File size: 126,420 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 |
# mypy: allow-untyped-defs
"""
Core guard system for Dynamo that detects when compiled code needs to be recompiled due to
changes in program state. Guards are conditions that must remain true for previously-compiled
code to be valid for reuse.
This module provides the infrastructure for creating, managing and checking guards, including:
- Guard creation and composition
- Guard state management and invalidation
- Guard checking and failure handling
- Utilities for guard optimization and debugging
- Integration with Dynamo's compilation caching
The guard system is critical for Dynamo's ability to efficiently reuse compiled code while
maintaining correctness by detecting when recompilation is necessary due to changes in
program state, tensor properties, or control flow.
"""
from __future__ import annotations
import ast
import builtins
import collections
import dataclasses
import enum
import functools
import importlib
import inspect
import logging
import math
import sys
import textwrap
import types
import warnings
import weakref
from contextlib import contextmanager
from copy import deepcopy
from inspect import currentframe
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
from weakref import ReferenceType
import torch
import torch.overrides
import torch.utils._device
from torch._C._dynamo.eval_frame import code_framelocals_names
from torch._C._dynamo.guards import (
check_obj_id,
check_type_id,
dict_version,
DictGuardManager,
install_no_tensor_aliasing_guard,
install_object_aliasing_guard,
install_storage_overlapping_guard,
install_symbolic_shape_guard,
profile_guard_manager,
RootGuardManager,
)
from torch._dynamo.source import (
IndexedSource,
is_from_flatten_script_object_source,
is_from_local_source,
is_from_optimizer_source,
TensorProperty,
TensorPropertySource,
)
from torch._dynamo.utils import CompileEventLogger
from torch._guards import (
CompileContext,
CompileId,
DuplicateInputs,
Guard,
GuardBuilderBase,
GuardEnvExpr,
GuardSource,
Source,
StorageOverlap,
)
from torch._logging import structured
from torch._utils_internal import justknobs_check
from torch.fx.experimental.symbolic_shapes import (
EqualityConstraint,
is_symbolic,
SYMPY_INTERP,
)
from torch.utils._ordered_set import OrderedSet
from torch.utils._traceback import format_frame, report_compile_source_on_error
from torch.utils.weak import TensorWeakRef
from . import config, convert_frame, exc, mutation_guard
from .eval_frame import set_guard_error_hook
from .source import (
AttrProxySource,
AttrSource,
CallFunctionNoArgsSource,
CallMethodItemSource,
ChainedSource,
ConstantSource,
ConstDictKeySource,
DefaultsSource,
DictGetItemSource,
FlattenScriptObjectSource,
FloatTensorSource,
FSDPNNModuleSource,
GenericAttrSource,
GetItemSource,
GlobalSource,
GlobalStateSource,
GlobalWeakRefSource,
GradSource,
ListGetItemSource,
LocalSource,
NNModuleSource,
NumpyTensorSource,
OptimizerSource,
ScriptObjectQualifiedNameSource,
ShapeEnvSource,
SubclassAttrListSource,
TorchFunctionModeStackSource,
TupleIteratorGetItemSource,
TypeSource,
UnspecializedBuiltinNNModuleSource,
UnspecializedNNModuleSource,
UnspecializedParamBufferSource,
WeakRefCallSource,
)
from .types import ( # noqa: F401
CacheEntry,
DynamoFrameType,
ExtraState,
GuardedCode,
GuardFail,
GuardFn,
)
from .utils import (
builtin_dict_keys,
common_constant_types,
dict_keys,
get_custom_getattr,
get_torch_function_mode_stack,
get_torch_function_mode_stack_at,
guard_failures,
istype,
key_is_id,
key_to_id,
normalize_range_iter,
orig_code_map,
tensor_always_has_static_shape,
tuple_iterator_getitem,
tuple_iterator_len,
unpatched_nn_module_getattr,
verify_guard_fn_signature,
)
guard_manager_testing_hook_fn: Optional[Callable[[Any, Any], Any]] = None
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
if TYPE_CHECKING:
from sympy import Symbol
log = logging.getLogger(__name__)
guards_log = torch._logging.getArtifactLogger(__name__, "guards")
recompiles_log = torch._logging.getArtifactLogger(__name__, "recompiles")
recompiles_verbose_log = torch._logging.getArtifactLogger(
__name__, "recompiles_verbose"
)
verbose_guards_log = torch._logging.getArtifactLogger(__name__, "verbose_guards")
class GuardManagerWrapper:
"""
A helper class that contains the root guard manager. An instance of this
class is stored in the Dynamo cache entry, so that the cache entry can
access the RootGuardManager stored in the "root" attribute and directly call
the check_nopybind from C++.
"""
def __init__(self, root=None):
if root is None:
self.root = RootGuardManager()
else:
self.root = root
self.diff_guard_root = None
self.closure_vars = None
self.args = None
self.code_parts = []
self.verbose_code_parts = None
self.global_scope = None
self.guard_fail_fn = None
self.cache_entry = None
self.extra_state = None
self.id_matched_objs = {}
self.no_tensor_aliasing_sources = []
self.print_no_tensor_aliasing_guard = True
self.diff_guard_sources: OrderedSet[str] = OrderedSet()
@contextmanager
def _preserve_print_no_tensor_aliasing_flag(self):
self.print_no_tensor_aliasing_guard = True
try:
yield
finally:
self.print_no_tensor_aliasing_guard = True
def collect_diff_guard_sources(self):
# At the time of finalize, we have only marked guard managers with
# TENSOR_MATCH guards as diff guard managers. So, we do a tree traversal
# and collect all the nodes in the tree (branches) that lead to tensor
# guards.
# After a recompilation, some of guard managers will have a fail_count >
# 0, so we collect them as well. Later on, we accumulate the diff guard
# sources for all the guard managers.
def visit_dict_manager(node):
is_diff_guard_node = (
node.get_source() in self.diff_guard_sources or node.fail_count() > 0
)
for idx, (key_mgr, val_mgr) in sorted(
node.get_key_value_managers().items()
):
is_diff_guard_node |= visit(key_mgr) | visit(val_mgr)
if is_diff_guard_node:
self.diff_guard_sources.add(node.get_source())
return is_diff_guard_node
def visit_manager(node):
assert not isinstance(node, DictGuardManager)
is_diff_guard_node = (
node.get_source() in self.diff_guard_sources or node.fail_count() > 0
)
for child_mgr in node.get_child_managers():
is_diff_guard_node |= visit(child_mgr)
if is_diff_guard_node:
self.diff_guard_sources.add(node.get_source())
return is_diff_guard_node
def visit(node):
if node is None:
return False
if isinstance(node, DictGuardManager):
return visit_dict_manager(node)
return visit_manager(node)
visit(self.root)
return self.diff_guard_sources
def finalize(self):
self.collect_diff_guard_sources()
self.populate_diff_guard_manager()
def populate_diff_guard_manager(self):
self.diff_guard_root = self.clone_with_chosen_sources(self.diff_guard_sources)
# Ensure that that C++ side points to the updated diff guard manager.
# When a new GuardManagerWrapper is created, it does not have a
# cache_entry attribute, so it relies on the CacheEntry constructor to
# set the diff_guard_root in C++. But once it is saved in the Dynamo
# cache, C++ side adds a cache_entry attribute. On recompiles, this
# cache_entry is visible, so we update the C++ side to point to the
# update guard manager.
if self.cache_entry:
self.cache_entry.update_diff_guard_root_manager()
def clone_with_chosen_sources(self, chosen_sources):
def filter_fn(node_mgr):
return node_mgr.get_source() in chosen_sources
return self.root.clone_manager(filter_fn)
def get_guard_lines(self, guard):
guard_name = guard.__class__.__name__
parts = guard.verbose_code_parts()
parts = [guard_name + ": " + part for part in parts]
return parts
def get_manager_line(self, guard_manager, accessor_str=None):
source = guard_manager.get_source()
t = guard_manager.__class__.__name__
s = t + ": source=" + source
if accessor_str:
s += ", " + accessor_str
return s
def construct_dict_manager_string(self, mgr, body):
for idx, (key_mgr, val_mgr) in sorted(mgr.get_key_value_managers().items()):
body.writeline(f"KeyValueManager pair at index={idx}")
with body.indent():
if key_mgr:
body.writeline(f"KeyManager: {self.get_manager_line(key_mgr)}")
self.construct_manager_string(key_mgr, body)
if val_mgr:
body.writeline(f"ValueManager: {self.get_manager_line(val_mgr)}")
self.construct_manager_string(val_mgr, body)
def construct_manager_string(self, mgr, body):
with body.indent():
for guard in mgr.get_leaf_guards():
if isinstance(guard, torch._C._dynamo.guards.NO_TENSOR_ALIASING): # type: ignore[attr-defined]
if self.print_no_tensor_aliasing_guard:
self.print_no_tensor_aliasing_guard = False
body.writelines(self.get_guard_lines(guard))
else:
body.writelines(
[
guard.__class__.__name__,
]
)
else:
body.writelines(self.get_guard_lines(guard))
# This works for both DictGuardManager and SubclassedDictGuardManager
if isinstance(mgr, DictGuardManager):
self.construct_dict_manager_string(mgr, body)
# General case of GuardManager/RootGuardManager
for accessor, child_mgr in zip(
mgr.get_accessors(), mgr.get_child_managers()
):
body.writeline(
self.get_manager_line(child_mgr, f"accessed_by={accessor.repr()}")
)
self.construct_manager_string(child_mgr, body)
def __str__(self):
from torch._inductor.utils import IndentedBuffer
class IndentedBufferWithPrefix(IndentedBuffer):
def prefix(self):
return "| " * (self._indent * self.tabwidth)
def writeline(self, line, skip_prefix=False):
if skip_prefix:
super().writeline(line)
else:
super().writeline("+- " + line)
with self._preserve_print_no_tensor_aliasing_flag():
body = IndentedBufferWithPrefix()
body.tabwidth = 1
body.writeline("", skip_prefix=True)
body.writeline("TREE_GUARD_MANAGER:", skip_prefix=True)
body.writeline("RootGuardManager")
self.construct_manager_string(self.root, body)
if hasattr(self.root, "get_epilogue_lambda_guards"):
for guard in self.root.get_epilogue_lambda_guards():
body.writelines(self.get_guard_lines(guard))
return body.getvalue()
def check(self, x):
# Only needed for debugging purposes.
return self.root.check(x)
def check_verbose(self, x):
# Only needed for debugging purposes.
return self.root.check_verbose(x)
def populate_code_parts_for_debugging(self):
# This should be called when the guard manager is fully populated
tensor_aliasing_guard_seen = False
def get_code_parts(leaf_guard):
code_parts = []
for verbose_code_part in leaf_guard.verbose_code_parts():
code_part = verbose_code_part.split("#")[0].rstrip()
code_parts.append(code_part)
return code_parts
def visit(mgr):
nonlocal tensor_aliasing_guard_seen
for guard in mgr.get_leaf_guards():
if isinstance(guard, torch._C._dynamo.guards.NO_TENSOR_ALIASING): # type: ignore[attr-defined]
if not tensor_aliasing_guard_seen:
self.code_parts.extend(get_code_parts(guard))
tensor_aliasing_guard_seen = True
else:
self.code_parts.extend(get_code_parts(guard))
for child_mgr in mgr.get_child_managers():
visit(child_mgr)
visit(self.root)
def from_numpy(a):
# If not numpy array, piggy back on e.g. tensor guards to check type
# Re-enable torch function since we disable it on leaf guards
# we need it to properly construct the tensor if a default device is set
with torch.overrides._enable_torch_function():
return torch.as_tensor(a) if isinstance(a, (np.generic, np.ndarray)) else a
# For user stack printing
@functools.lru_cache(None)
def uninteresting_files():
import torch._dynamo.external_utils
import torch._dynamo.polyfills
mods = [torch._dynamo.external_utils, torch._dynamo.polyfills]
from torch._dynamo.polyfills.loader import POLYFILLED_MODULES
mods.extend(POLYFILLED_MODULES)
return {inspect.getfile(m) for m in mods}
_CLOSURE_VARS: Optional[dict[str, object]] = None
def _get_closure_vars():
global _CLOSURE_VARS
if _CLOSURE_VARS is None:
_CLOSURE_VARS = {
"___check_type_id": check_type_id,
"___check_obj_id": check_obj_id,
"___odict_getitem": collections.OrderedDict.__getitem__,
"___key_to_id": key_to_id,
"___dict_version": dict_version,
"___dict_contains": lambda a, b: dict.__contains__(b, a),
"___tuple_iterator_len": tuple_iterator_len,
"___normalize_range_iter": normalize_range_iter,
"___tuple_iterator_getitem": tuple_iterator_getitem,
"___get_torch_function_mode_stack_at": get_torch_function_mode_stack_at,
"__math_isnan": math.isnan,
"__numpy_isnan": None if np is None else np.isnan,
"inf": float("inf"),
"__load_module": importlib.import_module,
"utils_device": torch.utils._device,
"device": torch.device,
"___from_numpy": from_numpy,
"___as_tensor": torch._as_tensor_fullprec,
"torch": torch,
"inspect": inspect,
}
return _CLOSURE_VARS
def _ast_unparse(node: ast.AST) -> str:
return ast.unparse(node).replace("\n", "")
strip_function_call = torch._C._dynamo.strip_function_call
def get_verbose_code_part(code_part: str, guard: Guard) -> str:
extra = ""
if guard is not None:
if guard.user_stack:
for fs in reversed(guard.user_stack):
if fs.filename not in uninteresting_files():
extra = f" # {format_frame(fs, line=True)}"
break
elif guard.stack:
extra = f" # {format_frame(guard.stack.summary()[-1])}"
return f"{code_part:<60}{extra}"
def get_verbose_code_parts(
code_parts: Union[str | list[str]], guard: Guard
) -> list[str]:
if not isinstance(code_parts, list):
code_parts = [code_parts]
return [get_verbose_code_part(code_part, guard) for code_part in code_parts]
def convert_to_concrete_values(size_or_stride):
converted: list[Optional[int]] = []
for dim in size_or_stride:
if not is_symbolic(dim):
converted.append(dim)
else:
assert isinstance(dim, torch.SymInt)
converted.append(dim.node.maybe_as_int())
return converted
def get_tensor_guard_code_part(value, name, sizes, strides):
pytype = type(value)
dispatch_key = (
torch._C._dispatch_keys(value) | torch._C._dispatch_tls_local_include_set()
) - torch._C._dispatch_tls_local_exclude_set()
dtype = value.dtype
device_index = value.device.index
requires_grad = value.requires_grad
guard_str = (
f"check_tensor({name}, {pytype.__qualname__}, {dispatch_key}, {dtype}, "
f"device={device_index}, requires_grad={requires_grad}, size={sizes}, stride={strides})"
)
return guard_str
def get_key_index(dct, key):
# Ensure that we call dict.keys and not value.keys (which can call
# overridden keys method). In the C++ guards, we relied on PyDict_Next
# to traverse the dictionary, which uses the internal data structure and
# does not call the overridden keys method.
return list(builtin_dict_keys(dct)).index(key)
def get_key_index_source(source, index):
return f"list(dict.keys({source}))[{index}]"
@dataclasses.dataclass(frozen=True)
class NNModuleAttrAccessorInfo:
# Represents where is the attr name is present in the nn module attribute
# access
# Tells that the attribute can be accessed via __dict__
present_in_generic_dict: bool = False
# Either the actual name or _parameters/_buffers/_modules
l1_key: Optional[str] = None
# Actual paramter/buffer/submodule name
l2_key: Optional[str] = None
def getitem_on_dict_manager(
source, base_guard_manager, base_example_value, example_value, guard_manager_enum
):
base_source_name = source.base.name()
if isinstance(source.index, ConstDictKeySource):
index = source.index.index
else:
assert isinstance(base_example_value, dict)
index = get_key_index(base_example_value, source.index)
key_source = get_key_index_source(base_source_name, index)
# Ensure that we call dict.keys and not value.keys (which can call
# overridden keys method). In the C++ guards, we relied on PyDict_Next
# to traverse the dictionary, which uses the internal data structure and
# does not call the overridden keys method.
key_example_value = list(builtin_dict_keys(base_example_value))[index]
if isinstance(key_example_value, (int, str)):
value_source = f"{base_source_name}[{key_example_value!r}]"
else:
value_source = f"{base_source_name}[{key_source}]"
if not isinstance(source.index, ConstDictKeySource):
# We have to insert a key manager guard here
# TODO - source debug string is probably wrong here.
base_guard_manager.get_key_manager(
index=index,
source=key_source,
example_value=source.index,
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
).add_equals_match_guard(
source.index, [f"{key_source} == {key_example_value!r}"]
)
return base_guard_manager.get_value_manager(
index=index,
source=value_source,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
def match_on_id_for_tensor(guard):
source = guard.originating_source
# For numpy tensors, always use TENSOR_MATCH because __from_numpy leads
# to a new tensor everytime and therefore id differs.
if isinstance(source, NumpyTensorSource):
return False
if guard.is_specialized_nn_module():
return True
return source.is_dict_key() and not isinstance(source, GradSource)
# The ready to eval generated code (possibly multiple parts) for a guard, plus
# the original guard object that created it for provenance
@dataclasses.dataclass
class GuardCodeList:
code_list: list[str]
guard: Guard
class GuardManagerType(enum.Enum):
GUARD_MANAGER = 1
DICT_GUARD_MANAGER = 2
@functools.lru_cache(None)
def code_framelocals_names_reversed_cached(code: types.CodeType):
return list(reversed(code_framelocals_names(code)))
class GuardBuilder(GuardBuilderBase):
def __init__(
self,
f_code: types.CodeType,
id_ref: Callable[[Any, str], str],
source_ref: Callable[[Source], str],
lookup_weakrefs: Callable[[object], ReferenceType[object]],
local_scope: dict[str, object],
global_scope: dict[str, object],
guard_manager: GuardManagerWrapper,
check_fn_manager: CheckFunctionManager,
):
self.f_code = f_code
self.id_ref = id_ref
self.source_ref = source_ref
self.lookup_weakrefs = lookup_weakrefs
self.scope: dict[str, dict[str, object]] = {"L": local_scope, "G": global_scope}
self.scope["__builtins__"] = builtins.__dict__.copy()
for (
name,
package_module,
) in torch.package.package_importer._package_imported_modules.items():
name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
# Write the package module into the scope so that we can import it
self.scope["__builtins__"][name] = package_module
# Write the demangled name to the scope so that we can use it
self.scope[name] = package_module
self.guard_manager = guard_manager
self.argnames: list[str] = []
# Code is python expression strings generated for each guard
self.code: list[GuardCodeList] = []
# shape_env_code is only used by builder and is used for
# shape env code. This exists only because we need to make sure
# shape env guards get run after tensor match guards (since the
# tensor match guards make sure we actually have tensors)
self.shape_env_code: list[GuardCodeList] = []
# Collect the guard managers and debug info to insert no tensor aliasing
# guards.
self.no_tensor_aliasing_names: list[str] = []
self.no_tensor_aliasing_guard_managers: list[GuardManagerWrapper] = []
self.check_fn_manager: CheckFunctionManager = check_fn_manager
# Collect the ids of dicts which need key order guarding. source_name is
# not sufficient because for nn modules, we can have different sources
# to access the same object - self._module["param"] is same as
# self.param.
self.key_order_guarded_dict_ids = set()
for source_name in self.check_fn_manager.output_graph.guard_on_key_order:
self.key_order_guarded_dict_ids.add(id(self.get(source_name)))
# Keep track of weak references of objects with ID_MATCH guard. This
# info is stored alongside optimized_code and guard_manager and is used to
# limit the number of cache entries with same ID_MATCH'd object.
self.id_matched_objs: dict[str, ReferenceType[object]] = {}
# Save the guard managers to avoid repeatedly traversing sources.
self._cached_guard_managers: dict[
str, torch._C._dynamo.guards.GuardManager
] = {}
self._cached_duplicate_input_guards: set[tuple[str, str]] = set()
def guard_on_dict_keys_and_ignore_order(self, example_value, guard):
dict_mgr = self.get_guard_manager(guard)
if isinstance(dict_mgr, DictGuardManager):
raise NotImplementedError(
"Not expecting a DictGuardManager. Seems like Dynamo incorrectly "
f"added the dict to tx.output.guard_on_key_order for {guard.name}"
)
# Iterate over the dicts and install a dict_getitem_manager.
dict_source = guard.originating_source.name()
# Ensure that we call dict.keys and not value.keys (which can call
# overridden keys method). In the C++ guards, we relied on PyDict_Next
# to traverse the dictionary, which uses the internal data structure and
# does not call the overridden keys method.
for key in builtin_dict_keys(example_value):
value = example_value[key]
value_source = DictGetItemSource(guard.originating_source, index=key)
guard_manager_enum = self.get_guard_manager_type(
value_source, example_value
)
dict_mgr.dict_getitem_manager(
key=key,
source=f"{dict_source}[{key!r}]",
example_value=value,
guard_manager_enum=guard_manager_enum,
)
def guard_on_dict_keys_and_order(self, value, guard):
# Add key managers for the DictGuardManager. Then add either an
# ID_MATCH or EQUALS_MATCH guard on the key.
dict_mgr = self.get_guard_manager(guard)
if not isinstance(dict_mgr, DictGuardManager):
raise NotImplementedError(
"Expecting a DictGuardManager. Seems like Dynamo forgot "
f"to set the right guard manager enum for {guard.name}"
)
assert isinstance(dict_mgr, DictGuardManager)
# Ensure that we call dict.keys and not value.keys (which can call
# overridden keys method). In the C++ guards, we relied on PyDict_Next
# to traverse the dictionary, which uses the internal data structure and
# does not call the overridden keys method.
for idx, key in enumerate(builtin_dict_keys(value)):
key_source = get_key_index_source(guard.name, idx)
key_manager = dict_mgr.get_key_manager(
index=idx,
source=key_source,
example_value=key,
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
)
if key_is_id(key):
# Install ID_MATCH guard
id_val = self.id_ref(key, key_source)
key_manager.add_id_match_guard(
id_val,
get_verbose_code_parts(
f"__check_obj_id({key_source}, {id_val})", guard
),
)
else:
# Install EQUALS_MATCH guard
key_manager.add_equals_match_guard(
key, get_verbose_code_parts(f"{key_source} == {key!r}", guard)
)
@staticmethod
def _get_generic_dict_manager_example_value(example_value):
# due to a bug in 3.13.0 (introduced by https://github.com/python/cpython/pull/116115,
# reported in https://github.com/python/cpython/issues/125608,
# fixed by https://github.com/python/cpython/pull/125611), we cannot take
# advantage of __dict__ versions to speed up guard checks.
if (
config.issue_3_13_0_warning
and sys.version_info >= (3, 13)
and sys.version_info < (3, 13, 1)
):
warnings.warn(
"Guards may run slower on Python 3.13.0. Consider upgrading to Python 3.13.1+.",
RuntimeWarning,
)
return None
return example_value
def getattr_on_nn_module(
self,
source,
base_guard_manager,
base_example_value,
example_value,
base_source_name,
source_name,
guard_manager_enum,
):
"""
This tries to avoid calling the expensive nn module custom getattr method by
checking if the attribute is accessible via __dict__. For attributes that
are not accessible via __dict__ (like descriptors), we fallback to
PyObject_GetAttr.
There are two cases that we optimize for
1) attributes present directly in __dict__, e.g training.
2) parameters/buffers/modules - they can be accessed via _parameters,
_buffers, _modules keys in __dict__. For example, mod.linear can be
accessed as mod.__dict__["_parameters"]["linear"]
The most common and expensive case for nn module guards is of type
mod.submod1.submod2.submod3.training. We avoid the python getattr of nn
modules by going through the __dict__.
"""
def getitem_on_dict_mgr(
mgr, key, source_name, base_example_value, example_value, guard_manager_enum
):
if isinstance(mgr, DictGuardManager):
# Case where the user code relies on key order, e.g.,
# named_parameters
index = get_key_index(base_example_value, key)
# Install the key manager and add equals match guard
key_source = f"list(dict.keys({source_name}))[{index!r}]"
mgr.get_key_manager(
index=index,
source=key_source,
example_value=key,
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
).add_equals_match_guard(key, [f"{key_source} == {key!r}"])
# Install the value manager
return mgr.get_value_manager(
index=index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
return mgr.dict_getitem_manager(
key=key,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
attr_name = source.member
mod_dict = base_example_value.__dict__
all_class_attribute_names: set[str] = set()
for x in inspect.getmro(base_example_value.__class__):
all_class_attribute_names.update(x.__dict__.keys())
accessor_info = NNModuleAttrAccessorInfo(False, None, None)
if attr_name in mod_dict:
accessor_info = NNModuleAttrAccessorInfo(True, attr_name, None)
elif "_parameters" in mod_dict and attr_name in mod_dict["_parameters"]:
accessor_info = NNModuleAttrAccessorInfo(True, "_parameters", attr_name)
elif "_buffers" in mod_dict and attr_name in mod_dict["_buffers"]:
accessor_info = NNModuleAttrAccessorInfo(True, "_buffers", attr_name)
elif (
attr_name not in all_class_attribute_names
and "_modules" in mod_dict
and attr_name in mod_dict["_modules"]
):
# Check test_attr_precedence test - instance attributes always take precedence unless its an nn.Module.
accessor_info = NNModuleAttrAccessorInfo(True, "_modules", attr_name)
if not accessor_info.present_in_generic_dict:
# The attribute can be accessed by __getattribute__ call, so rely on
# PyObject_GetAttr
return base_guard_manager.getattr_manager(
attr=source.member,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
assert accessor_info.l1_key
l1_key = accessor_info.l1_key
l2_key = accessor_info.l2_key
# Set source strings for debug info
mod_dict_source = f"{base_source_name}.__dict__"
l1_source_name = l2_source_name = None
l1_value = l2_value = None
l1_guard_manager_enum = l2_guard_manager_enum = None
if l2_key:
l1_source = AttrSource(source.base, l1_key)
l1_source_name = l1_source.name()
l1_value = mod_dict[l1_key]
# do not guard on key order for _parameters etc unless the user code
# actually needs the key order (e.g. calling named_parameters)
l1_guard_manager_enum = self.get_guard_manager_type(l1_source, l1_value)
l2_source_name = source_name
l2_value = example_value
l2_guard_manager_enum = self.get_guard_manager_type(
source, example_value
)
else:
l1_source_name = source_name
l1_value = example_value
l1_guard_manager_enum = self.get_guard_manager_type(
source, example_value
)
# Get __dict__ accessor. No need to guard on dict key order, so use base
# Guard Manager
mod_generic_dict_manager = base_guard_manager.get_generic_dict_manager(
source=mod_dict_source,
example_value=self._get_generic_dict_manager_example_value(mod_dict),
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
)
l1_mgr = getitem_on_dict_mgr(
mgr=mod_generic_dict_manager,
key=l1_key,
source_name=l1_source_name,
base_example_value=mod_dict,
example_value=l1_value,
guard_manager_enum=l1_guard_manager_enum,
)
if l2_key:
return getitem_on_dict_mgr(
mgr=l1_mgr,
key=l2_key,
source_name=l2_source_name,
base_example_value=l1_value,
example_value=l2_value,
guard_manager_enum=l2_guard_manager_enum,
)
return l1_mgr
def requires_key_order_guarding(self, source):
source_name = source.name()
if source_name == "":
return False
obj_id = id(self.get(source_name))
return obj_id in self.key_order_guarded_dict_ids
def get_guard_manager_type(self, source, example_value):
guard_manager_enum = GuardManagerType.GUARD_MANAGER
if self.requires_key_order_guarding(source):
# Fix this if condition
if isinstance(example_value, dict_keys):
guard_manager_enum = GuardManagerType.DICT_GUARD_MANAGER
else:
assert isinstance(example_value, dict)
guard_manager_enum = GuardManagerType.DICT_GUARD_MANAGER
return guard_manager_enum
def manager_guards_on_keys(self, mgr_enum):
return mgr_enum == GuardManagerType.DICT_GUARD_MANAGER
def get_global_guard_manager(self):
return self.guard_manager.root.globals_dict_manager(
f_globals=self.scope["G"],
source="G",
example_value=self.scope["G"],
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
)
def get_guard_manager_from_source(self, source):
root_guard_manager = self.guard_manager.root
example_value = None
source_name = source.name()
if source_name != "" and source_name in self._cached_guard_managers:
return self._cached_guard_managers[source_name]
if source_name != "":
example_value = self.get(source_name)
guard_manager_enum = self.get_guard_manager_type(source, example_value)
# Get base manager related information
base_source_name = None
base_example_value = None
base_guard_manager = None
base_guard_manager_enum = GuardManagerType.GUARD_MANAGER
if isinstance(source, ChainedSource):
base_source_name = source.base.name()
base_example_value = self.get(base_source_name)
base_guard_manager = self.get_guard_manager_from_source(source.base)
base_guard_manager_enum = self.get_guard_manager_type(
source.base, base_example_value
)
# Use istype instead of isinstance to check for exact type of source.
if istype(source, LocalSource):
# Refer to index in the frame's localsplus directly.
# NOTE: name order for a code object doesn't change.
# NOTE: we need to find the LAST matching index because <= 3.10 contains
# duplicate names in the case of cells: a name can be both local and cell
# and will take up 2 slots of the frame's localsplus. The correct behavior
# is to refer to the cell, which has a higher index.
if config.enable_cpp_framelocals_guard_eval:
framelocals_names_reversed = code_framelocals_names_reversed_cached(
self.f_code
)
framelocals_idx = (
len(framelocals_names_reversed)
- framelocals_names_reversed.index(source.local_name)
- 1
)
out = root_guard_manager.framelocals_manager(
key=(source.local_name, framelocals_idx),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
out = root_guard_manager.dict_getitem_manager(
key=source.local_name,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GlobalSource):
# Global manager accepts a dict but it is not a DictGuardManager
# because globals dict is big and we typically guard on a very
# selected items on globals.
out = self.get_global_guard_manager().dict_getitem_manager(
key=source.global_name,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GlobalWeakRefSource):
out = self.get_global_guard_manager().global_weakref_manager(
global_name=source.global_name,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GlobalStateSource):
# Don't do anything here. We guard on global state completely in
# C++. So just return the root mgr.
return root_guard_manager
elif istype(source, ShapeEnvSource):
return root_guard_manager
elif istype(source, TypeSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.type_manager(
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(
source,
(
OptimizerSource,
NNModuleSource,
UnspecializedNNModuleSource,
UnspecializedBuiltinNNModuleSource,
FSDPNNModuleSource,
),
):
assert base_guard_manager # to make mypy happy
out = base_guard_manager
elif istype(source, TorchFunctionModeStackSource):
out = root_guard_manager.lambda_manager(
python_lambda=lambda _: get_torch_function_mode_stack_at(
source._get_index()
),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GradSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.grad_manager(
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GenericAttrSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.generic_getattr_manager(
attr=source.member,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, (AttrSource, UnspecializedParamBufferSource)):
assert base_guard_manager # to make mypy happy
if (
isinstance(base_example_value, torch.nn.Module)
and get_custom_getattr(base_example_value)
is unpatched_nn_module_getattr
):
out = self.getattr_on_nn_module(
source,
base_guard_manager,
base_example_value,
example_value,
base_source_name,
source_name,
guard_manager_enum,
)
else:
out = base_guard_manager.getattr_manager(
attr=source.member,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, DictGetItemSource):
assert base_guard_manager # to make mypy happy
assert isinstance(base_example_value, (dict, collections.OrderedDict))
if isinstance(base_guard_manager, DictGuardManager):
assert self.manager_guards_on_keys(base_guard_manager_enum)
out = getitem_on_dict_manager(
source,
base_guard_manager,
base_example_value,
example_value,
guard_manager_enum,
)
else:
if isinstance(source.index, ConstDictKeySource):
raise RuntimeError(
"Expecting clean index here. Likely Dynamo forgot to mark"
" a dict as guard_on_key_order"
)
out = base_guard_manager.dict_getitem_manager(
key=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, TensorPropertySource):
out = getattr(
base_guard_manager,
f"tensor_property_{source.prop.name.lower()}_manager",
)(
idx=source.idx,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, IndexedSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.indexed_manager(
idx=source.idx,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, ListGetItemSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.list_getitem_manager(
key=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, GetItemSource):
assert base_guard_manager # to make mypy happy
assert not isinstance(
base_example_value, (dict, collections.OrderedDict)
), "Use DictGetItemSource"
if isinstance(base_example_value, list) and not source.index_is_slice:
out = base_guard_manager.list_getitem_manager(
key=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif isinstance(base_example_value, tuple) and not source.index_is_slice:
out = base_guard_manager.tuple_getitem_manager(
key=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
index = source.index
if source.index_is_slice:
index = source.unpack_slice()
out = base_guard_manager.getitem_manager(
key=index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, DefaultsSource):
assert base_guard_manager # to make mypy happy
assert callable(base_example_value)
if not source.is_kw:
out = base_guard_manager.func_defaults_manager(
source=base_source_name,
example_value=base_example_value.__defaults__,
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
).getitem_manager(
key=source.idx_key,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
# kwdefauts is a dict, so use a DictGuardManager
kwdefaults = base_example_value.__kwdefaults__
assert base_source_name is not None
kw_source = base_source_name + ".__kwdefaults__"
# kwdefaults is a dict. No need to guard on dict order.
dict_mgr = base_guard_manager.func_kwdefaults_manager(
source=kw_source,
example_value=kwdefaults,
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
)
assert not isinstance(dict_mgr, DictGuardManager)
out = dict_mgr.dict_getitem_manager(
key=source.idx_key,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, NumpyTensorSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=from_numpy,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, SubclassAttrListSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: x.__tensor_flatten__()[0],
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, FlattenScriptObjectSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: x.__obj_flatten__(),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, ScriptObjectQualifiedNameSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: x._type().qualified_name(),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, AttrProxySource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: x.get_base(),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, CallMethodItemSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: x.item(),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, FloatTensorSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.lambda_manager(
python_lambda=lambda x: torch._as_tensor_fullprec(x),
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, TupleIteratorGetItemSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.tuple_iterator_getitem_manager(
index=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif isinstance(source, ConstDictKeySource):
if not isinstance(base_guard_manager, DictGuardManager):
raise AssertionError(
"ConstDictKeySource can only work on DictGuardManager"
)
out = base_guard_manager.get_key_manager(
index=source.index,
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, WeakRefCallSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.weakref_call_manager(
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
elif istype(source, CallFunctionNoArgsSource):
assert base_guard_manager # to make mypy happy
out = base_guard_manager.call_function_no_args_manager(
source=source_name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
raise AssertionError(
f"missing guard manager builder {source} - {source.name()}"
)
self._cached_guard_managers[source.name()] = out
return out
def get_guard_manager(self, guard: Guard):
return self.get_guard_manager_from_source(guard.originating_source)
def add_python_lambda_leaf_guard_to_root(
self,
code_parts,
verbose_code_parts,
closure_vars=None,
is_epilogue=True,
):
if closure_vars is None:
closure_vars = _get_closure_vars()
# Adds a lambda leaf guard to the root guard manager. It wraps the
# code_parts in a function object which is then passed on to the leaf
# guard.
make_guard_fn_args = ", ".join(closure_vars.keys())
_guard_body, pycode = build_guard_function(code_parts, make_guard_fn_args)
out: dict[str, Any] = {}
globals_for_guard_fn = {"G": self.scope["G"]}
guards_log.debug("Python shape guard function:\n%s", pycode)
exec(pycode, globals_for_guard_fn, out)
guard_fn = out["___make_guard_fn"](*closure_vars.values())
if is_epilogue:
# Epilogue guards are run after all the other guards have finished.
# If epilogue guards contain a getattr or getitem access, one of the
# other guards would fail preventing the epilogue guards to run.
self.guard_manager.root.add_epilogue_lambda_guard(
guard_fn, verbose_code_parts
)
else:
self.guard_manager.root.add_lambda_guard(guard_fn, verbose_code_parts)
# Warning: use this with care! This lets you access what the current
# value of the value you are guarding on is. You probably don't want
# to actually durably save this value though (because it's specific
# to this frame!) Instead, you should be reading out some property
# (like its type) which is what you permanently install into the
# guard code.
def get(self, name: str, closure_vars: Optional[dict[str, Any]] = None) -> Any:
if closure_vars is None:
closure_vars = _get_closure_vars()
return eval(name, self.scope, closure_vars)
# Registers the usage of the source name referenced by the
# string (or stored in the Guard) as being guarded upon. It's important
# to call this before generating some code that makes use of 'guard',
# because without this call, we won't actually bind the variable
# you reference in the actual guard closure (oops!)
def arg_ref(self, guard: Union[str, Guard]) -> str:
name: str
if isinstance(guard, str):
name = guard
else:
name = guard.name
base = strip_function_call(name)
if base not in self.argnames:
is_valid = torch._C._dynamo.is_valid_var_name(base)
if is_valid:
if is_valid == 2:
log.warning("invalid var name: %s", guard)
self.argnames.append(base)
return name
def _guard_on_attribute(self, guard: Guard, attr_name: str, guard_fn):
attr_source = AttrSource(guard.originating_source, attr_name)
# Copy the stack info
new_guard = Guard(
attr_source, guard_fn, stack=guard.stack, user_stack=guard.user_stack
)
new_guard.create(self)
# Note: the order of the guards in this file matters since we sort guards on the same object by lineno
def HASATTR(self, guard: Guard):
source = guard.originating_source
if isinstance(source, NNModuleSource):
source = source.base
assert isinstance(source, AttrSource), f"invalid source {guard.name}"
base_source = source.base
base = base_source.name()
attr = source.member
ref = self.arg_ref(base)
val = hasattr(self.get(base), attr)
code = None
if val:
code = f"hasattr({ref}, {attr!r})"
else:
code = f"not hasattr({ref}, {attr!r})"
self._set_guard_export_info(
guard, [code], provided_guarded_object=self.get(base)
)
base_manager = self.get_guard_manager_from_source(base_source)
if val:
# Just install a getattr manager. GetAttrGuardAccessor itself
# acts as hasattr guard.
example_value = self.get(source.name())
base_example_value = self.get(base)
guard_manager_enum = self.get_guard_manager_type(source, example_value)
# if the base value is nn.Module, check if we can speedup the
# guard by going through __dict__ attrs.
if (
isinstance(base_example_value, torch.nn.Module)
and get_custom_getattr(base_example_value)
is unpatched_nn_module_getattr
):
return self.getattr_on_nn_module(
source,
base_manager,
base_example_value,
example_value,
base,
source.name(),
guard_manager_enum,
)
else:
base_manager.getattr_manager(
attr=attr,
source=guard.name,
example_value=example_value,
guard_manager_enum=guard_manager_enum,
)
else:
base_manager.add_no_hasattr_guard(attr, get_verbose_code_parts(code, guard))
def NOT_PRESENT_IN_GENERIC_DICT(self, guard: Guard, attr=None) -> None:
assert attr is not None
ref = self.arg_ref(guard)
val = self.get(guard.name)
assert isinstance(val, torch.nn.Module)
base_manager = self.get_guard_manager(guard)
mod_dict_source = f"{guard.name}.__dict__"
mod_generic_dict_manager = base_manager.get_generic_dict_manager(
source=mod_dict_source,
example_value=self._get_generic_dict_manager_example_value(val.__dict__),
guard_manager_enum=GuardManagerType.GUARD_MANAGER,
)
code = f"not ___dict_contains({attr!r}, {ref}.__dict__)"
mod_generic_dict_manager.add_dict_contains_guard(
False, attr, get_verbose_code_parts(code, guard)
)
def TYPE_MATCH(self, guard: Guard) -> None:
# ___check_type_id is same as `id(type(x)) == y`
t = type(self.get(guard.name))
obj_id = self.id_ref(t, f"type({guard.name})")
code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
self._set_guard_export_info(guard, [code])
self.get_guard_manager(guard).add_type_match_guard(
obj_id, get_verbose_code_parts(code, guard)
)
def DICT_VERSION(self, guard: Guard):
# ___check_dict_version is same as `dict_version(x) == y`
ref = self.arg_ref(guard)
val = self.get(guard.name)
version = dict_version(self.get(guard.name))
code = f"___dict_version({ref}) == {version}"
self._set_guard_export_info(guard, [code])
# TODO(anijain2305) - Delete this when DictGuardManager uses tags
# for dicts.
self.get_guard_manager(guard).add_dict_version_guard(
val, get_verbose_code_parts(code, guard)
)
def DICT_CONTAINS(self, guard: Guard, key: str, invert: bool):
dict_ref = self.arg_ref(guard)
maybe_not = "not " if invert else ""
code = f"{maybe_not}___dict_contains({key!r}, {dict_ref})"
self._set_guard_export_info(guard, [code])
self.get_guard_manager(guard).add_dict_contains_guard(
not invert, key, get_verbose_code_parts(code, guard)
)
def ID_MATCH(self, guard: Guard):
# ___check_obj_id is same as `id(x) == y`
if isinstance(guard.originating_source, TypeSource):
# optional optimization to produce cleaner/faster guard code
return self.TYPE_MATCH(
Guard(guard.originating_source.base, GuardBuilder.TYPE_MATCH) # type: ignore[arg-type]
)
ref = self.arg_ref(guard)
val = self.get(guard.name)
id_val = self.id_ref(val, guard.name)
code = f"___check_obj_id({ref}, {id_val})"
self._set_guard_export_info(guard, [code])
self.get_guard_manager(guard).add_id_match_guard(
id_val, get_verbose_code_parts(code, guard)
)
# Keep track of ID_MATCH'd objects. This will be used to modify the
# cache size logic
if isinstance(guard.originating_source, LocalSource):
# TODO(anijain2305) - This is currently restricted to nn.Module objects
# because many other ID_MATCH'd objects fail - like DeviceMesh.
# Increase the scope of ID_MATCH'd objects.
if isinstance(val, torch.nn.Module):
local_name = guard.originating_source.local_name
weak_id = self.lookup_weakrefs(val)
if weak_id is not None:
self.id_matched_objs[local_name] = weak_id
def NOT_NONE_MATCH(self, guard: Guard, value=None):
ref = self.arg_ref(guard)
val = self.get(guard.name)
assert isinstance(val, torch.Tensor)
code = f"{ref} is not None"
self._set_guard_export_info(guard, [code])
self.get_guard_manager(guard).add_not_none_guard(
get_verbose_code_parts(code, guard)
)
def DISPATCH_KEY_SET_MATCH(self, guard: Guard):
ref = self.arg_ref(guard)
val = self.get(guard.name)
assert isinstance(val, torch._C.DispatchKeySet)
code_parts = f"{ref}.raw_repr() == {val!r}.raw_repr()"
self.get_guard_manager(guard).add_dispatch_key_set_guard(
val, get_verbose_code_parts(code_parts, guard)
)
def NAME_MATCH(self, guard: Guard):
self._guard_on_attribute(guard, "__name__", GuardBuilder.EQUALS_MATCH)
def DATA_PTR_MATCH(self, guard: Guard):
# C++ guard has the type check internally
obj = self.get(guard.name)
code = f"{self.arg_ref(guard)}.data_ptr() == {obj.data_ptr()}"
self._set_guard_export_info(guard, [code])
self.get_guard_manager(guard).add_data_ptr_guard(
obj, get_verbose_code_parts(code, guard)
)
def DUAL_LEVEL(self, guard: Guard):
# Invalidate dual level if current dual level is different than the one
# in the fx graph
dual_level = torch.autograd.forward_ad._current_level
code = [f"torch.autograd.forward_ad._current_level == {dual_level}"]
self._set_guard_export_info(guard, [code])
# TODO(anijain2305) - Consider this moving this guard to C++
forward_ad = torch.autograd.forward_ad
def fn(x):
return forward_ad._current_level == dual_level
self.guard_manager.root.add_lambda_guard(
fn, get_verbose_code_parts(code, guard)
)
def FUNCTORCH_STACK_MATCH(self, guard: Guard):
# Invalidate functorch code if current level is different than
# the one when FX graph was generated
cis = torch._functorch.pyfunctorch.retrieve_all_functorch_interpreters()
states = [ci.get_state() for ci in cis]
code = [f"torch._functorch.pyfunctorch.compare_functorch_state({states})"]
self._set_guard_export_info(guard, code)
# TODO(anijain2305) - Consider this moving this guard to C++
compare_fn = torch._functorch.pyfunctorch.compare_functorch_state
def fn(x):
return compare_fn(states)
self.guard_manager.root.add_lambda_guard(
fn, get_verbose_code_parts(code, guard)
)
def TENSOR_SUBCLASS_METADATA_MATCH(self, guard: Guard):
value = self.get(guard.name)
original_metadata = deepcopy(self.get(guard.name).__tensor_flatten__()[1])
if hasattr(value, "__metadata_guard__"):
verify_guard_fn_signature(value)
def metadata_checker(x):
return value.__metadata_guard__(
original_metadata, x.__tensor_flatten__()[1]
)
else:
def metadata_checker(x):
return x.__tensor_flatten__()[1] == original_metadata
global_name = f"___check_metadata_{id(metadata_checker)}_c{CompileContext.current_compile_id()}"
self.get_guard_manager(guard).add_lambda_guard(
metadata_checker, get_verbose_code_parts(global_name, guard)
)
def EQUALS_MATCH(self, guard: Guard):
ref = self.arg_ref(guard)
val = self.get(guard.name)
if np:
np_types: tuple[type[Any], ...] = (
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
np.float16,
np.float32,
np.float64,
)
else:
np_types = ()
ok_mutable_types = (list, set)
ok_types = tuple(
common_constant_types
| {
type,
tuple,
frozenset,
slice,
range,
dict_keys,
torch.Size,
*np_types,
*ok_mutable_types,
}
)
if torch.distributed.is_available():
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor.placement_types import (
Partial,
Replicate,
Shard,
)
ok_types = ok_types + (
Shard,
Replicate,
Partial,
DeviceMesh,
)
import torch.utils._pytree as pytree
assert istype(val, ok_types) or pytree.is_constant_class(type(val)), (
f"Unexpected type {type(val)}"
)
# Special case for nan because float("nan") == float("nan") evaluates to False
if istype(val, float) and math.isnan(val):
self.TYPE_MATCH(guard)
code = []
code.append(f"__math_isnan({ref})")
self._set_guard_export_info(guard, code)
self.get_guard_manager(guard).add_lambda_guard(
_get_closure_vars()["__math_isnan"],
get_verbose_code_parts(code, guard),
)
return
# Python math library doesn't support complex nan, so we need to use numpy
if istype(val, complex) and np.isnan(val):
self.TYPE_MATCH(guard)
code = []
code.append(f"__numpy_isnan({ref})")
self._set_guard_export_info(guard, code)
self.get_guard_manager(guard).add_lambda_guard(
_get_closure_vars()["__numpy_isnan"],
get_verbose_code_parts(code, guard),
)
return
# Construct a debug string to put into the c++ equals match guard.
code = [f"{ref} == {val!r}"]
if istype(val, ok_mutable_types):
# C++ guards perform a pointer equality check to speedup guards, but the assumption is that the object
# is immutable. For a few corner cases like sets and lists, we make a deepcopy to purposefully fail the
# pointer equality check.
val = deepcopy(val)
self.get_guard_manager(guard).add_equals_match_guard(
val, get_verbose_code_parts(code, guard)
)
self._set_guard_export_info(guard, code)
return
def CONSTANT_MATCH(self, guard: Guard):
val = self.get(guard.name)
if istype(val, (bool, type(None), types.CodeType)):
self.ID_MATCH(guard)
else:
self.EQUALS_MATCH(guard)
def NN_MODULE(self, guard: Guard):
self.ID_MATCH(guard)
val = self.get(guard.name)
if hasattr(val, "training"):
assert istype(val.training, bool)
self._guard_on_attribute(guard, "training", GuardBuilder.CONSTANT_MATCH)
else:
exc.unimplemented_v2(
gb_type="Attempted to guard on uninitialized nn.Module",
context="",
explanation="Attempted to setup an NN_MODULE guard on uninitialized "
f"nn.Module subclass `{type(val)}`.",
hints=[
"Ensure the `nn.Module` subclass instance has called `super().__init__()`.",
],
)
def FUNCTION_MATCH(self, guard: Guard):
"""things like torch.add and user defined functions"""
return self.ID_MATCH(guard)
def CLOSURE_MATCH(self, guard: Guard):
"""matches a closure by __code__ id."""
val = self.get(guard.name)
# Strictly only want user-defined functions
if type(val) == types.FunctionType and hasattr(val, "__code__"):
self._guard_on_attribute(guard, "__code__", GuardBuilder.HASATTR)
self._guard_on_attribute(guard, "__code__", GuardBuilder.FUNCTION_MATCH)
else:
self.FUNCTION_MATCH(guard)
def BUILTIN_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def PYMODULE_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def SEQUENCE_LENGTH(self, guard):
# This guard is used to check length of PySequence objects like list,
# tuple, collections.deque etc
ref = self.arg_ref(guard)
value = self.get(guard.name)
if not isinstance(value, dict):
# C++ DICT_LENGTH checks for type
self.TYPE_MATCH(guard)
code = []
if len(value) == 0:
code.append(f"not {ref}")
else:
code.append(f"len({ref}) == {len(value)}")
self._set_guard_export_info(guard, code)
if isinstance(value, dict):
self.get_guard_manager(guard).add_dict_length_check_guard(
len(value), get_verbose_code_parts(code, guard)
)
else:
self.get_guard_manager(guard).add_length_check_guard(
len(value), get_verbose_code_parts(code, guard)
)
def TUPLE_ITERATOR_LEN(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = []
code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
self._set_guard_export_info(guard, code)
t = type(value)
obj_id = self.id_ref(t, f"type({guard.name})")
self.get_guard_manager(guard).add_tuple_iterator_length_guard(
tuple_iterator_len(value), obj_id, get_verbose_code_parts(code, guard)
)
def RANGE_ITERATOR_MATCH(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = []
normalized_range_iter = normalize_range_iter(value)
code.append(f"___normalize_range_iter({ref}) == {normalized_range_iter}")
self._set_guard_export_info(guard, code)
t = type(value)
obj_id = self.id_ref(t, f"type({guard.name})")
start, stop, step = normalized_range_iter
self.get_guard_manager(guard).add_range_iterator_match_guard(
start, stop, step, obj_id, get_verbose_code_parts(code, guard)
)
# TODO(voz): Deduplicate w/ AOTAutograd dupe input guards
def DUPLICATE_INPUT(self, guard, source_b):
ref_a = self.arg_ref(guard)
ref_b = self.arg_ref(source_b.name())
if is_from_optimizer_source(
guard.originating_source
) or is_from_optimizer_source(source_b):
return
# Check that the guard has not been inserted already
key = (ref_a, ref_b)
if key in self._cached_duplicate_input_guards:
return
self._cached_duplicate_input_guards.add((ref_a, ref_b))
self._cached_duplicate_input_guards.add((ref_b, ref_a))
code = [f"{ref_b} is {ref_a}"]
self._set_guard_export_info(guard, code)
install_object_aliasing_guard(
self.get_guard_manager(guard),
self.get_guard_manager_from_source(source_b),
get_verbose_code_parts(code, guard),
)
def WEAKREF_ALIVE(self, guard):
code = [f"{self.arg_ref(guard)} is not None"]
self._set_guard_export_info(guard, code)
self.get_guard_manager(guard).add_not_none_guard(
get_verbose_code_parts(code, guard)
)
def MAPPING_KEYS_CHECK(self, guard):
"""Guard on the key order of types.MappingProxyType object"""
ref = self.arg_ref(guard)
value = self.get(guard.name)
code = []
code.append(f"list({ref}.keys()) == {list(value.keys())}")
self._set_guard_export_info(guard, code)
self.get_guard_manager(guard).add_mapping_keys_guard(value, code)
def DICT_KEYS_MATCH(self, guard):
"""Insert guard to check that the keys of a dict are same"""
ref = self.arg_ref(guard)
value = self.get(guard.name)
if value is torch.utils._pytree.SUPPORTED_NODES:
# For SUPPORTED_NODES, we can guard on the dictionary version (PEP509).
self.DICT_VERSION(guard)
return
self.SEQUENCE_LENGTH(guard)
code = []
# Ensure that we call dict.keys and not value.keys (which can call
# overridden keys method). In the C++ guards, we relied on PyDict_Next
# to traverse the dictionary, which uses the internal data structure and
# does not call the overridden keys method.
code.append(f"list(dict.keys({ref})) == {list(builtin_dict_keys(value))!r}")
self._set_guard_export_info(guard, code)
if self.requires_key_order_guarding(guard.originating_source):
self.guard_on_dict_keys_and_order(value, guard)
else:
self.guard_on_dict_keys_and_ignore_order(value, guard)
def EMPTY_NN_MODULE_HOOKS_DICT(self, guard):
"""Special guard to skip guards on empty hooks. This is controlled by skip_nnmodule_hook_guards"""
if config.skip_nnmodule_hook_guards:
# This is unsafe if you add/remove a hook on nn module variable
return
self.SEQUENCE_LENGTH(guard)
def OBJECT_MUTATION(self, guard: Guard):
mutation_guard.watch(self.get(guard.name), self.check_fn_manager)
def GRAD_MODE(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def TORCH_FUNCTION_STATE(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def FSDP_TRAINING_STATE(self, guard: Guard):
pass # we always guard on this via GlobalStateGuard()
def DEFAULT_DEVICE(self, guard: Guard):
"""Guard on CURRENT_DEVICE per torch.utils._device"""
assert guard.source is GuardSource.GLOBAL
import torch.utils._device as m
code = [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
self._set_guard_export_info(guard, code)
self.get_guard_manager(guard).add_default_device_guard(
get_verbose_code_parts(code, guard)
)
def SHAPE_ENV(self, guard: Guard):
# Let's handle ShapeEnv guards. To do this, we will resolve
# shape variables to sources from tracked_fakes. This must happen after
# tensor checks.
assert guard.name == ""
output_graph = self.check_fn_manager.output_graph
# NB: self.output_graph can be None in the debug_nops tests
fs = output_graph.tracked_fakes
input_contexts = [a.symbolic_context for a in fs]
def get_sources(t_id, dim):
# Looks up base sources mapped to a tensor id and uses them to create
# sources for the corresponding tensor dimension.
return [
TensorPropertySource(source, TensorProperty.SIZE, dim)
for source in output_graph.tracked_fakes_id_to_source[t_id]
]
if output_graph.export_constraints:
names: dict[str, tuple[int, int]] = {}
source_pairs: list[tuple[Source, Source]] = []
derived_equalities: list[ # type: ignore[type-arg]
tuple[Source, Union[Source, Symbol], Callable]
] = []
phantom_symbols: dict[str, Symbol] = {}
relaxed_sources: set[Source] = set()
for constraint in output_graph.export_constraints:
if constraint.t_id in output_graph.tracked_fakes_id_to_source:
torch.export.dynamic_shapes._process_equalities(
constraint,
get_sources,
output_graph.shape_env,
names,
source_pairs,
derived_equalities,
phantom_symbols,
relaxed_sources,
)
else:
log.warning("Untracked tensor used in export constraints")
equalities_inputs = EqualityConstraint(
source_pairs=source_pairs,
derived_equalities=derived_equalities,
phantom_symbols=list(phantom_symbols.values()),
relaxed_sources=relaxed_sources,
warn_only=False,
)
else:
equalities_inputs = None
def _get_code_parts(langs):
return output_graph.shape_env.produce_guards_verbose(
[a.fake for a in fs],
[a.source for a in fs],
input_contexts=input_contexts,
equalities_inputs=equalities_inputs,
source_ref=self.source_ref,
# Export keeps static.
ignore_static=(not self.check_fn_manager.output_graph.export),
langs=langs,
)
if config.enable_cpp_symbolic_shape_guards:
# For exporting we need the python code parts
python_code_parts, verbose_code_parts, cpp_code_parts = _get_code_parts(
("python", "verbose_python", "cpp")
)
else:
python_code_parts, verbose_code_parts = _get_code_parts(
("python", "verbose_python")
)
# When exporting, we may work with the shape constraints some more in
# postprocessing, so don't freeze yet
if not self.check_fn_manager.output_graph.export:
output_graph.shape_env.freeze()
for code in python_code_parts.exprs:
self._set_guard_export_info(guard, [code])
# Make ShapeEnv guards available for testing.
if compile_context := CompileContext.try_get():
compile_context.shape_env_guards.extend(verbose_code_parts.exprs)
if config.enable_cpp_symbolic_shape_guards:
import ctypes
from torch._inductor.codecache import CppCodeCache
assert cpp_code_parts # type: ignore[possibly-undefined]
code_parts, source_to_symbol = (
cpp_code_parts.exprs,
cpp_code_parts.source_to_symbol,
)
if not code_parts:
return
int_source_to_symbol = []
float_source_to_symbol = []
python_fallback = False
for source, symbol in source_to_symbol.items():
if isinstance(source, ConstantSource):
python_fallback = True
else:
example_value = self.get(
source.name(),
closure_vars={**SYMPY_INTERP, **_get_closure_vars()},
)
if isinstance(example_value, int):
int_source_to_symbol.append((source, symbol))
elif isinstance(example_value, float):
float_source_to_symbol.append((source, symbol))
else:
# SymInts/SymFloats go through python guard as we only support
# int64_t/double in C++ guards for now.
python_fallback = True
if not python_fallback:
source_to_symbol = dict(int_source_to_symbol + float_source_to_symbol)
try:
guard_managers = [
self.get_guard_manager_from_source(IndexedSource(source, i))
for i, source in enumerate(source_to_symbol)
]
int_symbols_str = ", ".join(
f"{symbol} = int_values[{i}]"
for i, (_, symbol) in enumerate(int_source_to_symbol)
)
float_symbols_str = ", ".join(
f"{symbol} = float_values[{i}]"
for i, (_, symbol) in enumerate(float_source_to_symbol)
)
if int_symbols_str:
int_symbols_str = f"int64_t {int_symbols_str};"
if float_symbols_str:
float_symbols_str = f"double {float_symbols_str};"
func_str = textwrap.dedent(
f"""
#include <cstdint>
#include <cmath>
#include <c10/util/generic_math.h>
extern "C" int8_t guard(int64_t *int_values, double *float_values) {{
{int_symbols_str}
{float_symbols_str}
return ({") && (".join(code_parts)});
}}
"""
)
guards_log.debug(
"C++ shape guard function: %s %s",
func_str,
verbose_code_parts.exprs,
)
clib = CppCodeCache.load(func_str)
cguard = ctypes.cast(clib.guard, ctypes.c_void_p).value
assert cguard
except torch._inductor.exc.InvalidCxxCompiler:
# No valid C++ compiler to compile the shape guard
pass
else:
install_symbolic_shape_guard(
guard_managers,
len(int_source_to_symbol),
len(float_source_to_symbol),
cguard,
clib,
verbose_code_parts.exprs,
)
return
# Install all the symbolic guards in one python lambda guard. These are run
# at the very end of the RootGuardManager via epilogue guards.
# TODO(anijain2305,williamwen42) - Consider moving this to C++.
if python_code_parts.exprs:
self.add_python_lambda_leaf_guard_to_root(
python_code_parts.exprs,
verbose_code_parts.exprs,
closure_vars={**SYMPY_INTERP, **_get_closure_vars()},
)
def TENSOR_MATCH(self, guard: Guard, value=None):
if config._unsafe_skip_fsdp_module_guards and guard.is_fsdp_module():
return
# For tensors that are part of the Dynamo extracted Fx graph module, an
# ID_MATCH suffices. Once we turn on inline_inbuilt_nn_modules, these
# will be lifted as inputs and have a TENSOR_MATCH guard.
if match_on_id_for_tensor(guard):
self.ID_MATCH(guard)
else:
if isinstance(value, TensorWeakRef):
value = value()
value = value if value is not None else self.get(guard.name)
assert isinstance(value, torch.Tensor)
tensor_name = self.arg_ref(guard)
# [Note - On Export Tensor Guards]
#
# In eager mode, tensor guards are evaluated through C++, in guards.cpp
# see [Note - On Eager Tensor Guards] for more info.
#
# In export mode, we instead maintain parallel logic between C++ and python
# here, with an exception of checking the dispatch key - with the idea that a dispatch key
# is an entirely runtime notion that would make no sense to keep in an exported graph.
#
# Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
# not entirely true.
# For example, suppose one of the input tensors had the negative dispatch key.
# You should end up with a graph that is specialized for tensors that have a negative dispatch key.
# If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
# Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
# support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
# TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
# subset of keys during export.
#
# The list of tensor fields and calls we care about can be found in `terms` below.
# TODO(voz): We are missing storage offset in all our tensor guards?
code: list[str] = []
if self.check_fn_manager.output_graph.export:
self.TYPE_MATCH(guard)
terms = [
"dtype",
"device",
"requires_grad",
"ndimension()",
]
for term in terms:
real_value = self.get(tensor_name + "." + term)
if istype(real_value, (torch.device, torch.dtype)):
# copy pasted from EQUALS_MATCH
code.append(f"str({tensor_name}.{term}) == {str(real_value)!r}")
else:
code.append(f"{tensor_name}.{term} == {real_value}")
else:
guard_manager = self.get_guard_manager(guard)
# skip_no_tensor_aliasing_guards_on_parameters bring
# unsoundness. If you compile a function with two different
# parameters, but later on you pass on same tensor as two
# different outputs (aliasing), Dynamo will not detect this.
# But we deliberately take this soundness hit because this
# usecase is quite rare and there is substantial reduction in
# guard overhead.
# For numpy tensors, since those are ephemeral, we dont have to
# insert aliasing guards on them
if not (
config.skip_no_tensor_aliasing_guards_on_parameters
and istype(value, torch.nn.Parameter)
) and not isinstance(guard.originating_source, NumpyTensorSource):
# Keep track of all the tensor guard managers to insert
# NoAliasing check at the end.
self.no_tensor_aliasing_names.append(tensor_name)
self.no_tensor_aliasing_guard_managers.append(guard_manager)
output_graph = self.check_fn_manager.output_graph
metadata = output_graph.input_source_to_sizes_strides[
guard.originating_source
]
size = convert_to_concrete_values(metadata["size"])
stride = convert_to_concrete_values(metadata["stride"])
verbose_code_parts = get_verbose_code_parts(
get_tensor_guard_code_part(value, tensor_name, size, stride),
guard,
)
guard_manager.add_tensor_match_guard(
value,
size,
stride,
tensor_name,
verbose_code_parts,
)
# We consider TENSOR_MATCH guard to be important enough to be
# included in diff guard manager by default.
if not isinstance(value, torch.nn.Parameter):
self.check_fn_manager.guard_manager.diff_guard_sources.add(
guard.name
)
# A frame is valid for reuse with dynamic dimensions if the new
# (user-requested) dynamic dimensions are a subset of the old
# (already compiled) dynamic dimensions.
#
# It's a little non-obvious why you'd want this: in particular,
# if an already compiled frame matches all of the guards, why
# not just use it, why force a recompile?
#
# We force it for two reasons:
#
# - The user *required* us to compile with a new dynamic dimension,
# we should not ignore that and serve up the old, specialized
# frame. Listen to the user!
#
# - In fact, we are obligated to *raise an error* if we fail to
# make the requested dimension dynamic. If we don't
# recompile, we can't tell if that dimension can actually be
# made dynamic.
#
# If the new dynamic dims are a subset of the old, we already know
# we can make them dynamic (since we made them dynamic in old).
# This is slightly unsound, because maybe your input size is
# [s0, s0, s1] and so you can do it dynamic if you say dynamic
# dims {0, 1, 2} but you can't if you only do {0, 2} (because now
# the second s0 is specialized). But we're not entirely sure if
# this is a good idea anyway lol... (if you want to try removing
# this logic, be my guest! -- ezyang 2024)
#
assert guard.source is not None
static, _reason = tensor_always_has_static_shape(
value, is_tensor=True, tensor_source=guard.originating_source
)
if not static:
if hasattr(value, "_dynamo_dynamic_indices"):
dynamic_indices = value._dynamo_dynamic_indices
code_part = f"(({tensor_name}._dynamo_dynamic_indices.issubset({dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True)" # noqa: B950
code.append(code_part)
self.get_guard_manager(guard).add_dynamic_indices_guard(
dynamic_indices, get_verbose_code_parts(code_part, guard)
)
# In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
# raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
else:
code_part = (
f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
)
code.append(code_part)
self.get_guard_manager(guard).add_no_hasattr_guard(
"_dynamo_dynamic_indices",
get_verbose_code_parts(code_part, guard),
)
if len(code) > 0:
self._set_guard_export_info(guard, code)
# A util that in the case of export, adds data onto guards
def _set_guard_export_info(self, guard, code_list, provided_guarded_object=None):
# WARNING: It is important that cur_frame/caller do NOT stay in
# the current frame, because they will keep things live longer
# than they should. See TestMisc.test_release_module_memory
cur_frame = currentframe()
assert cur_frame is not None
caller = cur_frame.f_back
del cur_frame
assert caller is not None
func_name = caller.f_code.co_name
del caller
# We use func_name for export, so might as well get a nice defensive check out of it
assert func_name in self.__class__.__dict__, (
f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
)
# Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
if provided_guarded_object is None:
name = guard.name
guarded_object = None if not name else self.get(name)
else:
guarded_object = provided_guarded_object
guarded_object_type = (
weakref.ref(type(guarded_object)) if guarded_object is not None else None
)
obj_ref = None
# Not necessary to have weakref for Enum type, but there is a bug that
# makes hasattr(guarded_object.__class__, "__weakref__") return True.
supports_weakref = (
getattr(guarded_object.__class__, "__weakrefoffset__", 0) != 0
)
# See D64140537 for why we are checking for tuple.
if supports_weakref and not isinstance(guarded_object, (enum.Enum, tuple)):
obj_ref = weakref.ref(guarded_object)
guard.set_export_info(
func_name,
guarded_object_type,
code_list,
obj_ref,
)
# Common Sub-Expression Elimination for Python expressions.
#
# There are 2 steps to this pass:
# 1. Count the frequency of each sub-expression (i.e. inner
# node in the AST tree)
#
# 2. Replace those that occur more than once by a fresh variable 'v'.
# 'v' will be defined in the 'preface' list (output argument to
# 'NodeTransformer')
#
# NB: the use of 'ast.unparse' while visiting the nodes makes this pass
# quadratic on the depth of the tree.
#
# NB: this pass creates a new variable for each AST node that is repeated
# more than 'USE_THRESHOLD'. e.g. if 'a.b.c.d' is used 10 times, 'a.b.c'
# and 'a.b' are also used 10 times. So, there will be a new variable for
# each of them.
class PyExprCSEPass:
# Maximum number of times a given expression can be used without being
# replaced by a fresh variable.
USE_THRESHOLD = 1
# Ad-Hoc: AST nodes this pass focuses on.
ALLOWED_NODE_TYPES = (ast.Attribute, ast.Call, ast.Subscript)
@dataclasses.dataclass
class Config:
expr_count: dict[str, int]
expr_to_name: dict[str, str]
class ExprCounter(ast.NodeVisitor):
def __init__(self, config: PyExprCSEPass.Config) -> None:
self._config = config
def visit(self, node: ast.AST) -> Any:
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
self._config.expr_count[_ast_unparse(node)] += 1
super().visit(node)
class Replacer(ast.NodeTransformer):
def __init__(
self,
config: PyExprCSEPass.Config,
gen_name: Callable[[], str],
) -> None:
super().__init__()
self._config = config
self._gen_name = gen_name
self.preface: list[str] = []
def visit(self, node: ast.AST) -> Any:
if isinstance(node, PyExprCSEPass.ALLOWED_NODE_TYPES):
expr = _ast_unparse(node)
# Replacement only occurs if a given expression is used more
# than once.
if self._config.expr_count[expr] > PyExprCSEPass.USE_THRESHOLD:
if expr not in self._config.expr_to_name:
# Parent 'visit' is called so that we CSE the inner expressions first.
#
# The resulting expression is used as right-hand-side of the variable
# assignment. i.e. we are CSE-ing the children before the parents.
#
# Indexing still uses the old 'node', since that's what was counted
# by the 'NodeVisitor'.
node_ = super().visit(node)
expr_ = _ast_unparse(node_)
var_name = self._gen_name()
self.preface.append(f"{var_name} = {expr_}")
self._config.expr_to_name[expr] = var_name
else:
var_name = self._config.expr_to_name[expr]
return ast.Name(var_name, ast.Load())
return super().visit(node)
def __init__(self) -> None:
self._counter = 0
self._config = self.Config(
expr_count=collections.defaultdict(lambda: 0), expr_to_name={}
)
def _new_var(self, prefix: str = "_var") -> str:
name = f"{prefix}{self._counter}"
self._counter += 1
return name
def count(self, exprs: list[str]) -> None:
counter = self.ExprCounter(self._config)
for e in exprs:
try:
counter.visit(ast.parse(e))
except SyntaxError as ex:
log.exception("Failed to visit expr at line %s.\n%s", ex.lineno, e)
raise
def replace(self, expr: str) -> tuple[list[str], str]:
replacer = self.Replacer(self._config, self._new_var)
new_node = replacer.visit(ast.parse(expr))
return replacer.preface, _ast_unparse(new_node)
def must_add_nn_module_guards(guard):
# For config.guard_nn_modules=False, we can skip all the guards that
# originate from inside of nn module except for a few categories.
return (
# Guard for defaults
isinstance(guard.originating_source, DefaultsSource)
# Guard using dict tags if the config flag is set
or (
config.guard_nn_modules_using_dict_tags
and guard.create_fn is GuardBuilder.NN_MODULE
)
)
class DeletedGuardManagerWrapper(GuardManagerWrapper):
def __init__(self, reason):
super().__init__()
self.invalidation_reason = reason
def populate_diff_guard_manager(self):
self.diff_guard_root = None
# NB: Naively, you'd expect this to only be a function that produces
# the callable that constitutes the guard. However, there is some
# delicate handling for invalidating this check function when the
# locals/globals get invalidated, so there's some extra state
# we have to hold in this manager class.
class CheckFunctionManager:
def __init__(
self,
f_code,
output_graph=None,
cache_entry=None,
guard_fail_fn: Optional[Callable[[GuardFail], None]] = None,
):
guards = output_graph.guards if output_graph else None
self._weakrefs: dict[int, ReferenceType[object]] = {}
existing_diff_guard_sources = (
update_diff_guard_managers_for_existing_cache_entries(cache_entry)
)
self.guard_manager = GuardManagerWrapper()
self.guard_manager.diff_guard_sources = existing_diff_guard_sources
self.output_graph = output_graph
w_builder = None
# NB: Until we trace device contexts, we need to use the stack recorded at the beginning of tracing
# in case a set default device call was made in the graph.
self.torch_function_mode_stack = (
output_graph.torch_function_mode_stack if output_graph else None
)
def source_ref(source):
guard_source = source.guard_source()
if guard_source is GuardSource.CONSTANT:
# No need to track constants
return source.name()
assert w_builder
r_builder = w_builder()
assert r_builder is not None
return r_builder.arg_ref(source.name())
builder = GuardBuilder(
f_code,
self.id_ref,
source_ref,
self.lookup_weakrefs,
output_graph.local_scope,
output_graph.global_scope,
self.guard_manager,
self,
)
# Break retain cycle. See test_release_scope_memory
def cleanup_builder(weak_b):
b = weak_b()
if b:
b.scope = None
# Break retain cycle. See test_release_input_memory
w_builder = weakref.ref(builder, cleanup_builder)
guard_on_nn_modules = config.guard_nn_modules and justknobs_check(
"pytorch/compiler:guard_nn_modules"
)
if not justknobs_check("pytorch/compiler:guard_nn_modules"):
log.warning("guard_nn_modules is turned off using justknobs killswitch")
for guard in sorted(guards or (), key=Guard.sort_key):
if (
not guard_on_nn_modules
and guard.is_specialized_nn_module()
# Default func args must be guarded on.
# TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
and "__defaults__" not in guard.name
and "__kwdefaults__" not in guard.name
and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
):
continue
guard.create(builder)
self.compile_check_fn(builder, guards, guard_fail_fn)
# Keep track of weak references of objects with ID_MATCH guard. This
# info is stored alongside optimized_code and guard_manager and is used to
# limit the number of cache entries with same ID_MATCH'd object.
# TODO(anijain2305) - Currently this information is stored as an attr on
# the guard_manager itself to avoid changing CacheEntry data structure in
# eval_frame.c. In future, we should probably replace guard_manager with a
# queryable data structure such that this information is already present
# in some form.
self.guard_manager.id_matched_objs = builder.id_matched_objs
guards_log.debug("%s", self.guard_manager)
self.guard_manager.id_matched_objs = builder.id_matched_objs
# Check that the guard returns True. False means that we will always
# recompile.
# TODO(anijain2305, ydwu4) - Skipping export because of following test
# python -s test/dynamo/test_export.py -k test_export_with_symbool_inputs
latency = 0.0
if not output_graph.export:
if not self.guard_manager.check(output_graph.local_scope):
reasons = get_guard_fail_reason_helper(
self.guard_manager, # type: ignore[arg-type]
output_graph.local_scope,
CompileContext.current_compile_id(),
)
raise AssertionError(f"Guard check failed: {reasons}")
if guard_manager_testing_hook_fn is not None:
guard_manager_testing_hook_fn(
self.guard_manager, output_graph.local_scope
)
# NB for developers: n_iters is chosen to be 50 to achieve
# statistical significance. If you are working on a guard
# optimization, it might be a good idea to increase this number for
# more stabiilty during development.
latency = profile_guard_manager(
self.guard_manager.root, output_graph.local_scope, 50
)
guards_log.debug("Guard eval latency = %s us", f"{latency:.2f}")
# Note: We use `increment_toplevel` instead of `compilation_metric`
# here. This is because, in scenarios where `torch._dynamo.reset`
# is invoked, the same frame ID and compile ID may be reused during
# a new compilation cycle. This behavior causes issues with
# `compilation_metric`, as it expects the metric field to be empty.
# Ideally, we would overwrite the existing entry in such cases, but
# we currently lack an API to support overwriting metrics. However,
# since these situations are rare and typically impractical to
# account for, we simply increment at the toplevel instead.
CompileEventLogger.increment_toplevel("guard_latency_us", int(latency))
# TODO: don't do the string rep, do something more structured here
torch._logging.trace_structured(
"dynamo_cpp_guards_str",
payload_fn=lambda: f"{self.guard_manager}\nGuard latency = {latency:.2f} us",
)
# NB - We have to very careful of cleaning up here. Because of the
# invalidate function, we can create a weakref finalizer that keeps
# `self` alive for very long. Sometimes by mistake, we can run
# invalidate for a type/object (check id_ref method) that Python can
# leak by design, preventing us from calling the finalizer. In that
# case, the `self` will be alive even though the cache entry will be
# deleted (check invalidate method), which can cause a memory leak,
# e.g., not setting output_graph = None can keep hold of nn_modules.
self._weakrefs.clear()
self.output_graph = None
def compile_check_fn(self, builder, guards_out, guard_fail_fn):
# see parallel handling of ".0" / "___implicit0" in _eval_frame.c
largs = builder.argnames
largs += ["**___kwargs_ignored"]
guards_log.debug("GUARDS:")
code_parts = []
verbose_code_parts = []
structured_guard_fns: list[Callable[[], dict[str, Any]]] = []
torch_function_mode_stack_check_fn = make_torch_function_mode_stack_guard(
self.torch_function_mode_stack
)
# Insert the global_state guard
self.guard_manager.root.add_global_state_guard(["___check_global_state()"])
self.guard_manager.root.add_torch_function_mode_stack_guard(
self.torch_function_mode_stack,
["___check_torch_function_mode_stack()"],
)
# Clear references to torch_function modes held in the list
self.torch_function_mode_stack = None
def add_code_part(code_part, guard, log_only=False):
verbose_code_part = get_verbose_code_part(code_part, guard)
guards_log.debug("%s", verbose_code_part)
structured_guard_fns.append(
lambda: {
"code": code_part,
"stack": (
structured.from_traceback(guard.stack.summary())
if guard and guard.stack
else None
),
"user_stack": (
structured.from_traceback(guard.user_stack)
if guard and guard.user_stack
else None
),
}
)
if verbose_guards_log.isEnabledFor(logging.DEBUG):
maybe_stack = ""
maybe_user_stack = ""
if guard is not None:
if guard.stack:
maybe_stack = f"\nStack:\n{''.join(guard.stack.format())}"
if guard.user_stack:
maybe_user_stack = (
f"\nUser stack:\n{''.join(guard.user_stack.format())}"
)
verbose_guards_log.debug(
"Guard: %s%s%s",
code_part,
maybe_stack,
maybe_user_stack,
)
if not log_only:
code_parts.append(code_part)
verbose_code_parts.append(verbose_code_part)
seen = set()
for gcl in builder.code:
for code in gcl.code_list:
if code not in seen:
# If Cpp guard manager is enabled, we don't need to add to
# code_parts.
add_code_part(code, gcl.guard, True)
seen.add(code)
no_tensor_aliasing_names = builder.no_tensor_aliasing_names
check_tensors_fn = None
check_tensors_verbose_fn = None
if len(no_tensor_aliasing_names) > 1:
# Install tensor aliasing guard. TENSOR_MATCH guards are already
# installed for cpp guard manager.
install_no_tensor_aliasing_guard(
builder.no_tensor_aliasing_guard_managers,
no_tensor_aliasing_names,
["check_no_aliasing(" + ", ".join(no_tensor_aliasing_names) + ")"],
)
aotautograd_guards: list[GuardEnvExpr] = (
self.output_graph.tracing_context.guards_context.aotautograd_guards
if self.output_graph
else []
)
# TODO(anijain2305) - There is a duplicate logic in Dynamo to find
# aliased input tensors. So most probably we don't need this here.
# Revisit.
for guard in aotautograd_guards:
if isinstance(guard, DuplicateInputs):
source_a = guard.input_source_a
source_b = guard.input_source_b
code_part = f"{source_a.name()} is {source_b.name()}"
install_object_aliasing_guard(
builder.get_guard_manager_from_source(source_a),
builder.get_guard_manager_from_source(source_b),
[code_part],
)
add_code_part(code_part, None, True)
elif isinstance(guard, StorageOverlap):
overlapping_guard_managers = [
builder.get_guard_manager_from_source(s)
for s in guard.overlapping_sources
]
non_overlapping_guard_managers = [
builder.get_guard_manager_from_source(s)
for s in guard.non_overlapping_sources
]
code_part = (
"""check_overlapping("""
f"""overlapping=[{", ".join(s.name() for s in guard.overlapping_sources)}], """
f"""non_overlapping=[{", ".join(s.name() for s in guard.non_overlapping_sources)}])"""
)
install_storage_overlapping_guard(
overlapping_guard_managers,
non_overlapping_guard_managers,
[code_part],
)
add_code_part(code_part, None, True)
else:
raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")
# TODO: the "guard" here is actually just the top level SHAPE_ENV
# which is useless. Get ShapeEnv to pass in more provenance.
for gcl in builder.shape_env_code:
for code in gcl.code_list:
# Shape env guards are already added for CPP guard manager in
# SHAPE_ENV implementation.
add_code_part(code, gcl.guard, True)
# OK, all done generating guards
if structured_guard_fns:
torch._logging.trace_structured(
"dynamo_guards", payload_fn=lambda: [f() for f in structured_guard_fns]
)
global_state = convert_frame.initial_global_state
if global_state is None:
# we should only hit this case in NopTests()
global_state = convert_frame.GlobalStateGuard()
closure_vars = {
"___check_tensors": check_tensors_fn,
"___check_tensors_verbose": check_tensors_verbose_fn,
"___check_global_state": global_state.check,
"___check_torch_function_mode_stack": torch_function_mode_stack_check_fn,
**SYMPY_INTERP,
**_get_closure_vars(),
}
self.guard_manager.finalize()
globals_for_guard_fn = {"G": builder.scope["G"]}
# Guard manager construction is complete. Ensure we did not miss to
# insert a guard in cpp guard manager.
assert len(code_parts) == 0
self.guard_manager.closure_vars = closure_vars
self.guard_manager.args = largs
self.guard_manager.populate_code_parts_for_debugging()
self.guard_manager.verbose_code_parts = verbose_code_parts
# Grab only G, but preserve "G" because guards access it as "G"
self.guard_manager.global_scope = globals_for_guard_fn
self.guard_manager.guard_fail_fn = guard_fail_fn
# will be populated by a non-owning reference to CacheEntry/ExtraState
# when the CacheEntry is constructed
self.guard_manager.cache_entry = None
self.guard_manager.extra_state = None
self.guard_manager.no_tensor_aliasing_sources = no_tensor_aliasing_names
def invalidate(self, obj_str):
# Some tests reveal that CheckFunctionManager has no attribute
# guard_manager, but this case should not be of any concern.
# This case doesn't seem easy to repro.
if (
hasattr(self, "guard_manager")
and not isinstance(self.guard_manager, DeletedGuardManagerWrapper)
and (cache_entry := self.guard_manager.cache_entry) is not None
and (extra_state := self.guard_manager.extra_state) is not None
):
assert isinstance(cache_entry, CacheEntry)
assert isinstance(extra_state, ExtraState)
reason = f"Cache line invalidated because {obj_str} got deallocated"
deleted_guard_manager = DeletedGuardManagerWrapper(reason)
extra_state.invalidate(cache_entry, deleted_guard_manager)
self.guard_manager = deleted_guard_manager
def id_ref(self, obj, obj_str):
"""add a weakref, return the id"""
try:
if id(obj) not in self._weakrefs:
# We will clear the _weakrefs dict at the end of __init__
# function, which will delete the callbacks as well. Therefore,
# we are using a finalizer which is kept alive.
self._weakrefs[id(obj)] = weakref.ref(obj)
weakref.finalize(
obj, functools.partial(self.invalidate, obj_str=obj_str)
)
except TypeError:
pass # cannot weakref bool object
return id(obj)
def lookup_weakrefs(self, obj):
"""Lookup the _weakrefs created in id_ref function for ID_MATCH'd objects"""
if id(obj) in self._weakrefs:
return self._weakrefs[id(obj)]
return None
def build_guard_function(code_parts, closure_args) -> tuple[str, str]:
from torch._inductor.utils import IndentedBuffer
csepass = PyExprCSEPass()
csepass.count(code_parts)
def replace(expr: str) -> tuple[list[str], str]:
return csepass.replace(expr)
# Generate the inner body of the guard function.
# i.e. if-chain of the guard expressions.
guard_body = IndentedBuffer()
for expr in code_parts:
preface, expr = replace(expr)
guard_body.writelines(preface)
guard_body.writeline(f"if not ({expr}):")
with guard_body.indent():
guard_body.writeline("return False")
# Wrap the inner body into the actual guard function.
guard = IndentedBuffer()
guard.writeline("def guard(L):")
with guard.indent():
guard.splice(guard_body)
guard.writeline("return True")
# Wrap the whole guard function into another function
# with the closure variables.
make_guard_fn = IndentedBuffer()
make_guard_fn.writeline(f"def ___make_guard_fn({closure_args}):")
with make_guard_fn.indent():
make_guard_fn.splice(guard)
make_guard_fn.writeline("return guard")
return guard_body.getvalue(), make_guard_fn.getvalue()
def is_recompiles_enabled():
return torch._logging._internal.log_state.is_artifact_enabled("recompiles")
def is_recompiles_verbose_enabled():
return torch._logging._internal.log_state.is_artifact_enabled("recompiles_verbose")
# this will only be used if cpp guards are disabled
def make_torch_function_mode_stack_guard(intial_stack):
types = [type(x) for x in intial_stack]
def check_torch_function_mode_stack():
cur_stack = get_torch_function_mode_stack()
if len(cur_stack) != len(types):
return False
for ty, mode in zip(types, cur_stack):
if ty != type(mode):
return False
return True
return check_torch_function_mode_stack
def recompilation_reason_for_no_tensor_aliasing_guard(guard_manager, scope):
global_scope = dict(guard_manager.global_scope)
ids_to_source = collections.defaultdict(list)
for tensor_source in guard_manager.no_tensor_aliasing_sources: # type: ignore[attr-defined]
global_scope["__compile_source__"] = tensor_source
tensor_id = id(eval(tensor_source, global_scope, scope))
ids_to_source[tensor_id].append(tensor_source)
duplicate_tensors = [
f"{ids_to_source[key]}" for key in ids_to_source if len(ids_to_source[key]) > 1
]
reason = ", ".join(duplicate_tensors)
return [f"Duplicate tensors found: {reason}"]
def strip_local_scope(s: str) -> str:
"""
Replace occurrences of L[...] with just the inner content.
Handles both single and double quotes.
This is to generate user friendly recompilation messages.
"""
import re
pattern = r"L\[\s*['\"](.*?)['\"]\s*\]"
return re.sub(pattern, r"\1", s)
def get_guard_fail_reason_helper(
guard_manager: GuardFn,
f_locals: dict[str, object],
compile_id: CompileId,
) -> str:
"""
Return the reason why `guard_manager` failed.
Updates `guard_failures` with the generated reason.
Only the first failed check of guard_manager is reported.
"""
scope = {"L": f_locals, "G": guard_manager.global_scope["G"]}
scope.update(guard_manager.closure_vars)
reasons: list[str] = []
no_tensor_aliasing_check_failed = False
verbose_code_parts: list[str] = []
guard_debug_info = guard_manager.check_verbose(f_locals) # type: ignore[attr-defined]
# For test_export_with_map_cond, the check_verbose fail even without the
# C++ guard manager. We need to fix the issue to remove the comment.
# assert not guard_debug_info.result
if not guard_debug_info.result:
verbose_code_parts = guard_debug_info.verbose_code_parts
# verbose_code_parts is either the actual reason (e.g. in case of
# TENSOR_MATCH) or it could be a list of verbose_code_part that we
# passed to the leaf guard at construction time. If its a list, we
# walk through this list and find the guard that failed. This is
# very important for symbolic shape guards which are currently
# installed as a lambda guard and can encompass a long list of code_parts.
if len(verbose_code_parts) == 1:
if "Duplicate tensor found" in verbose_code_parts[0]:
no_tensor_aliasing_check_failed = True
else:
reasons = verbose_code_parts
verbose_code_parts = []
if no_tensor_aliasing_check_failed:
reasons = recompilation_reason_for_no_tensor_aliasing_guard(
guard_manager, scope
)
else:
for part in verbose_code_parts:
global_scope = dict(guard_manager.global_scope)
global_scope["__compile_source__"] = part
with report_compile_source_on_error():
try:
fail_reason = eval(part, global_scope, scope)
except Exception:
if is_recompiles_verbose_enabled():
continue
else:
raise
# Only ___check_tensors knows how to return a fancy fail reason;
# for everything else we just report the code that failed
if isinstance(fail_reason, bool) and not fail_reason:
fail_reason = part
if isinstance(fail_reason, str):
reasons.append(fail_reason)
if not is_recompiles_verbose_enabled():
break
reason_str = f"{compile_id}: " + "; ".join(reasons)
return strip_local_scope(reason_str)
def get_guard_fail_reason(
guard_manager: GuardFn,
code: types.CodeType,
f_locals: dict[str, object],
compile_id: CompileId,
) -> str:
if isinstance(guard_manager, DeletedGuardManagerWrapper):
return f"{compile_id}: {guard_manager.invalidation_reason}"
reason_str = get_guard_fail_reason_helper(guard_manager, f_locals, compile_id)
guard_failures[orig_code_map[code]].append(reason_str)
try:
if guard_manager.guard_fail_fn is not None:
guard_manager.guard_fail_fn(
GuardFail(reason_str or "unknown reason", orig_code_map[code])
)
except Exception:
log.exception(
"Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
)
return reason_str
def get_and_maybe_log_recompilation_reasons(
cache_entry, frame: DynamoFrameType
) -> list[str]:
"""
Return the list of guard failure reasons using cache_entry.
Logs the recompilation reason if `recompiles` logging is enabled.
Raises a RecompileError if `config.error_on_recompile` is enabled.
"""
reasons = []
while cache_entry is not None:
reason = get_guard_fail_reason(
cache_entry.guard_manager,
cache_entry.code,
frame.f_locals,
cache_entry.compile_id,
)
if reason:
reasons.append(reason)
cache_entry = cache_entry.next
code = frame.f_code
# at least one of "recompiles" or "recompiles_verbose" is enabled
do_recompiles_log = is_recompiles_enabled() or is_recompiles_verbose_enabled()
if do_recompiles_log or config.error_on_recompile:
if is_recompiles_verbose_enabled():
failures = "\n\n".join(
f"guard {i} failures:\n" + textwrap.indent(reason, "- ")
for i, reason in enumerate(reasons)
)
else:
failures = textwrap.indent("\n".join(reasons), "- ")
guard_failure_details = (
f"triggered by the following guard failure(s):\n{failures}"
)
message = (
f"Recompiling function {code.co_name} in {code.co_filename}:{code.co_firstlineno}\n"
f"{textwrap.indent(guard_failure_details, ' ')}"
)
if do_recompiles_log:
if is_recompiles_verbose_enabled():
recompiles_verbose_log.debug(message)
else:
recompiles_log.debug(message)
if config.error_on_recompile:
raise exc.RecompileError(message)
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "recompile_reasons",
"encoding": "json",
},
payload_fn=lambda: reasons,
)
return reasons
def update_diff_guard_managers_for_existing_cache_entries(cache_entry):
first_cache_entry = cache_entry
# On the first pass, go through the cache entries and accumulate the diff
# guard sources. Different guard managers can fail with different sources.
# So, we collect all of them first.
acc_diff_guard_sources = set()
while cache_entry is not None:
acc_diff_guard_sources.update(
cache_entry.guard_manager.collect_diff_guard_sources()
)
cache_entry = cache_entry.next
# On the second pass, set the diff_guard_sources for each cache line to the
# accumulated value. And the re-populate the diff guard manager.
cache_entry = first_cache_entry
while cache_entry is not None:
cache_entry.guard_manager.diff_guard_sources = acc_diff_guard_sources
cache_entry.guard_manager.populate_diff_guard_manager()
cache_entry = cache_entry.next
# return the accumulated sources to set up the new cache line.
return acc_diff_guard_sources
def guard_error_hook(
guard_manager: GuardFn,
code: types.CodeType,
f_locals: dict[str, object],
index: int,
last: bool,
):
print(
f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
)
print("lambda " + ", ".join(guard_manager.args) + ":")
print(" ", " and\n ".join(guard_manager.code_parts))
print(guard_manager)
local_scope = {"L": f_locals, **guard_manager.closure_vars}
for guard in guard_manager.code_parts:
try:
eval(guard, guard_manager.global_scope, local_scope)
except: # noqa: B001,E722
print(f"Malformed guard:\n{guard}")
set_guard_error_hook(guard_error_hook)
def unique(seq):
seen = set()
for x in seq:
if x not in seen:
yield x
seen.add(x)
def make_dupe_guard(obj_source, dupe_source):
# Note - we may end up in a situation where we invoke something like
# def fn(x, y)
# with fn(x, x)
# Prior to the addition of tracking to all relevant objects, we would handle this just fine by
# eagerly re-entering VB and rewrapping inputs, correctly creating graphargs and placeholders. However,
# with tracking on inputs, duplicate inputs or aliased relationships may end up getting erased here -
# In the fn(x, x) example call above look like a graph with a single input.
# In order to ensure that we do not reuse fn(x, x) for fn(x, y), we create a duplicate input guard.
# Note - we may not have a source, that is fine, it just means we had an object that is safe to have
# leave unsourced - like a local list created and discharged entirely within a local scope.
if dupe_source and dupe_source != obj_source:
ser_source_is_local = is_from_local_source(dupe_source)
source_is_local = is_from_local_source(obj_source)
if is_from_flatten_script_object_source(
dupe_source
) or is_from_flatten_script_object_source(obj_source):
raise exc.UnsafeScriptObjectError(
f"{obj_source.name()} is alising {dupe_source.name()}. This is not supported."
f" Please do a clone for corresponding input."
)
# Note - both must be local, or global, or we will run afoul of a lack of merging in how we currently
# reconcile guards builder scopes in compile_check_fn. This technically means we miss a guard here,
# so maybe we should do this refactor before we land this...
# TODO(voz): Combine local and global guard builders.
if ser_source_is_local == source_is_local:
# Note - this is a little aggressive - these being duplicate input does not always matter.
# However, this should always be a sound guard to add here.
return functools.partial(GuardBuilder.DUPLICATE_INPUT, source_b=dupe_source)
return None
def install_guard(*guards, skip=0):
"""
Add dynamo guards to the current tracing context.
Args:
guards: guard(s) to add
skip: number of stack frames to ignore for debug stack trace
"""
from torch._guards import TracingContext
collect_debug_stack = guards_log.isEnabledFor(
logging.DEBUG
) or verbose_guards_log.isEnabledFor(logging.DEBUG)
add = TracingContext.get().guards_context.dynamo_guards.add
for guard in guards:
assert isinstance(guard, Guard)
add(guard, collect_debug_stack=collect_debug_stack, skip=skip + 1)
|