File size: 15,266 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""Tests for solvers of systems of polynomial equations. """
from sympy.polys.domains import  ZZ, QQ_I
from sympy.core.numbers import (I, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.polyerrors import UnsolvableFactorError
from sympy.polys.polyoptions import Options
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import flatten
from sympy.abc import a, b, c, x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
                                   solve_triangulated,
                                   solve_biquadratic, SolveFailed,
                                   solve_generic, factor_system_bool,
                                   factor_system_cond, factor_system_poly,
                                   factor_system, _factor_sets, _factor_sets_slow)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises
from sympy.core.relational import Eq
from sympy.functions.elementary.trigonometric import sin, cos

from sympy.functions.elementary.exponential import exp


def test_solve_poly_system():
    assert solve_poly_system([x - 1], x) == [(S.One,)]

    assert solve_poly_system([y - x, y - x - 1], x, y) is None

    assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]

    assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
        [(Rational(3, 2), Integer(2), Integer(10))]

    assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
        [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]

    assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
        [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]

    f_1 = x**2 + y + z - 1
    f_2 = x + y**2 + z - 1
    f_3 = x + y + z**2 - 1

    a, b = sqrt(2) - 1, -sqrt(2) - 1

    assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]

    solution = [(1, -1), (1, 1)]

    assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
    assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
    assert solve_poly_system([x**2 - y**2, x - 1]) == solution

    assert solve_poly_system(
        [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]

    raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
    raises(NotImplementedError, lambda: solve_poly_system(
        [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
    raises(PolynomialError, lambda: solve_poly_system([1/x], x))

    raises(NotImplementedError, lambda: solve_poly_system(
          [x-1,], (x, y)))
    raises(NotImplementedError, lambda: solve_poly_system(
          [y-1,], (x, y)))

    # solve_poly_system should ideally construct solutions using
    # CRootOf for the following four tests
    assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
    raises(UnsolvableFactorError, lambda: solve_poly_system(
        [x**5 - x + 1], [x], strict=True))

    assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
                             strict=False) == [(1, -1), (1, 1)]
    raises(UnsolvableFactorError,
           lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
                                     [x, y], strict=True))


def test_solve_generic():
    NewOption = Options((x, y), {'domain': 'ZZ'})
    assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
           [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
            (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
            (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
            (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]

    # solve_generic should ideally construct solutions using
    # CRootOf for the following two tests
    assert solve_generic(
        [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
        [(Rational(1, 2), 1)]
    raises(UnsolvableFactorError, lambda: solve_generic(
        [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))


def test_solve_biquadratic():
    x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')

    f_1 = (x - 1)**2 + (y - 1)**2 - r**2
    f_2 = (x - 2)**2 + (y - 2)**2 - r**2
    s = sqrt(2*r**2 - 1)
    a = (3 - s)/2
    b = (3 + s)/2
    assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]

    f_1 = (x - 1)**2 + (y - 2)**2 - r**2
    f_2 = (x - 1)**2 + (y - 1)**2 - r**2

    assert solve_poly_system([f_1, f_2], x, y) == \
        [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
         (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]

    query = lambda expr: expr.is_Pow and expr.exp is S.Half

    f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
    f_2 = (x - x1)**2 + (y - 1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(r.count(query) == 1 for r in flatten(result))

    f_1 = (x - x0)**2 + (y - y0)**2 - r**2
    f_2 = (x - x1)**2 + (y - y1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(len(r.find(query)) == 1 for r in flatten(result))

    s1 = (x*y - y, x**2 - x)
    assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
    s2 = (x*y - x, y**2 - y)
    assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
    gens = (x, y)
    for seq in (s1, s2):
        (f, g), opt = parallel_poly_from_expr(seq, *gens)
        raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
    seq = (x**2 + y**2 - 2, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == [
        (-1, -1), (-1, 1), (1, -1), (1, 1)]
    ans = [(0, -1), (0, 1)]
    seq = (x**2 + y**2 - 1, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans
    seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans


def test_solve_triangulated():
    f_1 = x**2 + y + z - 1
    f_2 = x + y**2 + z - 1
    f_3 = x + y + z**2 - 1

    a, b = sqrt(2) - 1, -sqrt(2) - 1

    assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0)]

    dom = QQ.algebraic_field(sqrt(2))

    assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]

    a, b = CRootOf(z**2 + 2*z - 1, 0), CRootOf(z**2 + 2*z - 1, 1)
    assert solve_triangulated([f_1, f_2, f_3], x, y, z, extension=True) == \
        [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]


def test_solve_issue_3686():
    roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
    assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]

    roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
    # TODO: does this really have to be so complicated?!
    assert len(roots) == 2
    assert roots[0][0] == 0
    assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
    assert roots[1][0] == 0
    assert roots[1][1].epsilon_eq(500.474999374969, 1e12)


def test_factor_system():

    assert factor_system([x**2 + 2*x + 1]) ==  [[x + 1]]
    assert factor_system([x**2 + 2*x + 1, y**2 + 2*y + 1]) ==  [[x + 1, y + 1]]
    assert factor_system([x**2 + 1]) ==  [[x**2 + 1]]
    assert factor_system([]) == [[]]

    assert factor_system([x**2 + y**2 + 2*x*y, x**2 - 2], extension=sqrt(2)) == [
        [x + y, x + sqrt(2)],
        [x + y, x - sqrt(2)],
    ]

    assert factor_system([x**2 + 1, y**2 + 1], gaussian=True) == [
        [x + I, y + I],
        [x + I, y - I],
        [x - I, y + I],
        [x - I, y - I],
    ]

    assert factor_system([x**2 + 1, y**2 + 1], domain=QQ_I) == [
        [x + I, y + I],
        [x + I, y - I],
        [x - I, y + I],
        [x - I, y - I],
    ]

    assert factor_system([0]) == [[]]
    assert factor_system([1]) == []
    assert factor_system([0 , x]) == [[x]]
    assert factor_system([1, 0, x]) == []

    assert factor_system([x**4 - 1, y**6 - 1]) == [
        [x**2 + 1, y**2 + y + 1],
        [x**2 + 1, y**2 - y + 1],
        [x**2 + 1, y + 1],
        [x**2 + 1, y - 1],
        [x + 1, y**2 + y + 1],
        [x + 1, y**2 - y + 1],
        [x - 1, y**2 + y + 1],
        [x - 1, y**2 - y + 1],
        [x + 1, y + 1],
        [x + 1, y - 1],
        [x - 1, y + 1],
        [x - 1, y - 1],
    ]

    assert factor_system([(x - 1)*(y - 2), (y - 2)*(z - 3)]) == [
        [x - 1, z - 3],
        [y - 2]
    ]

    assert factor_system([sin(x)**2 + cos(x)**2 - 1, x]) == [
        [x, sin(x)**2 + cos(x)**2 - 1],
    ]

    assert factor_system([sin(x)**2 + cos(x)**2 - 1]) == [
        [sin(x)**2 + cos(x)**2 - 1]
    ]

    assert factor_system([sin(x)**2 + cos(x)**2]) == [
        [sin(x)**2 + cos(x)**2]
    ]

    assert factor_system([a*x, y, a]) == [[y, a]]

    assert factor_system([a*x, y, a], [x, y]) == []

    assert factor_system([a ** 2 * x, y], [x, y]) == [[x, y]]

    assert factor_system([a*x*(x - 1), b*y, c], [x, y]) == []

    assert factor_system([a*x*(x - 1), b*y, c], [x, y, c]) == [
        [x - 1, y, c],
        [x, y, c],
    ]

    assert factor_system([a*x*(x - 1), b*y, c]) == [
        [x - 1, y, c],
        [x, y, c],
        [x - 1, b, c],
        [x, b, c],
        [y, a, c],
        [a, b, c],
    ]

    assert factor_system([x**2 - 2], [y]) == []

    assert factor_system([x**2 - 2], [x]) == [[x**2 - 2]]

    assert factor_system([cos(x)**2 - sin(x)**2, cos(x)**2 + sin(x)**2 - 1]) == [
        [sin(x)**2 + cos(x)**2 - 1, sin(x) + cos(x)],
        [sin(x)**2 + cos(x)**2 - 1, -sin(x) + cos(x)],
    ]

    assert factor_system([(cos(x) + sin(x))**2 - 1, cos(x)**2 - sin(x)**2 - cos(2*x)]) == [
        [sin(x)**2 - cos(x)**2 + cos(2*x), sin(x) + cos(x) + 1],
        [sin(x)**2 - cos(x)**2 + cos(2*x), sin(x) + cos(x) - 1],
    ]

    assert factor_system([(cos(x) + sin(x))*exp(y) - 1, (cos(x) - sin(x))*exp(y) - 1]) == [
        [exp(y)*sin(x) + exp(y)*cos(x) - 1, -exp(y)*sin(x) + exp(y)*cos(x) - 1]
    ]


def test_factor_system_poly():

    px = lambda e: Poly(e, x)
    pxab = lambda e: Poly(e, x, domain=ZZ[a, b])
    pxI = lambda e: Poly(e, x, domain=QQ_I)
    pxyz = lambda e: Poly(e, (x, y, z))

    assert factor_system_poly([px(x**2 - 1), px(x**2 - 4)]) == [
        [px(x + 2), px(x + 1)],
        [px(x + 2), px(x - 1)],
        [px(x + 1), px(x - 2)],
        [px(x - 1), px(x - 2)],
    ]

    assert factor_system_poly([px(x**2 - 1)]) == [[px(x + 1)], [px(x - 1)]]

    assert factor_system_poly([pxyz(x**2*y - y), pxyz(x**2*z - z)]) == [
        [pxyz(x + 1)],
        [pxyz(x - 1)],
        [pxyz(y), pxyz(z)],
    ]

    assert factor_system_poly([px(x**2*(x - 1)**2), px(x*(x - 1))]) == [
        [px(x)],
        [px(x - 1)],
    ]

    assert factor_system_poly([pxyz(x**2 + y*x), pxyz(x**2 + z*x)]) == [
        [pxyz(x + y), pxyz(x + z)],
        [pxyz(x)],
    ]

    assert factor_system_poly([pxab((a - 1)*(x - 2)), pxab((b - 3)*(x - 2))]) == [
        [pxab(x - 2)],
        [pxab(a - 1), pxab(b - 3)],
    ]

    assert factor_system_poly([pxI(x**2 + 1)]) == [[pxI(x + I)], [pxI(x - I)]]

    assert factor_system_poly([]) == [[]]

    assert factor_system_poly([px(1)]) == []
    assert factor_system_poly([px(0), px(x)]) == [[px(x)]]


def test_factor_system_cond():

    assert factor_system_cond([x ** 2 - 1, x ** 2 - 4]) == [
        [x + 2, x + 1],
        [x + 2, x - 1],
        [x + 1, x - 2],
        [x - 1, x - 2],
    ]

    assert factor_system_cond([1]) == []
    assert factor_system_cond([0]) == [[]]
    assert factor_system_cond([1, x]) == []
    assert factor_system_cond([0, x]) == [[x]]
    assert factor_system_cond([]) == [[]]

    assert factor_system_cond([x**2 + y*x]) == [[x + y], [x]]

    assert factor_system_cond([(a - 1)*(x - 2), (b - 3)*(x - 2)], [x]) == [
        [x - 2],
        [a - 1, b - 3],
    ]

    assert factor_system_cond([a * (x - 1), b], [x]) == [[x - 1, b], [a, b]]

    assert factor_system_cond([a*x*(x-1), b*y, c], [x, y]) == [
        [x - 1, y, c],
        [x, y, c],
        [x - 1, b, c],
        [x, b, c],
        [y, a, c],
        [a, b, c],
    ]

    assert factor_system_cond([x*(x-1), y], [x, y]) == [[x - 1, y], [x, y]]

    assert factor_system_cond([a*x, y, a], [x, y]) == [[y, a]]

    assert factor_system_cond([a*x, b*x], [x, y]) == [[x], [a, b]]

    assert factor_system_cond([a*b*x, y], [x, y]) == [[x, y], [y, a*b]]

    assert factor_system_cond([a*b*x, y]) == [[x, y], [y, a], [y, b]]

    assert factor_system_cond([a**2*x, y], [x, y]) == [[x, y], [y, a]]

def test_factor_system_bool():

    eqs = [a*(x - 1)*(y - 1), b*(x - 2)*(y - 1)*(y - 2)]
    assert factor_system_bool(eqs, [x, y]) == (
        Eq(y - 1, 0)
        | (Eq(a, 0) & Eq(b, 0))
        | (Eq(a, 0) & Eq(x - 2, 0))
        | (Eq(a, 0) & Eq(y - 2, 0))
        | (Eq(b, 0) & Eq(x - 1, 0))
        | (Eq(x - 2, 0) & Eq(x - 1, 0))
        | (Eq(x - 1, 0) & Eq(y - 2, 0))
    )

    assert factor_system_bool([x - 1], [x]) == Eq(x - 1, 0)

    assert factor_system_bool([(x - 1)*(x - 2)], [x]) == Eq(x - 2, 0) | Eq(x - 1, 0)

    assert factor_system_bool([], [x]) == True
    assert factor_system_bool([0], [x]) == True
    assert factor_system_bool([1], [x]) == False
    assert factor_system_bool([a], [x]) == Eq(a, 0)

    assert factor_system_bool([a * x, y, a], [x, y]) == Eq(a, 0) & Eq(y, 0)

    assert (factor_system_bool([a*x, b*y*x, a], [x, y]) == (
        Eq(a, 0) & Eq(b, 0))
        | (Eq(a, 0) & Eq(x, 0))
        | (Eq(a, 0) & Eq(y, 0)))

    assert (factor_system_bool([a*x, b*x], [x, y]) == Eq(x, 0) |
            (Eq(a, 0) & Eq(b, 0)))

    assert (factor_system_bool([a*b*x, y], [x, y]) == (
        Eq(x, 0) & Eq(y, 0)) |
        (Eq(y, 0) & Eq(a*b, 0)))

    assert (factor_system_bool([a**2*x, y], [x, y]) == (
        Eq(a, 0) & Eq(y, 0)) |
        (Eq(x, 0) & Eq(y, 0)))

    assert factor_system_bool([a*x*y, b*y*z], [x, y, z]) == (
        Eq(y, 0)
        | (Eq(a, 0) & Eq(b, 0))
        | (Eq(a, 0) & Eq(z, 0))
        | (Eq(b, 0) & Eq(x, 0))
        | (Eq(x, 0) & Eq(z, 0))
    )

    assert factor_system_bool([a*(x - 1), b], [x]) == (
        (Eq(a, 0) & Eq(b, 0))
        | (Eq(x - 1, 0) & Eq(b, 0))
    )


def test_factor_sets():
    #
    from random import randint

    def generate_random_system(n_eqs=3, n_factors=2, max_val=10):
        return [
            [randint(0, max_val) for _ in range(randint(1, n_factors))]
            for _ in range(n_eqs)
        ]

    test_cases = [
        [[1, 2], [1, 3]],
        [[1, 2], [3, 4]],
        [[1], [1, 2], [2]],
    ]

    for case in test_cases:
        assert _factor_sets(case) == _factor_sets_slow(case)

    for _ in range(100):
        system = generate_random_system()
        assert _factor_sets(system) == _factor_sets_slow(system)