File size: 11,209 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
""" PoolFormer implementation

Paper: `PoolFormer: MetaFormer is Actually What You Need for Vision` - https://arxiv.org/abs/2111.11418

Code adapted from official impl at https://github.com/sail-sg/poolformer, original copyright in comment below

Modifications and additions for timm by / Copyright 2022, Ross Wightman
"""
# Copyright 2021 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, checkpoint_seq
from .layers import DropPath, trunc_normal_, to_2tuple, ConvMlp, GroupNorm1
from .registry import register_model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .95, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = dict(
    poolformer_s12=_cfg(
        url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s12.pth.tar',
        crop_pct=0.9),
    poolformer_s24=_cfg(
        url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s24.pth.tar',
        crop_pct=0.9),
    poolformer_s36=_cfg(
        url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s36.pth.tar',
        crop_pct=0.9),
    poolformer_m36=_cfg(
        url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m36.pth.tar',
        crop_pct=0.95),
    poolformer_m48=_cfg(
        url='https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m48.pth.tar',
        crop_pct=0.95),
)


class PatchEmbed(nn.Module):
    """ Patch Embedding that is implemented by a layer of conv.
    Input: tensor in shape [B, C, H, W]
    Output: tensor in shape [B, C, H/stride, W/stride]
    """

    def __init__(self, in_chs=3, embed_dim=768, patch_size=16, stride=16, padding=0, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        self.proj = nn.Conv2d(in_chs, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x


class Pooling(nn.Module):
    def __init__(self, pool_size=3):
        super().__init__()
        self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)

    def forward(self, x):
        return self.pool(x) - x


class PoolFormerBlock(nn.Module):
    """
    Args:
        dim: embedding dim
        pool_size: pooling size
        mlp_ratio: mlp expansion ratio
        act_layer: activation
        norm_layer: normalization
        drop: dropout rate
        drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382
        use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239
    """

    def __init__(
            self, dim, pool_size=3, mlp_ratio=4.,
            act_layer=nn.GELU, norm_layer=GroupNorm1,
            drop=0., drop_path=0., layer_scale_init_value=1e-5):

        super().__init__()

        self.norm1 = norm_layer(dim)
        self.token_mixer = Pooling(pool_size=pool_size)
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        self.mlp = ConvMlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        if layer_scale_init_value:
            self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
            self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim))
        else:
            self.layer_scale_1 = None
            self.layer_scale_2 = None

    def forward(self, x):
        if self.layer_scale_1 is not None:
            x = x + self.drop_path1(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.token_mixer(self.norm1(x)))
            x = x + self.drop_path2(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path1(self.token_mixer(self.norm1(x)))
            x = x + self.drop_path2(self.mlp(self.norm2(x)))
        return x


def basic_blocks(
        dim, index, layers,
        pool_size=3, mlp_ratio=4.,
        act_layer=nn.GELU, norm_layer=GroupNorm1,
        drop_rate=.0, drop_path_rate=0.,
        layer_scale_init_value=1e-5,
):
    """ generate PoolFormer blocks for a stage """
    blocks = []
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
        blocks.append(PoolFormerBlock(
            dim, pool_size=pool_size, mlp_ratio=mlp_ratio,
            act_layer=act_layer, norm_layer=norm_layer,
            drop=drop_rate, drop_path=block_dpr,
            layer_scale_init_value=layer_scale_init_value,
        ))
    blocks = nn.Sequential(*blocks)
    return blocks


class PoolFormer(nn.Module):
    """ PoolFormer
    """

    def __init__(
            self,
            layers,
            embed_dims=(64, 128, 320, 512),
            mlp_ratios=(4, 4, 4, 4),
            downsamples=(True, True, True, True),
            pool_size=3,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            norm_layer=GroupNorm1,
            act_layer=nn.GELU,
            in_patch_size=7,
            in_stride=4,
            in_pad=2,
            down_patch_size=3,
            down_stride=2,
            down_pad=1,
            drop_rate=0., drop_path_rate=0.,
            layer_scale_init_value=1e-5,
            **kwargs):

        super().__init__()
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = embed_dims[-1]
        self.grad_checkpointing = False

        self.patch_embed = PatchEmbed(
            patch_size=in_patch_size, stride=in_stride, padding=in_pad,
            in_chs=in_chans, embed_dim=embed_dims[0])

        # set the main block in network
        network = []
        for i in range(len(layers)):
            network.append(basic_blocks(
                embed_dims[i], i, layers,
                pool_size=pool_size, mlp_ratio=mlp_ratios[i],
                act_layer=act_layer, norm_layer=norm_layer,
                drop_rate=drop_rate, drop_path_rate=drop_path_rate,
                layer_scale_init_value=layer_scale_init_value)
            )
            if i < len(layers) - 1 and (downsamples[i] or embed_dims[i] != embed_dims[i + 1]):
                # downsampling between stages
                network.append(PatchEmbed(
                    in_chs=embed_dims[i], embed_dim=embed_dims[i + 1],
                    patch_size=down_patch_size, stride=down_stride, padding=down_pad)
                )

        self.network = nn.Sequential(*network)
        self.norm = norm_layer(self.num_features)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    # init for classification
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^patch_embed',  # stem and embed
            blocks=[
                (r'^network\.(\d+).*\.proj', (99999,)),
                (r'^network\.(\d+)', None) if coarse else (r'^network\.(\d+)\.(\d+)', None),
                (r'^norm', (99999,))
            ],
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            self.global_pool = global_pool
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = self.network(x)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool == 'avg':
            x = x.mean([-2, -1])
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_poolformer(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')
    model = build_model_with_cfg(PoolFormer, variant, pretrained, **kwargs)
    return model


@register_model
def poolformer_s12(pretrained=False, **kwargs):
    """ PoolFormer-S12 model, Params: 12M """
    model = _create_poolformer('poolformer_s12', pretrained=pretrained, layers=(2, 2, 6, 2), **kwargs)
    return model


@register_model
def poolformer_s24(pretrained=False, **kwargs):
    """ PoolFormer-S24 model, Params: 21M """
    model = _create_poolformer('poolformer_s24', pretrained=pretrained, layers=(4, 4, 12, 4), **kwargs)
    return model


@register_model
def poolformer_s36(pretrained=False, **kwargs):
    """ PoolFormer-S36 model, Params: 31M """
    model = _create_poolformer(
        'poolformer_s36', pretrained=pretrained, layers=(6, 6, 18, 6), layer_scale_init_value=1e-6, **kwargs)
    return model


@register_model
def poolformer_m36(pretrained=False, **kwargs):
    """ PoolFormer-M36 model, Params: 56M """
    layers = (6, 6, 18, 6)
    embed_dims = (96, 192, 384, 768)
    model = _create_poolformer(
        'poolformer_m36', pretrained=pretrained, layers=layers, embed_dims=embed_dims,
        layer_scale_init_value=1e-6, **kwargs)
    return model


@register_model
def poolformer_m48(pretrained=False, **kwargs):
    """ PoolFormer-M48 model, Params: 73M """
    layers = (8, 8, 24, 8)
    embed_dims = (96, 192, 384, 768)
    model = _create_poolformer(
        'poolformer_m48', pretrained=pretrained, layers=layers, embed_dims=embed_dims,
        layer_scale_init_value=1e-6, **kwargs)
    return model