File size: 27,168 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
"""Solvers of systems of polynomial equations. """
from __future__ import annotations
from typing import Any
from collections.abc import Sequence, Iterable
import itertools
from sympy import Dummy
from sympy.core import S
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.sorting import default_sort_key
from sympy.logic.boolalg import Boolean
from sympy.polys import Poly, groebner, roots
from sympy.polys.domains import ZZ
from sympy.polys.polyoptions import build_options
from sympy.polys.polytools import parallel_poly_from_expr, sqf_part
from sympy.polys.polyerrors import (
ComputationFailed,
PolificationFailed,
CoercionFailed,
GeneratorsNeeded,
DomainError
)
from sympy.simplify import rcollect
from sympy.utilities import postfixes
from sympy.utilities.iterables import cartes
from sympy.utilities.misc import filldedent
from sympy.logic.boolalg import Or, And
from sympy.core.relational import Eq
class SolveFailed(Exception):
"""Raised when solver's conditions were not met. """
def solve_poly_system(seq, *gens, strict=False, **args):
"""
Return a list of solutions for the system of polynomial equations
or else None.
Parameters
==========
seq: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in seq for which we want the
solutions
strict: a boolean (default is False)
if strict is True, NotImplementedError will be raised if
the solution is known to be incomplete (which can occur if
not all solutions are expressible in radicals)
args: Keyword arguments
Special options for solving the equations.
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
Examples
========
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y
>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
>>> solve_poly_system([x**5 - x + y**3, y**2 - 1], x, y, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('solve_poly_system', len(seq), exc)
if len(polys) == len(opt.gens) == 2:
f, g = polys
if all(i <= 2 for i in f.degree_list() + g.degree_list()):
try:
return solve_biquadratic(f, g, opt)
except SolveFailed:
pass
return solve_generic(polys, opt, strict=strict)
def solve_biquadratic(f, g, opt):
"""Solve a system of two bivariate quadratic polynomial equations.
Parameters
==========
f: a single Expr or Poly
First equation
g: a single Expr or Poly
Second Equation
opt: an Options object
For specifying keyword arguments and generators
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
Examples
========
>>> from sympy import Options, Poly
>>> from sympy.abc import x, y
>>> from sympy.solvers.polysys import solve_biquadratic
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
>>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(1/3, 3), (41/27, 11/9)]
>>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
>>> b = Poly(-y + x - 4, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
sqrt(29)/2)]
"""
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
x, y = opt.gens
p, q = G
if not p.gcd(q).is_ground:
# not 0-dimensional
raise SolveFailed
p = Poly(p, x, expand=False)
p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
q = q.ltrim(-1)
q_roots = list(roots(q).keys())
solutions = [(p_root.subs(y, q_root), q_root) for q_root, p_root in
itertools.product(q_roots, p_roots)]
return sorted(solutions, key=default_sort_key)
def solve_generic(polys, opt, strict=False):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions. If the basis contains only the ground, None is
returned.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
strict: a boolean
If strict is True, NotImplementedError will be raised if the solution
is known to be incomplete
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Raises
========
NotImplementedError
If the system is not zero-dimensional (does not have a finite
number of solutions)
UnsolvableFactorError
If ``strict`` is True and not all solution components are
expressible in radicals
Examples
========
>>> from sympy import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
>>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
>>> b = Poly(y**2 - 1, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
def _is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(monom[:-1]):
return False
return True
def _subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def _solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(system[0], gens[-1], strict=strict).keys())
return [(zero,) for zero in zeros]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = list(filter(_is_univariate, basis))
if len(basis) < len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
gens = f.gens
gen = gens[-1]
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(f.ltrim(gen), strict=strict).keys())
if not zeros:
return []
if len(basis) == 1:
return [(zero,) for zero in zeros]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = _subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in _solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
if solutions and len(solutions[0]) != len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
return solutions
try:
result = _solve_reduced_system(polys, opt.gens, entry=True)
except CoercionFailed:
raise NotImplementedError
if result is not None:
return sorted(result, key=default_sort_key)
def solve_triangulated(polys, *gens, **args):
"""
Solve a polynomial system using Gianni-Kalkbrenner algorithm.
The algorithm proceeds by computing one Groebner basis in the ground
domain and then by iteratively computing polynomial factorizations in
appropriately constructed algebraic extensions of the ground domain.
Parameters
==========
polys: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in polys for which we want the
solutions
args: Keyword arguments
Special options for solving the equations
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in polys
Examples
========
>>> from sympy import solve_triangulated
>>> from sympy.abc import x, y, z
>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
>>> solve_triangulated(F, x, y, z)
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
Using extension for algebraic solutions.
>>> solve_triangulated(F, x, y, z, extension=True) #doctest: +NORMALIZE_WHITESPACE
[(0, 0, 1), (0, 1, 0), (1, 0, 0),
(CRootOf(x**2 + 2*x - 1, 0), CRootOf(x**2 + 2*x - 1, 0), CRootOf(x**2 + 2*x - 1, 0)),
(CRootOf(x**2 + 2*x - 1, 1), CRootOf(x**2 + 2*x - 1, 1), CRootOf(x**2 + 2*x - 1, 1))]
References
==========
1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
"""
opt = build_options(gens, args)
G = groebner(polys, gens, polys=True)
G = list(reversed(G))
extension = opt.get('extension', False)
if extension:
def _solve_univariate(f):
return [r for r, _ in f.all_roots(multiple=False, radicals=False)]
else:
domain = opt.get('domain')
if domain is not None:
for i, g in enumerate(G):
G[i] = g.set_domain(domain)
def _solve_univariate(f):
return list(f.ground_roots().keys())
f, G = G[0].ltrim(-1), G[1:]
dom = f.get_domain()
zeros = _solve_univariate(f)
if extension:
solutions = {((zero,), dom.algebraic_field(zero)) for zero in zeros}
else:
solutions = {((zero,), dom) for zero in zeros}
var_seq = reversed(gens[:-1])
vars_seq = postfixes(gens[1:])
for var, vars in zip(var_seq, vars_seq):
_solutions = set()
for values, dom in solutions:
H, mapping = [], list(zip(vars, values))
for g in G:
_vars = (var,) + vars
if g.has_only_gens(*_vars) and g.degree(var) != 0:
if extension:
g = g.set_domain(g.domain.unify(dom))
h = g.ltrim(var).eval(dict(mapping))
if g.degree(var) == h.degree():
H.append(h)
p = min(H, key=lambda h: h.degree())
zeros = _solve_univariate(p)
for zero in zeros:
if not (zero in dom):
dom_zero = dom.algebraic_field(zero)
else:
dom_zero = dom
_solutions.add(((zero,) + values, dom_zero))
solutions = _solutions
return sorted((s for s, _ in solutions), key=default_sort_key)
def factor_system(eqs: Sequence[Expr | complex], gens: Sequence[Expr] = (), **kwargs: Any) -> list[list[Expr]]:
"""
Factorizes a system of polynomial equations into
irreducible subsystems.
Parameters
==========
eqs : list
List of expressions to be factored.
Each expression is assumed to be equal to zero.
gens : list, optional
Generator(s) of the polynomial ring.
If not provided, all free symbols will be used.
**kwargs : dict, optional
Same optional arguments taken by ``factor``
Returns
=======
list[list[Expr]]
A list of lists of expressions, where each sublist represents
an irreducible subsystem. When solved, each subsystem gives
one component of the solution. Only generic solutions are
returned (cases not requiring parameters to be zero).
Examples
========
>>> from sympy.solvers.polysys import factor_system, factor_system_cond
>>> from sympy.abc import x, y, a, b, c
A simple system with multiple solutions:
>>> factor_system([x**2 - 1, y - 1])
[[x + 1, y - 1], [x - 1, y - 1]]
A system with no solution:
>>> factor_system([x, 1])
[]
A system where any value of the symbol(s) is a solution:
>>> factor_system([x - x, (x + 1)**2 - (x**2 + 2*x + 1)])
[[]]
A system with no generic solution:
>>> factor_system([a*x*(x-1), b*y, c], [x, y])
[]
If c is added to the unknowns then the system has a generic solution:
>>> factor_system([a*x*(x-1), b*y, c], [x, y, c])
[[x - 1, y, c], [x, y, c]]
Alternatively :func:`factor_system_cond` can be used to get degenerate
cases as well:
>>> factor_system_cond([a*x*(x-1), b*y, c], [x, y])
[[x - 1, y, c], [x, y, c], [x - 1, b, c], [x, b, c], [y, a, c], [a, b, c]]
Each of the above cases is only satisfiable in the degenerate case `c = 0`.
The solution set of the original system represented
by eqs is the union of the solution sets of the
factorized systems.
An empty list [] means no generic solution exists.
A list containing an empty list [[]] means any value of
the symbol(s) is a solution.
See Also
========
factor_system_cond : Returns both generic and degenerate solutions
factor_system_bool : Returns a Boolean combination representing all solutions
sympy.polys.polytools.factor : Factors a polynomial into irreducible factors
over the rational numbers
"""
systems = _factor_system_poly_from_expr(eqs, gens, **kwargs)
systems_generic = [sys for sys in systems if not _is_degenerate(sys)]
systems_expr = [[p.as_expr() for p in system] for system in systems_generic]
return systems_expr
def _is_degenerate(system: list[Poly]) -> bool:
"""Helper function to check if a system is degenerate"""
return any(p.is_ground for p in system)
def factor_system_bool(eqs: Sequence[Expr | complex], gens: Sequence[Expr] = (), **kwargs: Any) -> Boolean:
"""
Factorizes a system of polynomial equations into irreducible DNF.
The system of expressions(eqs) is taken and a Boolean combination
of equations is returned that represents the same solution set.
The result is in disjunctive normal form (OR of ANDs).
Parameters
==========
eqs : list
List of expressions to be factored.
Each expression is assumed to be equal to zero.
gens : list, optional
Generator(s) of the polynomial ring.
If not provided, all free symbols will be used.
**kwargs : dict, optional
Optional keyword arguments
Returns
=======
Boolean:
A Boolean combination of equations. The result is typically in
the form of a conjunction (AND) of a disjunctive normal form
with additional conditions.
Examples
========
>>> from sympy.solvers.polysys import factor_system_bool
>>> from sympy.abc import x, y, a, b, c
>>> factor_system_bool([x**2 - 1])
Eq(x - 1, 0) | Eq(x + 1, 0)
>>> factor_system_bool([x**2 - 1, y - 1])
(Eq(x - 1, 0) & Eq(y - 1, 0)) | (Eq(x + 1, 0) & Eq(y - 1, 0))
>>> eqs = [a * (x - 1), b]
>>> factor_system_bool([a*(x - 1), b])
(Eq(a, 0) & Eq(b, 0)) | (Eq(b, 0) & Eq(x - 1, 0))
>>> factor_system_bool([a*x**2 - a, b*(x + 1), c], [x])
(Eq(c, 0) & Eq(x + 1, 0)) | (Eq(a, 0) & Eq(b, 0) & Eq(c, 0)) | (Eq(b, 0) & Eq(c, 0) & Eq(x - 1, 0))
>>> factor_system_bool([x**2 + 2*x + 1 - (x + 1)**2])
True
The result is logically equivalent to the system of equations
i.e. eqs. The function returns ``True`` when all values of
the symbol(s) is a solution and ``False`` when the system
cannot be solved.
See Also
========
factor_system : Returns factors and solvability condition separately
factor_system_cond : Returns both factors and conditions
"""
systems = factor_system_cond(eqs, gens, **kwargs)
return Or(*[And(*[Eq(eq, 0) for eq in sys]) for sys in systems])
def factor_system_cond(eqs: Sequence[Expr | complex], gens: Sequence[Expr] = (), **kwargs: Any) -> list[list[Expr]]:
"""
Factorizes a polynomial system into irreducible components and returns
both generic and degenerate solutions.
Parameters
==========
eqs : list
List of expressions to be factored.
Each expression is assumed to be equal to zero.
gens : list, optional
Generator(s) of the polynomial ring.
If not provided, all free symbols will be used.
**kwargs : dict, optional
Optional keyword arguments.
Returns
=======
list[list[Expr]]
A list of lists of expressions, where each sublist represents
an irreducible subsystem. Includes both generic solutions and
degenerate cases requiring equality conditions on parameters.
Examples
========
>>> from sympy.solvers.polysys import factor_system_cond
>>> from sympy.abc import x, y, a, b, c
>>> factor_system_cond([x**2 - 4, a*y, b], [x, y])
[[x + 2, y, b], [x - 2, y, b], [x + 2, a, b], [x - 2, a, b]]
>>> factor_system_cond([a*x*(x-1), b*y, c], [x, y])
[[x - 1, y, c], [x, y, c], [x - 1, b, c], [x, b, c], [y, a, c], [a, b, c]]
An empty list [] means no solution exists.
A list containing an empty list [[]] means any value of
the symbol(s) is a solution.
See Also
========
factor_system : Returns only generic solutions
factor_system_bool : Returns a Boolean combination representing all solutions
sympy.polys.polytools.factor : Factors a polynomial into irreducible factors
over the rational numbers
"""
systems_poly = _factor_system_poly_from_expr(eqs, gens, **kwargs)
systems = [[p.as_expr() for p in system] for system in systems_poly]
return systems
def _factor_system_poly_from_expr(
eqs: Sequence[Expr | complex], gens: Sequence[Expr], **kwargs: Any
) -> list[list[Poly]]:
"""
Convert expressions to polynomials and factor the system.
Takes a sequence of expressions, converts them to
polynomials, and factors the resulting system. Handles both regular
polynomial systems and purely numerical cases.
"""
try:
polys, opts = parallel_poly_from_expr(eqs, *gens, **kwargs)
only_numbers = False
except (GeneratorsNeeded, PolificationFailed):
_u = Dummy('u')
polys, opts = parallel_poly_from_expr(eqs, [_u], **kwargs)
assert opts['domain'].is_Numerical
only_numbers = True
if only_numbers:
return [[]] if all(p == 0 for p in polys) else []
return factor_system_poly(polys)
def factor_system_poly(polys: list[Poly]) -> list[list[Poly]]:
"""
Factors a system of polynomial equations into irreducible subsystems
Core implementation that works directly with Poly instances.
Parameters
==========
polys : list[Poly]
A list of Poly instances to be factored.
Returns
=======
list[list[Poly]]
A list of lists of polynomials, where each sublist represents
an irreducible component of the solution. Includes both
generic and degenerate cases.
Examples
========
>>> from sympy import symbols, Poly, ZZ
>>> from sympy.solvers.polysys import factor_system_poly
>>> a, b, c, x = symbols('a b c x')
>>> p1 = Poly((a - 1)*(x - 2), x, domain=ZZ[a,b,c])
>>> p2 = Poly((b - 3)*(x - 2), x, domain=ZZ[a,b,c])
>>> p3 = Poly(c, x, domain=ZZ[a,b,c])
The equation to be solved for x is ``x - 2 = 0`` provided either
of the two conditions on the parameters ``a`` and ``b`` is nonzero
and the constant parameter ``c`` should be zero.
>>> sys1, sys2 = factor_system_poly([p1, p2, p3])
>>> sys1
[Poly(x - 2, x, domain='ZZ[a,b,c]'),
Poly(c, x, domain='ZZ[a,b,c]')]
>>> sys2
[Poly(a - 1, x, domain='ZZ[a,b,c]'),
Poly(b - 3, x, domain='ZZ[a,b,c]'),
Poly(c, x, domain='ZZ[a,b,c]')]
An empty list [] when returned means no solution exists.
Whereas a list containing an empty list [[]] means any value is a solution.
See Also
========
factor_system : Returns only generic solutions
factor_system_bool : Returns a Boolean combination representing the solutions
factor_system_cond : Returns both generic and degenerate solutions
sympy.polys.polytools.factor : Factors a polynomial into irreducible factors
over the rational numbers
"""
if not all(isinstance(poly, Poly) for poly in polys):
raise TypeError("polys should be a list of Poly instances")
if not polys:
return [[]]
base_domain = polys[0].domain
base_gens = polys[0].gens
if not all(poly.domain == base_domain and poly.gens == base_gens for poly in polys[1:]):
raise DomainError("All polynomials must have the same domain and generators")
factor_sets = []
for poly in polys:
constant, factors_mult = poly.factor_list()
if constant.is_zero is True:
continue
elif constant.is_zero is False:
if not factors_mult:
return []
factor_sets.append([f for f, _ in factors_mult])
else:
constant = sqf_part(factor_terms(constant).as_coeff_Mul()[1])
constp = Poly(constant, base_gens, domain=base_domain)
factors = [f for f, _ in factors_mult]
factors.append(constp)
factor_sets.append(factors)
if not factor_sets:
return [[]]
result = _factor_sets(factor_sets)
return _sort_systems(result)
def _factor_sets_slow(eqs: list[list]) -> set[frozenset]:
"""
Helper to find the minimal set of factorised subsystems that is
equivalent to the original system.
The result is in DNF.
"""
if not eqs:
return {frozenset()}
systems_set = {frozenset(sys) for sys in cartes(*eqs)}
return {s1 for s1 in systems_set if not any(s1 > s2 for s2 in systems_set)}
def _factor_sets(eqs: list[list]) -> set[frozenset]:
"""
Helper that builds factor combinations.
"""
if not eqs:
return {frozenset()}
current_set = min(eqs, key=len)
other_sets = [s for s in eqs if s is not current_set]
stack = [(factor, [s for s in other_sets if factor not in s], {factor})
for factor in current_set]
result = set()
while stack:
factor, remaining_sets, current_solution = stack.pop()
if not remaining_sets:
result.add(frozenset(current_solution))
continue
next_set = min(remaining_sets, key=len)
next_remaining = [s for s in remaining_sets if s is not next_set]
for next_factor in next_set:
valid_remaining = [s for s in next_remaining if next_factor not in s]
new_solution = current_solution | {next_factor}
stack.append((next_factor, valid_remaining, new_solution))
return {s1 for s1 in result if not any(s1 > s2 for s2 in result)}
def _sort_systems(systems: Iterable[Iterable[Poly]]) -> list[list[Poly]]:
"""Sorts a list of lists of polynomials"""
systems_list = [sorted(s, key=_poly_sort_key, reverse=True) for s in systems]
return sorted(systems_list, key=_sys_sort_key, reverse=True)
def _poly_sort_key(poly):
"""Sort key for polynomials"""
if poly.domain.is_FF:
poly = poly.set_domain(ZZ)
return poly.degree_list(), poly.rep.to_list()
def _sys_sort_key(sys):
"""Sort key for lists of polynomials"""
return list(zip(*map(_poly_sort_key, sys)))
|