
                )
                add_code_part(code_part, None, True)
            elif isinstance(guard, StorageOverlap):
                overlapping_guard_managers = [
                    builder.get_guard_manager_from_source(s)
                    for s in guard.overlapping_sources
                ]
                non_overlapping_guard_managers = [
                    builder.get_guard_manager_from_source(s)
                    for s in guard.non_overlapping_sources
                ]
                code_part = (
                    """check_overlapping("""
                    f"""overlapping=[{", ".join(s.name() for s in guard.overlapping_sources)}], """
                    f"""non_overlapping=[{", ".join(s.name() for s in guard.non_overlapping_sources)}])"""
                )
                install_storage_overlapping_guard(
                    overlapping_guard_managers,
                    non_overlapping_guard_managers,
                    [code_part],
                )
                add_code_part(code_part, None, True)
            else:
                raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")

        # TODO: the "guard" here is actually just the top level SHAPE_ENV
        # which is useless.  Get ShapeEnv to pass in more provenance.
        for gcl in builder.shape_env_code:
            for code in gcl.code_list:
                # Shape env guards are already added for CPP guard manager in
                # SHAPE_ENV implementation.
                add_code_part(code, gcl.guard, True)

        # OK, all done generating guards
        if structured_guard_fns:
            torch._logging.trace_structured(
                "dynamo_guards", payload_fn=lambda: [f() for f in structured_guard_fns]
            )

        global_state = convert_frame.initial_global_state
        if global_state is None:
            # we should only hit this case in NopTests()
            global_state = convert_frame.GlobalStateGuard()
        closure_vars = {
            "___check_tensors": check_tensors_fn,
            "___check_tensors_verbose": check_tensors_verbose_fn,
            "___check_global_state": global_state.check,
            "___check_torch_function_mode_stack": torch_function_mode_stack_check_fn,
            **SYMPY_INTERP,
            **_get_closure_vars(),
        }

        self.guard_manager.finalize()

        globals_for_guard_fn = {"G": builder.scope["G"]}
        # Guard manager construction is complete. Ensure we did not miss to
        # insert a guard in cpp guard manager.
        assert len(code_parts) == 0

        self.guard_manager.closure_vars = closure_vars
        self.guard_manager.args = largs
        self.guard_manager.populate_code_parts_for_debugging()
        self.guard_manager.verbose_code_parts = verbose_code_parts
        # Grab only G, but preserve "G" because guards access it as "G"
        self.guard_manager.global_scope = globals_for_guard_fn
        self.guard_manager.guard_fail_fn = guard_fail_fn
        # will be populated by a non-owning reference to CacheEntry/ExtraState
        # when the CacheEntry is constructed
        self.guard_manager.cache_entry = None
        self.guard_manager.extra_state = None
        self.guard_manager.no_tensor_aliasing_sources = no_tensor_aliasing_names

    def invalidate(self, obj_str):
        # Some tests reveal that CheckFunctionManager has no attribute
        # guard_manager, but this case should not be of any concern.
        # This case doesn't seem easy to repro.
        if (
            hasattr(self, "guard_manager")
            and not isinstance(self.guard_manager, DeletedGuardManagerWrapper)
            and (cache_entry := self.guard_manager.cache_entry) is not None
            and (extra_state := self.guard_manager.extra_state) is not None
        ):
            assert isinstance(cache_entry, CacheEntry)
            assert isinstance(extra_state, ExtraState)
            reason = f"Cache line invalidated because {obj_str} got deallocated"
            deleted_guard_manager = DeletedGuardManagerWrapper(reason)
            extra_state.invalidate(cache_entry, deleted_guard_manager)
            self.guard_manager = deleted_guard_manager

    def id_ref(self, obj, obj_str):
        """add a weakref, return the id"""
        try:
            if id(obj) not in self._weakrefs:
                # We will clear the _weakrefs dict at the end of __init__
                # function, which will delete the callbacks as well. Therefore,
                # we are using a finalizer which is kept alive.
                self._weakrefs[id(obj)] = weakref.ref(obj)
                weakref.finalize(
                    obj, functools.partial(self.invalidate, obj_str=obj_str)
                )
        except TypeError:
            pass  # cannot weakref bool object
        return id(obj)

    def lookup_weakrefs(self, obj):
        """Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects"""
        if id(obj) in self._weakrefs:
            return self._weakrefs[id(obj)]
        return None


def build_guard_function(code_parts, closure_args) -> tuple[str, str]:
    from torch._inductor.utils import IndentedBuffer

    csepass = PyExprCSEPass()
    csepass.count(code_parts)

    def replace(expr: str) -> tuple[list[str], str]:
        return csepass.replace(expr)

    # Generate the inner body of the guard function.
    # i.e. if-chain of the guard expressions.
    guard_body = IndentedBuffer()
    for expr in code_parts:
        preface, expr = replace(expr)
        guard_body.writelines(preface)
        guard_body.writeline(f"if not ({expr}):")
        with guard_body.indent():
            guard_body.writeline("return False")

    # Wrap the inner body into the actual guard function.
    guard = IndentedBuffer()
    guard.writeline("def guard(L):")
    with guard.indent():
        guard.splice(guard_body)
        guard.writeline("return True")

    # Wrap the whole guard function into another function
    # with the closure variables.
    make_guard_fn = IndentedBuffer()
    make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):")
    with make_guard_fn.indent():
        make_guard_fn.splice(guard)
        make_guard_fn.writeline("return guard")

    return guard_body.getvalue(), make_guard_fn.getvalue()


def is_recompiles_enabled():
    return torch._logging._internal.log_state.is_artifact_enabled("recompiles")


def is_recompiles_verbose_enabled():
    return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose")


# this will only be used if cpp guards are disabled
def make_torch_function_mode_stack_guard(intial_stack):
    types = [type(x) for x in intial_stack]

    def check_torch_function_mode_stack():
        cur_stack = get_torch_function_mode_stack()

        if len(cur_stack) != len(types):
            return False

        for ty, mode in zip(types, cur_stack):
            if ty != type(mode):
                return False

        return True

    return check_torch_function_mode_stack


def recompilation_reason_for_no_tensor_aliasing_guard(guard_manager, scope):
    global_scope = dict(guard_manager.global_scope)
    ids_to_source = collections.defaultdict(list)
    for tensor_source in guard_manager.no_tensor_aliasing_sources:  # type: ignore[attr-defined]
        global_scope["__compile_source__"] = tensor_source
        tensor_id = id(eval(tensor_source, global_scope, scope))
        ids_to_source[tensor_id].append(tensor_source)

    duplicate_tensors = [
        f"{ids_to_source[key]}" for key in ids_to_source if len(ids_to_source[key]) > 1
    ]

    reason = ", ".join(duplicate_tensors)
    return [f"Duplicate tensors found: {reason}"]


def strip_local_scope(s: str) -> str:
    """
    Replace occurrences of L[...] with just the inner content.
    Handles both single and double quotes.

    This is to generate user friendly recompilation messages.
    """
    import re

    pattern = r"L\[\s*['\"](.*?)['\"]\s*\]"
    return re.sub(pattern, r"\1", s)


def get_guard_fail_reason_helper(
    guard_manager: GuardFn,
    f_locals: dict[str, object],
    compile_id: CompileId,
) -> str:
    """
    Return the reason why `guard_manager` failed.
    Updates `guard_failures` with the generated reason.
    Only the first failed check of guard_manager is reported.
    """
    scope = {"L": f_locals, "G": guard_manager.global_scope["G"]}
    scope.update(guard_manager.closure_vars)
    reasons: list[str] = []

    no_tensor_aliasing_check_failed = False

    verbose_code_parts: list[str] = []
    guard_debug_info = guard_manager.check_verbose(f_locals)  # type: ignore[attr-defined]
    # For test_export_with_map_cond, the check_verbose fail even without the
    # C++ guard manager. We need to fix the issue to remove the comment.
    # assert not guard_debug_info.result
    if not guard_debug_info.result:
        verbose_code_parts = guard_debug_info.verbose_code_parts
        # verbose_code_parts is either the actual reason (e.g. in case of
        # TENSOR_MATCH) or it could be a list of verbose_code_part that we
        # passed to the leaf guard at construction time. If its a list, we
        # walk through this list and find the guard that failed. This is
        # very important for symbolic shape guards which are currently
        # installed as a lambda guard and can encompass a long list of code_parts.

        if len(verbose_code_parts) == 1:
            if "Duplicate tensor found" in verbose_code_parts[0]:
                no_tensor_aliasing_check_failed = True
            else:
                reasons = verbose_code_parts
                verbose_code_parts = []

    if no_tensor_aliasing_check_failed:
        reasons = recompilation_reason_for_no_tensor_aliasing_guard(
            guard_manager, scope
        )
    else:
        for part in verbose_code_parts:
            global_scope = dict(guard_manager.global_scope)
            global_scope["__compile_source__"] = part
            with report_compile_source_on_error():
                try:
                    fail_reason = eval(part, global_scope, scope)
                except Exception:
                    if is_recompiles_verbose_enabled():
                        continue
                    else:
                        raise
            # Only ___check_tensors knows how to return a fancy fail reason;
            # for everything else we just report the code that failed

            if isinstance(fail_reason, bool) and not fail_reason:
                fail_reason = part
            if isinstance(fail_reason, str):
                reasons.append(fail_reason)
                if not is_recompiles_verbose_enabled():
                    break

    reason_str = f"{compile_id}: " + "; ".join(reasons)
    return strip_local_scope(reason_str)


def get_guard_fail_reason(
    guard_manager: GuardFn,
    code: types.CodeType,
    f_locals: dict[str, object],
    compile_id: CompileId,
) -> str:
    if isinstance(guard_manager, DeletedGuardManagerWrapper):
        return f"{compile_id}: {guard_manager.invalidation_reason}"
    reason_str = get_guard_fail_reason_helper(guard_manager, f_locals, compile_id)
    guard_failures[orig_code_map[code]].append(reason_str)

    try:
        if guard_manager.guard_fail_fn is not None:
            guard_manager.guard_fail_fn(
                GuardFail(reason_str or "unknown reason", orig_code_map[code])
            )
    except Exception:
        log.exception(
            "Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
        )

    return reason_str


def get_and_maybe_log_recompilation_reasons(
    cache_entry, frame: DynamoFrameType
) -> list[str]:
    """
    Return the list of guard failure reasons using cache_entry.
    Logs the recompilation reason if `recompiles` logging is enabled.
    Raises a RecompileError if `config.error_on_recompile` is enabled.
    """
    reasons = []
    while cache_entry is not None:
        reason = get_guard_fail_reason(
            cache_entry.guard_manager,
            cache_entry.code,
            frame.f_locals,
            cache_entry.compile_id,
        )
        if reason:
            reasons.append(reason)
        cache_entry = cache_entry.next

    code = frame.f_code

    # at least one of "recompiles" or "recompiles_verbose" is enabled
    do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled()

    if do_recompiles_log or config.error_on_recompile:
        if is_recompiles_verbose_enabled():
            failures = "\n\n".join(
                f"guard {i} failures:\n" + textwrap.indent(reason, "- ")
                for i, reason in enumerate(reasons)
            )
        else:
            failures = textwrap.indent("\n".join(reasons), "- ")
        guard_failure_details = (
            f"triggered by the following guard failure(s):\n{failures}"
        )
        message = (
            f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n"
            f"{textwrap.indent(guard_failure_details, '    ')}"
        )
        if do_recompiles_log:
            if is_recompiles_verbose_enabled():
                recompiles_verbose_log.debug(message)
            else:
                recompiles_log.debug(message)
        if config.error_on_recompile:
            raise exc.RecompileError(message)

    torch._logging.trace_structured(
        "artifact",
        metadata_fn=lambda: {
            "name": "recompile_reasons",
            "encoding": "json",
        },
        payload_fn=lambda: reasons,
    )

    return reasons


def update_diff_guard_managers_for_existing_cache_entries(cache_entry):
    first_cache_entry = cache_entry

    # On the first pass, go through the cache entries and accumulate the diff
    # guard sources. Different guard managers can fail with different sources.
    # So, we collect all of them first.
    acc_diff_guard_sources = set()
    while cache_entry is not None:
        acc_diff_guard_sources.update(
            cache_entry.guard_manager.collect_diff_guard_sources()
        )
        cache_entry = cache_entry.next

    # On the second pass, set the diff_guard_sources for each cache line to the
    # accumulated value. And the re-populate the diff guard manager.
    cache_entry = first_cache_entry
    while cache_entry is not None:
        cache_entry.guard_manager.diff_guard_sources = acc_diff_guard_sources
        cache_entry.guard_manager.populate_diff_guard_manager()
        cache_entry = cache_entry.next

    # return the accumulated sources to set up the new cache line.
    return acc_diff_guard_sources


def guard_error_hook(
    guard_manager: GuardFn,
    code: types.CodeType,
    f_locals: dict[str, object],
    index: int,
    last: bool,
):
    print(
        f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
    )
    print("lambda " + ", ".join(guard_manager.args) + ":")
    print(" ", " and\n  ".join(guard_manager.code_parts))

    print(guard_manager)

    local_scope = {"L": f_locals, **guard_manager.closure_vars}
    for guard in guard_manager.code_parts:
        try:
            eval(guard, guard_manager.global_scope, local_scope)
        except:  # noqa: B001,E722
            print(f"Malformed guard:\n{guard}")


set_guard_error_hook(guard_error_hook)


def unique(seq):
    seen = set()
    for x in seq:
        if x not in seen:
            yield x
            seen.add(x)


def make_dupe_guard(obj_source, dupe_source):
    # Note - we may end up in a situation where we invoke something like
    # def fn(x, y)
    # with fn(x, x)
    # Prior to the addition of tracking to all relevant objects, we would handle this just fine by
    # eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However,
    # with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here -
    # In the fn(x, x) example call above look like a graph with a single input.
    # In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard.

    # Note - we may not have a source, that is fine, it just means we had an object that is safe to have
    # leave unsourced - like a local list created and discharged entirely within a local scope.
    if dupe_source and dupe_source != obj_source:
        ser_source_is_local = is_from_local_source(dupe_source)
        source_is_local = is_from_local_source(obj_source)
        if is_from_flatten_script_object_source(
            dupe_source
        ) or is_from_flatten_script_object_source(obj_source):
            raise exc.UnsafeScriptObjectError(
                f"{obj_source.name()} is alising {dupe_source.name()}. This is not supported."
                f" Please do a clone for corresponding input."
            )

        # Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently
        # reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here,
        # so maybe we should do this refactor before we land this...
        # TODO(voz): Combine local and global guard builders.
        if ser_source_is_local == source_is_local:
            # Note - this is a little aggressive - these being duplicate input does not always matter.
            # However, this should always be a sound guard to add here.
            return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source)
    return None


def install_guard(*guards, skip=0):
    """
    Add dynamo guards to the current tracing context.

    Args:
        guards: guard(s) to add
        skip: number of stack frames to ignore for debug stack trace
    """
    from torch._guards import TracingContext

    collect_debug_stack = guards_log.isEnabledFor(
        logging.DEBUG
    ) or verbose_guards_log.isEnabledFor(logging.DEBUG)
    add = TracingContext.get().guards_context.dynamo_guards.add
    for guard in guards:
        assert isinstance(guard, Guard)
        add(guard, collect_debug_stack=collect_debug_stack, skip=skip + 1)