File size: 36,825 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
""" Cross-Covariance Image Transformer (XCiT) in PyTorch

Paper:
    - https://arxiv.org/abs/2106.09681

Same as the official implementation, with some minor adaptations, original copyright below
    - https://github.com/facebookresearch/xcit/blob/master/xcit.py

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.

import math
from functools import partial

import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .vision_transformer import _cfg, Mlp
from .registry import register_model
from .layers import DropPath, trunc_normal_, to_2tuple
from .cait import ClassAttn
from .fx_features import register_notrace_module


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # Patch size 16
    'xcit_nano_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224.pth'),  
    'xcit_nano_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224_dist.pth'),
    'xcit_nano_12_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_tiny_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224.pth'),
    'xcit_tiny_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224_dist.pth'),
    'xcit_tiny_12_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_tiny_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224.pth'),
    'xcit_tiny_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224_dist.pth'),
    'xcit_tiny_24_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_small_12_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth'),
    'xcit_small_12_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224_dist.pth'),
    'xcit_small_12_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_small_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224.pth'),
    'xcit_small_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224_dist.pth'),
    'xcit_small_24_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_medium_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224.pth'),
    'xcit_medium_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224_dist.pth'),
    'xcit_medium_24_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_large_24_p16_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224.pth'),
    'xcit_large_24_p16_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224_dist.pth'),
    'xcit_large_24_p16_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_384_dist.pth', input_size=(3, 384, 384)),

    # Patch size 8
    'xcit_nano_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224.pth'),  
    'xcit_nano_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224_dist.pth'),
    'xcit_nano_12_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_tiny_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224.pth'),
    'xcit_tiny_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224_dist.pth'),
    'xcit_tiny_12_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_tiny_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224.pth'),
    'xcit_tiny_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224_dist.pth'),
    'xcit_tiny_24_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_small_12_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224.pth'),
    'xcit_small_12_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224_dist.pth'),
    'xcit_small_12_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_small_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224.pth'),
    'xcit_small_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224_dist.pth'),
    'xcit_small_24_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_medium_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224.pth'),
    'xcit_medium_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224_dist.pth'),
    'xcit_medium_24_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_384_dist.pth', input_size=(3, 384, 384)),
    'xcit_large_24_p8_224': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224.pth'),
    'xcit_large_24_p8_224_dist': _cfg(url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224_dist.pth'),
    'xcit_large_24_p8_384_dist': _cfg(
        url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_384_dist.pth', input_size=(3, 384, 384)),
}


@register_notrace_module  # reason: FX can't symbolically trace torch.arange in forward method
class PositionalEncodingFourier(nn.Module):
    """
    Positional encoding relying on a fourier kernel matching the one used in the "Attention is all of Need" paper.
    Based on the official XCiT code
        - https://github.com/facebookresearch/xcit/blob/master/xcit.py
    """

    def __init__(self, hidden_dim=32, dim=768, temperature=10000):
        super().__init__()
        self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1)
        self.scale = 2 * math.pi
        self.temperature = temperature
        self.hidden_dim = hidden_dim
        self.dim = dim
        self.eps = 1e-6

    def forward(self, B: int, H: int, W: int):
        device = self.token_projection.weight.device
        y_embed = torch.arange(1, H+1, dtype=torch.float32, device=device).unsqueeze(1).repeat(1, 1, W)
        x_embed = torch.arange(1, W+1, dtype=torch.float32, device=device).repeat(1, H, 1)
        y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale
        x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale
        dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=device)
        dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim)
        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3)
        pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        pos = self.token_projection(pos)
        return pos.repeat(B, 1, 1, 1)  # (B, C, H, W)


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution + batch norm"""
    return torch.nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False),
        nn.BatchNorm2d(out_planes)
    )


class ConvPatchEmbed(nn.Module):
    """Image to Patch Embedding using multiple convolutional layers"""

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU):
        super().__init__()
        img_size = to_2tuple(img_size)
        num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        if patch_size == 16:
            self.proj = torch.nn.Sequential(
                conv3x3(in_chans, embed_dim // 8, 2),
                act_layer(),
                conv3x3(embed_dim // 8, embed_dim // 4, 2),
                act_layer(),
                conv3x3(embed_dim // 4, embed_dim // 2, 2),
                act_layer(),
                conv3x3(embed_dim // 2, embed_dim, 2),
            )
        elif patch_size == 8:
            self.proj = torch.nn.Sequential(
                conv3x3(in_chans, embed_dim // 4, 2),
                act_layer(),
                conv3x3(embed_dim // 4, embed_dim // 2, 2),
                act_layer(),
                conv3x3(embed_dim // 2, embed_dim, 2),
            )
        else:
            raise('For convolutional projection, patch size has to be in [8, 16]')

    def forward(self, x):
        x = self.proj(x)
        Hp, Wp = x.shape[2], x.shape[3]
        x = x.flatten(2).transpose(1, 2)  # (B, N, C)
        return x, (Hp, Wp)


class LPI(nn.Module):
    """
    Local Patch Interaction module that allows explicit communication between tokens in 3x3 windows to augment the
    implicit communication performed by the block diagonal scatter attention. Implemented using 2 layers of separable
    3x3 convolutions with GeLU and BatchNorm2d
    """

    def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3):
        super().__init__()
        out_features = out_features or in_features

        padding = kernel_size // 2

        self.conv1 = torch.nn.Conv2d(
            in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features)
        self.act = act_layer()
        self.bn = nn.BatchNorm2d(in_features)
        self.conv2 = torch.nn.Conv2d(
            in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features)

    def forward(self, x, H: int, W: int):
        B, N, C = x.shape
        x = x.permute(0, 2, 1).reshape(B, C, H, W)
        x = self.conv1(x)
        x = self.act(x)
        x = self.bn(x)
        x = self.conv2(x)
        x = x.reshape(B, C, N).permute(0, 2, 1)
        return x


class ClassAttentionBlock(nn.Module):
    """Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239"""

    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0.,
            act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1., tokens_norm=False):
        super().__init__()
        self.norm1 = norm_layer(dim)

        self.attn = ClassAttn(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)

        if eta is not None:  # LayerScale Initialization (no layerscale when None)
            self.gamma1 = nn.Parameter(eta * torch.ones(dim))
            self.gamma2 = nn.Parameter(eta * torch.ones(dim))
        else:
            self.gamma1, self.gamma2 = 1.0, 1.0

        # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721
        self.tokens_norm = tokens_norm

    def forward(self, x):
        x_norm1 = self.norm1(x)
        x_attn = torch.cat([self.attn(x_norm1), x_norm1[:, 1:]], dim=1)
        x = x + self.drop_path(self.gamma1 * x_attn)
        if self.tokens_norm:
            x = self.norm2(x)
        else:
            x = torch.cat([self.norm2(x[:, 0:1]), x[:, 1:]], dim=1)
        x_res = x
        cls_token = x[:, 0:1]
        cls_token = self.gamma2 * self.mlp(cls_token)
        x = torch.cat([cls_token, x[:, 1:]], dim=1)
        x = x_res + self.drop_path(x)
        return x


class XCA(nn.Module):
    """ Cross-Covariance Attention (XCA)
    Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax
    normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h)
    """

    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        # Result of next line is (qkv, B, num (H)eads,  (C')hannels per head, N)
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
        
        # Paper section 3.2 l2-Normalization and temperature scaling
        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)
        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # (B, H, C', N), permute -> (B, N, H, C')
        x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'temperature'}


class XCABlock(nn.Module):
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=1.):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = XCA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm3 = norm_layer(dim)
        self.local_mp = LPI(in_features=dim, act_layer=act_layer)

        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)

        self.gamma1 = nn.Parameter(eta * torch.ones(dim))
        self.gamma3 = nn.Parameter(eta * torch.ones(dim))
        self.gamma2 = nn.Parameter(eta * torch.ones(dim))

    def forward(self, x, H: int, W: int):
        x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x)))
        # NOTE official code has 3 then 2, so keeping it the same to be consistent with loaded weights
        # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721
        x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W))
        x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x)))
        return x


class XCiT(nn.Module):
    """
    Based on timm and DeiT code bases
    https://github.com/rwightman/pytorch-image-models/tree/master/timm
    https://github.com/facebookresearch/deit/
    """

    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768,
            depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
            act_layer=None, norm_layer=None, cls_attn_layers=2, use_pos_embed=True, eta=1., tokens_norm=False):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            drop_rate (float): dropout rate after positional embedding, and in XCA/CA projection + MLP
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate (constant across all layers)
            norm_layer: (nn.Module): normalization layer
            cls_attn_layers: (int) Depth of Class attention layers
            use_pos_embed: (bool) whether to use positional encoding
            eta: (float) layerscale initialization value
            tokens_norm: (bool) Whether to normalize all tokens or just the cls_token in the CA

        Notes:
            - Although `layer_norm` is user specifiable, there are hard-coded `BatchNorm2d`s in the local patch
              interaction (class LPI) and the patch embedding (class ConvPatchEmbed)
        """
        super().__init__()
        assert global_pool in ('', 'avg', 'token')
        img_size = to_2tuple(img_size)
        assert (img_size[0] % patch_size == 0) and (img_size[0] % patch_size == 0), \
            '`patch_size` should divide image dimensions evenly'
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim
        self.global_pool = global_pool
        self.grad_checkpointing = False

        self.patch_embed = ConvPatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, act_layer=act_layer)

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.use_pos_embed = use_pos_embed
        if use_pos_embed:
            self.pos_embed = PositionalEncodingFourier(dim=embed_dim)
        self.pos_drop = nn.Dropout(p=drop_rate)

        self.blocks = nn.ModuleList([
            XCABlock(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
                attn_drop=attn_drop_rate, drop_path=drop_path_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta)
            for _ in range(depth)])

        self.cls_attn_blocks = nn.ModuleList([
            ClassAttentionBlock(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
                attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm)
            for _ in range(cls_attn_layers)])

        # Classifier head
        self.norm = norm_layer(embed_dim)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        # Init weights
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^cls_token|pos_embed|patch_embed',  # stem and embed
            blocks=r'^blocks\.(\d+)',
            cls_attn_blocks=[(r'^cls_attn_blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'avg', 'token')
            self.global_pool = global_pool
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches)
        x, (Hp, Wp) = self.patch_embed(x)

        if self.use_pos_embed:
            # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C)
            pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1)
            x = x + pos_encoding
        x = self.pos_drop(x)

        for blk in self.blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x, Hp, Wp)
            else:
                x = blk(x, Hp, Wp)

        x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1)

        for blk in self.cls_attn_blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x)
            else:
                x = blk(x)

        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(state_dict, model):
    if 'model' in state_dict:
        state_dict = state_dict['model']
    # For consistency with timm's transformer models while being compatible with official weights source we rename
    # pos_embeder to pos_embed. Also account for use_pos_embed == False
    use_pos_embed = getattr(model, 'pos_embed', None) is not None
    pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')]
    for k in pos_embed_keys:
        if use_pos_embed:
            state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k)
        else:
            del state_dict[k]
    # timm's implementation of class attention in CaiT is slightly more efficient as it does not compute query vectors
    # for all tokens, just the class token. To use official weights source we must split qkv into q, k, v
    if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict():
        num_ca_blocks = len(model.cls_attn_blocks)
        for i in range(num_ca_blocks):
            qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight')
            qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1])
            for j, subscript in enumerate('qkv'):
                state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j]
            qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None)
            if qkv_bias is not None:
                qkv_bias = qkv_bias.reshape(3, -1)
                for j, subscript in enumerate('qkv'):
                    state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j]
    return state_dict


def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs):
    model = build_model_with_cfg(
        XCiT, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs)
    return model


@register_model
def xcit_nano_12_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs)
    model = _create_xcit('xcit_nano_12_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_nano_12_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs)
    model = _create_xcit('xcit_nano_12_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_nano_12_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, img_size=384, **kwargs)
    model = _create_xcit('xcit_nano_12_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p16_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p16_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p16_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p16_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p16_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p16_384_dist', pretrained=pretrained, **model_kwargs)
    return model


# Patch size 8x8 models
@register_model
def xcit_nano_12_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs)
    model = _create_xcit('xcit_nano_12_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_nano_12_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs)
    model = _create_xcit('xcit_nano_12_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_nano_12_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, **kwargs)
    model = _create_xcit('xcit_nano_12_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_12_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_12_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_12_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_12_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_tiny_24_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_tiny_24_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_small_24_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_small_24_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_medium_24_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_medium_24_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p8_224(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p8_224', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p8_224_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p8_224_dist', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def xcit_large_24_p8_384_dist(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True, **kwargs)
    model = _create_xcit('xcit_large_24_p8_384_dist', pretrained=pretrained, **model_kwargs)
    return model