File size: 16,445 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from sympy.core import EulerGamma
from sympy.core.function import Function
from sympy.core.numbers import (E, I, Integer, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acot, atan, cos, sin)
from sympy.functions.special.error_functions import (Ei, erf)
from sympy.functions.special.gamma_functions import (digamma, gamma, loggamma)
from sympy.functions.special.zeta_functions import zeta
from sympy.polys.polytools import cancel
from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, tanh
from sympy.series.gruntz import compare, mrv, rewrite, mrv_leadterm, gruntz, \
    sign
from sympy.testing.pytest import XFAIL, raises, skip, slow

"""
This test suite is testing the limit algorithm using the bottom up approach.
See the documentation in limits2.py. The algorithm itself is highly recursive
by nature, so "compare" is logically the lowest part of the algorithm, yet in
some sense it's the most complex part, because it needs to calculate a limit
to return the result.

Nevertheless, the rest of the algorithm depends on compare working correctly.
"""

x = Symbol('x', real=True)
m = Symbol('m', real=True)


runslow = False


def _sskip():
    if not runslow:
        skip("slow")


@slow
def test_gruntz_evaluation():
    # Gruntz' thesis pp. 122 to 123
    # 8.1
    assert gruntz(exp(x)*(exp(1/x - exp(-x)) - exp(1/x)), x, oo) == -1
    # 8.2
    assert gruntz(exp(x)*(exp(1/x + exp(-x) + exp(-x**2))
                  - exp(1/x - exp(-exp(x)))), x, oo) == 1
    # 8.3
    assert gruntz(exp(exp(x - exp(-x))/(1 - 1/x)) - exp(exp(x)), x, oo) is oo
    # 8.5
    assert gruntz(exp(exp(exp(x + exp(-x)))) / exp(exp(exp(x))), x, oo) is oo
    # 8.6
    assert gruntz(exp(exp(exp(x))) / exp(exp(exp(x - exp(-exp(x))))),
                  x, oo) is oo
    # 8.7
    assert gruntz(exp(exp(exp(x))) / exp(exp(exp(x - exp(-exp(exp(x)))))),
                  x, oo) == 1
    # 8.8
    assert gruntz(exp(exp(x)) / exp(exp(x - exp(-exp(exp(x))))), x, oo) == 1
    # 8.9
    assert gruntz(log(x)**2 * exp(sqrt(log(x))*(log(log(x)))**2
                  * exp(sqrt(log(log(x))) * (log(log(log(x))))**3)) / sqrt(x),
                  x, oo) == 0
    # 8.10
    assert gruntz((x*log(x)*(log(x*exp(x) - x**2))**2)
                  / (log(log(x**2 + 2*exp(exp(3*x**3*log(x)))))), x, oo) == Rational(1, 3)
    # 8.11
    assert gruntz((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1)))) - exp(x))/x,
                  x, oo) == -exp(2)
    # 8.12
    assert gruntz((3**x + 5**x)**(1/x), x, oo) == 5
    # 8.13
    assert gruntz(x/log(x**(log(x**(log(2)/log(x))))), x, oo) is oo
    # 8.14
    assert gruntz(exp(exp(2*log(x**5 + x)*log(log(x))))
                  / exp(exp(10*log(x)*log(log(x)))), x, oo) is oo
    # 8.15
    assert gruntz(exp(exp(Rational(5, 2)*x**Rational(-5, 7) + Rational(21, 8)*x**Rational(6, 11)
                          + 2*x**(-8) + Rational(54, 17)*x**Rational(49, 45)))**8
                  / log(log(-log(Rational(4, 3)*x**Rational(-5, 14))))**Rational(7, 6), x, oo) is oo
    # 8.16
    assert gruntz((exp(4*x*exp(-x)/(1/exp(x) + 1/exp(2*x**2/(x + 1)))) - exp(x))
                  / exp(x)**4, x, oo) == 1
    # 8.17
    assert gruntz(exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))/exp(x), x, oo) \
        == 1
    # 8.19
    assert gruntz(log(x)*(log(log(x) + log(log(x))) - log(log(x)))
                  / (log(log(x) + log(log(log(x))))), x, oo) == 1
    # 8.20
    assert gruntz(exp((log(log(x + exp(log(x)*log(log(x))))))
                  / (log(log(log(exp(x) + x + log(x)))))), x, oo) == E
    # Another
    assert gruntz(exp(exp(exp(x + exp(-x)))) / exp(exp(x)), x, oo) is oo


def test_gruntz_evaluation_slow():
    _sskip()
    # 8.4
    assert gruntz(exp(exp(exp(x)/(1 - 1/x)))
                  - exp(exp(exp(x)/(1 - 1/x - log(x)**(-log(x))))), x, oo) is -oo
    # 8.18
    assert gruntz((exp(exp(-x/(1 + exp(-x))))*exp(-x/(1 + exp(-x/(1 + exp(-x)))))
                   *exp(exp(-x + exp(-x/(1 + exp(-x))))))
                  / (exp(-x/(1 + exp(-x))))**2 - exp(x) + x, x, oo) == 2


@slow
def test_gruntz_eval_special():
    # Gruntz, p. 126
    assert gruntz(exp(x)*(sin(1/x + exp(-x)) - sin(1/x + exp(-x**2))), x, oo) == 1
    assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2),
                  x, oo) == -2/sqrt(pi)
    assert gruntz(exp(exp(x)) * (exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x))),
                  x, oo) == 1
    assert gruntz(exp(x)*(gamma(x + exp(-x)) - gamma(x)), x, oo) is oo
    assert gruntz(exp(exp(digamma(digamma(x))))/x, x, oo) == exp(Rational(-1, 2))
    assert gruntz(exp(exp(digamma(log(x))))/x, x, oo) == exp(Rational(-1, 2))
    assert gruntz(digamma(digamma(digamma(x))), x, oo) is oo
    assert gruntz(loggamma(loggamma(x)), x, oo) is oo
    assert gruntz(((gamma(x + 1/gamma(x)) - gamma(x))/log(x) - cos(1/x))
                  * x*log(x), x, oo) == Rational(-1, 2)
    assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x, oo) \
        == S.Half
    assert gruntz((gamma(x + 1/gamma(x)) - gamma(x)) / log(x), x, oo) == 1


def test_gruntz_eval_special_slow():
    _sskip()
    assert gruntz(gamma(x + 1)/sqrt(2*pi)
                  - exp(-x)*(x**(x + S.Half) + x**(x - S.Half)/12), x, oo) is oo
    assert gruntz(exp(exp(exp(digamma(digamma(digamma(x))))))/x, x, oo) == 0


@XFAIL
def test_grunts_eval_special_slow_sometimes_fail():
    _sskip()
    # XXX This sometimes fails!!!
    assert gruntz(exp(gamma(x - exp(-x))*exp(1/x)) - exp(gamma(x)), x, oo) is oo


def test_gruntz_Ei():
    assert gruntz((Ei(x - exp(-exp(x))) - Ei(x)) *exp(-x)*exp(exp(x))*x, x, oo) == -1


@XFAIL
def test_gruntz_eval_special_fail():
    # TODO zeta function series
    assert gruntz(
        exp((log(2) + 1)*x) * (zeta(x + exp(-x)) - zeta(x)), x, oo) == -log(2)

    # TODO 8.35 - 8.37 (bessel, max-min)


def test_gruntz_hyperbolic():
    assert gruntz(cosh(x), x, oo) is oo
    assert gruntz(cosh(x), x, -oo) is oo
    assert gruntz(sinh(x), x, oo) is oo
    assert gruntz(sinh(x), x, -oo) is -oo
    assert gruntz(2*cosh(x)*exp(x), x, oo) is oo
    assert gruntz(2*cosh(x)*exp(x), x, -oo) == 1
    assert gruntz(2*sinh(x)*exp(x), x, oo) is oo
    assert gruntz(2*sinh(x)*exp(x), x, -oo) == -1
    assert gruntz(tanh(x), x, oo) == 1
    assert gruntz(tanh(x), x, -oo) == -1
    assert gruntz(coth(x), x, oo) == 1
    assert gruntz(coth(x), x, -oo) == -1


def test_compare1():
    assert compare(2, x, x) == "<"
    assert compare(x, exp(x), x) == "<"
    assert compare(exp(x), exp(x**2), x) == "<"
    assert compare(exp(x**2), exp(exp(x)), x) == "<"
    assert compare(1, exp(exp(x)), x) == "<"

    assert compare(x, 2, x) == ">"
    assert compare(exp(x), x, x) == ">"
    assert compare(exp(x**2), exp(x), x) == ">"
    assert compare(exp(exp(x)), exp(x**2), x) == ">"
    assert compare(exp(exp(x)), 1, x) == ">"

    assert compare(2, 3, x) == "="
    assert compare(3, -5, x) == "="
    assert compare(2, -5, x) == "="

    assert compare(x, x**2, x) == "="
    assert compare(x**2, x**3, x) == "="
    assert compare(x**3, 1/x, x) == "="
    assert compare(1/x, x**m, x) == "="
    assert compare(x**m, -x, x) == "="

    assert compare(exp(x), exp(-x), x) == "="
    assert compare(exp(-x), exp(2*x), x) == "="
    assert compare(exp(2*x), exp(x)**2, x) == "="
    assert compare(exp(x)**2, exp(x + exp(-x)), x) == "="
    assert compare(exp(x), exp(x + exp(-x)), x) == "="

    assert compare(exp(x**2), 1/exp(x**2), x) == "="


def test_compare2():
    assert compare(exp(x), x**5, x) == ">"
    assert compare(exp(x**2), exp(x)**2, x) == ">"
    assert compare(exp(x), exp(x + exp(-x)), x) == "="
    assert compare(exp(x + exp(-x)), exp(x), x) == "="
    assert compare(exp(x + exp(-x)), exp(-x), x) == "="
    assert compare(exp(-x), x, x) == ">"
    assert compare(x, exp(-x), x) == "<"
    assert compare(exp(x + 1/x), x, x) == ">"
    assert compare(exp(-exp(x)), exp(x), x) == ">"
    assert compare(exp(exp(-exp(x)) + x), exp(-exp(x)), x) == "<"


def test_compare3():
    assert compare(exp(exp(x)), exp(x + exp(-exp(x))), x) == ">"


def test_sign1():
    assert sign(Rational(0), x) == 0
    assert sign(Rational(3), x) == 1
    assert sign(Rational(-5), x) == -1
    assert sign(log(x), x) == 1
    assert sign(exp(-x), x) == 1
    assert sign(exp(x), x) == 1
    assert sign(-exp(x), x) == -1
    assert sign(3 - 1/x, x) == 1
    assert sign(-3 - 1/x, x) == -1
    assert sign(sin(1/x), x) == 1
    assert sign((x**Integer(2)), x) == 1
    assert sign(x**2, x) == 1
    assert sign(x**5, x) == 1


def test_sign2():
    assert sign(x, x) == 1
    assert sign(-x, x) == -1
    y = Symbol("y", positive=True)
    assert sign(y, x) == 1
    assert sign(-y, x) == -1
    assert sign(y*x, x) == 1
    assert sign(-y*x, x) == -1


def mmrv(a, b):
    return set(mrv(a, b)[0].keys())


def test_mrv1():
    assert mmrv(x, x) == {x}
    assert mmrv(x + 1/x, x) == {x}
    assert mmrv(x**2, x) == {x}
    assert mmrv(log(x), x) == {x}
    assert mmrv(exp(x), x) == {exp(x)}
    assert mmrv(exp(-x), x) == {exp(-x)}
    assert mmrv(exp(x**2), x) == {exp(x**2)}
    assert mmrv(-exp(1/x), x) == {x}
    assert mmrv(exp(x + 1/x), x) == {exp(x + 1/x)}


def test_mrv2a():
    assert mmrv(exp(x + exp(-exp(x))), x) == {exp(-exp(x))}
    assert mmrv(exp(x + exp(-x)), x) == {exp(x + exp(-x)), exp(-x)}
    assert mmrv(exp(1/x + exp(-x)), x) == {exp(-x)}

#sometimes infinite recursion due to log(exp(x**2)) not simplifying


def test_mrv2b():
    assert mmrv(exp(x + exp(-x**2)), x) == {exp(-x**2)}

#sometimes infinite recursion due to log(exp(x**2)) not simplifying


def test_mrv2c():
    assert mmrv(
        exp(-x + 1/x**2) - exp(x + 1/x), x) == {exp(x + 1/x), exp(1/x**2 - x)}

#sometimes infinite recursion due to log(exp(x**2)) not simplifying


def test_mrv3():
    assert mmrv(exp(x**2) + x*exp(x) + log(x)**x/x, x) == {exp(x**2)}
    assert mmrv(
        exp(x)*(exp(1/x + exp(-x)) - exp(1/x)), x) == {exp(x), exp(-x)}
    assert mmrv(log(
        x**2 + 2*exp(exp(3*x**3*log(x)))), x) == {exp(exp(3*x**3*log(x)))}
    assert mmrv(log(x - log(x))/log(x), x) == {x}
    assert mmrv(
        (exp(1/x - exp(-x)) - exp(1/x))*exp(x), x) == {exp(x), exp(-x)}
    assert mmrv(
        1/exp(-x + exp(-x)) - exp(x), x) == {exp(x), exp(-x), exp(x - exp(-x))}
    assert mmrv(log(log(x*exp(x*exp(x)) + 1)), x) == {exp(x*exp(x))}
    assert mmrv(exp(exp(log(log(x) + 1/x))), x) == {x}


def test_mrv4():
    ln = log
    assert mmrv((ln(ln(x) + ln(ln(x))) - ln(ln(x)))/ln(ln(x) + ln(ln(ln(x))))*ln(x),
            x) == {x}
    assert mmrv(log(log(x*exp(x*exp(x)) + 1)) - exp(exp(log(log(x) + 1/x))), x) == \
        {exp(x*exp(x))}


def mrewrite(a, b, c):
    return rewrite(a[1], a[0], b, c)


def test_rewrite1():
    e = exp(x)
    assert mrewrite(mrv(e, x), x, m) == (1/m, -x)
    e = exp(x**2)
    assert mrewrite(mrv(e, x), x, m) == (1/m, -x**2)
    e = exp(x + 1/x)
    assert mrewrite(mrv(e, x), x, m) == (1/m, -x - 1/x)
    e = 1/exp(-x + exp(-x)) - exp(x)
    assert mrewrite(mrv(e, x), x, m) == ((-m*exp(m) + m)*exp(-m)/m**2, -x)


def test_rewrite2():
    e = exp(x)*log(log(exp(x)))
    assert mmrv(e, x) == {exp(x)}
    assert mrewrite(mrv(e, x), x, m) == (1/m*log(x), -x)

#sometimes infinite recursion due to log(exp(x**2)) not simplifying


def test_rewrite3():
    e = exp(-x + 1/x**2) - exp(x + 1/x)
    #both of these are correct and should be equivalent:
    assert mrewrite(mrv(e, x), x, m) in [(-1/m + m*exp(
        (x**2 + x)/x**3), -x - 1/x), ((m**2 - exp((x**2 + x)/x**3))/m, x**(-2) - x)]


def test_mrv_leadterm1():
    assert mrv_leadterm(-exp(1/x), x) == (-1, 0)
    assert mrv_leadterm(1/exp(-x + exp(-x)) - exp(x), x) == (-1, 0)
    assert mrv_leadterm(
        (exp(1/x - exp(-x)) - exp(1/x))*exp(x), x) == (-exp(1/x), 0)


def test_mrv_leadterm2():
    #Gruntz: p51, 3.25
    assert mrv_leadterm((log(exp(x) + x) - x)/log(exp(x) + log(x))*exp(x), x) == \
        (1, 0)


def test_mrv_leadterm3():
    #Gruntz: p56, 3.27
    assert mmrv(exp(-x + exp(-x)*exp(-x*log(x))), x) == {exp(-x - x*log(x))}
    assert mrv_leadterm(exp(-x + exp(-x)*exp(-x*log(x))), x) == (exp(-x), 0)


def test_limit1():
    assert gruntz(x, x, oo) is oo
    assert gruntz(x, x, -oo) is -oo
    assert gruntz(-x, x, oo) is -oo
    assert gruntz(x**2, x, -oo) is oo
    assert gruntz(-x**2, x, oo) is -oo
    assert gruntz(x*log(x), x, 0, dir="+") == 0
    assert gruntz(1/x, x, oo) == 0
    assert gruntz(exp(x), x, oo) is oo
    assert gruntz(-exp(x), x, oo) is -oo
    assert gruntz(exp(x)/x, x, oo) is oo
    assert gruntz(1/x - exp(-x), x, oo) == 0
    assert gruntz(x + 1/x, x, oo) is oo


def test_limit2():
    assert gruntz(x**x, x, 0, dir="+") == 1
    assert gruntz((exp(x) - 1)/x, x, 0) == 1
    assert gruntz(1 + 1/x, x, oo) == 1
    assert gruntz(-exp(1/x), x, oo) == -1
    assert gruntz(x + exp(-x), x, oo) is oo
    assert gruntz(x + exp(-x**2), x, oo) is oo
    assert gruntz(x + exp(-exp(x)), x, oo) is oo
    assert gruntz(13 + 1/x - exp(-x), x, oo) == 13


def test_limit3():
    a = Symbol('a')
    assert gruntz(x - log(1 + exp(x)), x, oo) == 0
    assert gruntz(x - log(a + exp(x)), x, oo) == 0
    assert gruntz(exp(x)/(1 + exp(x)), x, oo) == 1
    assert gruntz(exp(x)/(a + exp(x)), x, oo) == 1


def test_limit4():
    #issue 3463
    assert gruntz((3**x + 5**x)**(1/x), x, oo) == 5
    #issue 3463
    assert gruntz((3**(1/x) + 5**(1/x))**x, x, 0) == 5


@XFAIL
def test_MrvTestCase_page47_ex3_21():
    h = exp(-x/(1 + exp(-x)))
    expr = exp(h)*exp(-x/(1 + h))*exp(exp(-x + h))/h**2 - exp(x) + x
    assert mmrv(expr, x) == {1/h, exp(-x), exp(x), exp(x - h), exp(x/(1 + h))}


def test_gruntz_I():
    y = Symbol("y")
    assert gruntz(I*x, x, oo) == I*oo
    assert gruntz(y*I*x, x, oo) == y*I*oo
    assert gruntz(y*3*I*x, x, oo) == y*I*oo
    assert gruntz(y*3*sin(I)*x, x, oo) == y*I*oo


def test_issue_4814():
    assert gruntz((x + 1)**(1/log(x + 1)), x, oo) == E


def test_intractable():
    assert gruntz(1/gamma(x), x, oo) == 0
    assert gruntz(1/loggamma(x), x, oo) == 0
    assert gruntz(gamma(x)/loggamma(x), x, oo) is oo
    assert gruntz(exp(gamma(x))/gamma(x), x, oo) is oo
    assert gruntz(gamma(x), x, 3) == 2
    assert gruntz(gamma(Rational(1, 7) + 1/x), x, oo) == gamma(Rational(1, 7))
    assert gruntz(log(x**x)/log(gamma(x)), x, oo) == 1
    assert gruntz(log(gamma(gamma(x)))/exp(x), x, oo) is oo


def test_aseries_trig():
    assert cancel(gruntz(1/log(atan(x)), x, oo)
           - 1/(log(pi) + log(S.Half))) == 0
    assert gruntz(1/acot(x), x, -oo) is -oo


def test_exp_log_series():
    assert gruntz(x/log(log(x*exp(x))), x, oo) is oo


def test_issue_3644():
    assert gruntz(((x**7 + x + 1)/(2**x + x**2))**(-1/x), x, oo) == 2


def test_issue_6843():
    n = Symbol('n', integer=True, positive=True)
    r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
    assert gruntz(r, x, 1).simplify() == n/2


def test_issue_4190():
    assert gruntz(x - gamma(1/x), x, oo) == S.EulerGamma


@XFAIL
def test_issue_5172():
    n = Symbol('n')
    r = Symbol('r', positive=True)
    c = Symbol('c')
    p = Symbol('p', positive=True)
    m = Symbol('m', negative=True)
    expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + \
        (r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
    expr = expr.subs(c, c + 1)
    assert gruntz(expr.subs(c, m), n, oo) == 1
    # fail:
    assert gruntz(expr.subs(c, p), n, oo).simplify() == \
        (2**(p + 1) + r - 1)/(r + 1)**(p + 1)


def test_issue_4109():
    assert gruntz(1/gamma(x), x, 0) == 0
    assert gruntz(x*gamma(x), x, 0) == 1


def test_issue_6682():
    assert gruntz(exp(2*Ei(-x))/x**2, x, 0) == exp(2*EulerGamma)


def test_issue_7096():
    from sympy.functions import sign
    assert gruntz(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))


def test_issue_7391_8166():
    f = Function('f')
    # limit should depend on the continuity of the expression at the point passed
    raises(ValueError, lambda: gruntz(f(x), x, 4))
    raises(ValueError, lambda: gruntz(x*f(x)**2/(x**2 + f(x)**4), x, 0))


def test_issue_24210_25885():
    eq = exp(x)/(1+1/x)**x**2
    ans = sqrt(E)
    assert gruntz(eq, x, oo) == ans
    assert gruntz(1/eq, x, oo) == 1/ans