File size: 16,445 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from sympy.core import EulerGamma
from sympy.core.function import Function
from sympy.core.numbers import (E, I, Integer, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acot, atan, cos, sin)
from sympy.functions.special.error_functions import (Ei, erf)
from sympy.functions.special.gamma_functions import (digamma, gamma, loggamma)
from sympy.functions.special.zeta_functions import zeta
from sympy.polys.polytools import cancel
from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, tanh
from sympy.series.gruntz import compare, mrv, rewrite, mrv_leadterm, gruntz, \
sign
from sympy.testing.pytest import XFAIL, raises, skip, slow
"""
This test suite is testing the limit algorithm using the bottom up approach.
See the documentation in limits2.py. The algorithm itself is highly recursive
by nature, so "compare" is logically the lowest part of the algorithm, yet in
some sense it's the most complex part, because it needs to calculate a limit
to return the result.
Nevertheless, the rest of the algorithm depends on compare working correctly.
"""
x = Symbol('x', real=True)
m = Symbol('m', real=True)
runslow = False
def _sskip():
if not runslow:
skip("slow")
@slow
def test_gruntz_evaluation():
# Gruntz' thesis pp. 122 to 123
# 8.1
assert gruntz(exp(x)*(exp(1/x - exp(-x)) - exp(1/x)), x, oo) == -1
# 8.2
assert gruntz(exp(x)*(exp(1/x + exp(-x) + exp(-x**2))
- exp(1/x - exp(-exp(x)))), x, oo) == 1
# 8.3
assert gruntz(exp(exp(x - exp(-x))/(1 - 1/x)) - exp(exp(x)), x, oo) is oo
# 8.5
assert gruntz(exp(exp(exp(x + exp(-x)))) / exp(exp(exp(x))), x, oo) is oo
# 8.6
assert gruntz(exp(exp(exp(x))) / exp(exp(exp(x - exp(-exp(x))))),
x, oo) is oo
# 8.7
assert gruntz(exp(exp(exp(x))) / exp(exp(exp(x - exp(-exp(exp(x)))))),
x, oo) == 1
# 8.8
assert gruntz(exp(exp(x)) / exp(exp(x - exp(-exp(exp(x))))), x, oo) == 1
# 8.9
assert gruntz(log(x)**2 * exp(sqrt(log(x))*(log(log(x)))**2
* exp(sqrt(log(log(x))) * (log(log(log(x))))**3)) / sqrt(x),
x, oo) == 0
# 8.10
assert gruntz((x*log(x)*(log(x*exp(x) - x**2))**2)
/ (log(log(x**2 + 2*exp(exp(3*x**3*log(x)))))), x, oo) == Rational(1, 3)
# 8.11
assert gruntz((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1)))) - exp(x))/x,
x, oo) == -exp(2)
# 8.12
assert gruntz((3**x + 5**x)**(1/x), x, oo) == 5
# 8.13
assert gruntz(x/log(x**(log(x**(log(2)/log(x))))), x, oo) is oo
# 8.14
assert gruntz(exp(exp(2*log(x**5 + x)*log(log(x))))
/ exp(exp(10*log(x)*log(log(x)))), x, oo) is oo
# 8.15
assert gruntz(exp(exp(Rational(5, 2)*x**Rational(-5, 7) + Rational(21, 8)*x**Rational(6, 11)
+ 2*x**(-8) + Rational(54, 17)*x**Rational(49, 45)))**8
/ log(log(-log(Rational(4, 3)*x**Rational(-5, 14))))**Rational(7, 6), x, oo) is oo
# 8.16
assert gruntz((exp(4*x*exp(-x)/(1/exp(x) + 1/exp(2*x**2/(x + 1)))) - exp(x))
/ exp(x)**4, x, oo) == 1
# 8.17
assert gruntz(exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))/exp(x), x, oo) \
== 1
# 8.19
assert gruntz(log(x)*(log(log(x) + log(log(x))) - log(log(x)))
/ (log(log(x) + log(log(log(x))))), x, oo) == 1
# 8.20
assert gruntz(exp((log(log(x + exp(log(x)*log(log(x))))))
/ (log(log(log(exp(x) + x + log(x)))))), x, oo) == E
# Another
assert gruntz(exp(exp(exp(x + exp(-x)))) / exp(exp(x)), x, oo) is oo
def test_gruntz_evaluation_slow():
_sskip()
# 8.4
assert gruntz(exp(exp(exp(x)/(1 - 1/x)))
- exp(exp(exp(x)/(1 - 1/x - log(x)**(-log(x))))), x, oo) is -oo
# 8.18
assert gruntz((exp(exp(-x/(1 + exp(-x))))*exp(-x/(1 + exp(-x/(1 + exp(-x)))))
*exp(exp(-x + exp(-x/(1 + exp(-x))))))
/ (exp(-x/(1 + exp(-x))))**2 - exp(x) + x, x, oo) == 2
@slow
def test_gruntz_eval_special():
# Gruntz, p. 126
assert gruntz(exp(x)*(sin(1/x + exp(-x)) - sin(1/x + exp(-x**2))), x, oo) == 1
assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2),
x, oo) == -2/sqrt(pi)
assert gruntz(exp(exp(x)) * (exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x))),
x, oo) == 1
assert gruntz(exp(x)*(gamma(x + exp(-x)) - gamma(x)), x, oo) is oo
assert gruntz(exp(exp(digamma(digamma(x))))/x, x, oo) == exp(Rational(-1, 2))
assert gruntz(exp(exp(digamma(log(x))))/x, x, oo) == exp(Rational(-1, 2))
assert gruntz(digamma(digamma(digamma(x))), x, oo) is oo
assert gruntz(loggamma(loggamma(x)), x, oo) is oo
assert gruntz(((gamma(x + 1/gamma(x)) - gamma(x))/log(x) - cos(1/x))
* x*log(x), x, oo) == Rational(-1, 2)
assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x, oo) \
== S.Half
assert gruntz((gamma(x + 1/gamma(x)) - gamma(x)) / log(x), x, oo) == 1
def test_gruntz_eval_special_slow():
_sskip()
assert gruntz(gamma(x + 1)/sqrt(2*pi)
- exp(-x)*(x**(x + S.Half) + x**(x - S.Half)/12), x, oo) is oo
assert gruntz(exp(exp(exp(digamma(digamma(digamma(x))))))/x, x, oo) == 0
@XFAIL
def test_grunts_eval_special_slow_sometimes_fail():
_sskip()
# XXX This sometimes fails!!!
assert gruntz(exp(gamma(x - exp(-x))*exp(1/x)) - exp(gamma(x)), x, oo) is oo
def test_gruntz_Ei():
assert gruntz((Ei(x - exp(-exp(x))) - Ei(x)) *exp(-x)*exp(exp(x))*x, x, oo) == -1
@XFAIL
def test_gruntz_eval_special_fail():
# TODO zeta function series
assert gruntz(
exp((log(2) + 1)*x) * (zeta(x + exp(-x)) - zeta(x)), x, oo) == -log(2)
# TODO 8.35 - 8.37 (bessel, max-min)
def test_gruntz_hyperbolic():
assert gruntz(cosh(x), x, oo) is oo
assert gruntz(cosh(x), x, -oo) is oo
assert gruntz(sinh(x), x, oo) is oo
assert gruntz(sinh(x), x, -oo) is -oo
assert gruntz(2*cosh(x)*exp(x), x, oo) is oo
assert gruntz(2*cosh(x)*exp(x), x, -oo) == 1
assert gruntz(2*sinh(x)*exp(x), x, oo) is oo
assert gruntz(2*sinh(x)*exp(x), x, -oo) == -1
assert gruntz(tanh(x), x, oo) == 1
assert gruntz(tanh(x), x, -oo) == -1
assert gruntz(coth(x), x, oo) == 1
assert gruntz(coth(x), x, -oo) == -1
def test_compare1():
assert compare(2, x, x) == "<"
assert compare(x, exp(x), x) == "<"
assert compare(exp(x), exp(x**2), x) == "<"
assert compare(exp(x**2), exp(exp(x)), x) == "<"
assert compare(1, exp(exp(x)), x) == "<"
assert compare(x, 2, x) == ">"
assert compare(exp(x), x, x) == ">"
assert compare(exp(x**2), exp(x), x) == ">"
assert compare(exp(exp(x)), exp(x**2), x) == ">"
assert compare(exp(exp(x)), 1, x) == ">"
assert compare(2, 3, x) == "="
assert compare(3, -5, x) == "="
assert compare(2, -5, x) == "="
assert compare(x, x**2, x) == "="
assert compare(x**2, x**3, x) == "="
assert compare(x**3, 1/x, x) == "="
assert compare(1/x, x**m, x) == "="
assert compare(x**m, -x, x) == "="
assert compare(exp(x), exp(-x), x) == "="
assert compare(exp(-x), exp(2*x), x) == "="
assert compare(exp(2*x), exp(x)**2, x) == "="
assert compare(exp(x)**2, exp(x + exp(-x)), x) == "="
assert compare(exp(x), exp(x + exp(-x)), x) == "="
assert compare(exp(x**2), 1/exp(x**2), x) == "="
def test_compare2():
assert compare(exp(x), x**5, x) == ">"
assert compare(exp(x**2), exp(x)**2, x) == ">"
assert compare(exp(x), exp(x + exp(-x)), x) == "="
assert compare(exp(x + exp(-x)), exp(x), x) == "="
assert compare(exp(x + exp(-x)), exp(-x), x) == "="
assert compare(exp(-x), x, x) == ">"
assert compare(x, exp(-x), x) == "<"
assert compare(exp(x + 1/x), x, x) == ">"
assert compare(exp(-exp(x)), exp(x), x) == ">"
assert compare(exp(exp(-exp(x)) + x), exp(-exp(x)), x) == "<"
def test_compare3():
assert compare(exp(exp(x)), exp(x + exp(-exp(x))), x) == ">"
def test_sign1():
assert sign(Rational(0), x) == 0
assert sign(Rational(3), x) == 1
assert sign(Rational(-5), x) == -1
assert sign(log(x), x) == 1
assert sign(exp(-x), x) == 1
assert sign(exp(x), x) == 1
assert sign(-exp(x), x) == -1
assert sign(3 - 1/x, x) == 1
assert sign(-3 - 1/x, x) == -1
assert sign(sin(1/x), x) == 1
assert sign((x**Integer(2)), x) == 1
assert sign(x**2, x) == 1
assert sign(x**5, x) == 1
def test_sign2():
assert sign(x, x) == 1
assert sign(-x, x) == -1
y = Symbol("y", positive=True)
assert sign(y, x) == 1
assert sign(-y, x) == -1
assert sign(y*x, x) == 1
assert sign(-y*x, x) == -1
def mmrv(a, b):
return set(mrv(a, b)[0].keys())
def test_mrv1():
assert mmrv(x, x) == {x}
assert mmrv(x + 1/x, x) == {x}
assert mmrv(x**2, x) == {x}
assert mmrv(log(x), x) == {x}
assert mmrv(exp(x), x) == {exp(x)}
assert mmrv(exp(-x), x) == {exp(-x)}
assert mmrv(exp(x**2), x) == {exp(x**2)}
assert mmrv(-exp(1/x), x) == {x}
assert mmrv(exp(x + 1/x), x) == {exp(x + 1/x)}
def test_mrv2a():
assert mmrv(exp(x + exp(-exp(x))), x) == {exp(-exp(x))}
assert mmrv(exp(x + exp(-x)), x) == {exp(x + exp(-x)), exp(-x)}
assert mmrv(exp(1/x + exp(-x)), x) == {exp(-x)}
#sometimes infinite recursion due to log(exp(x**2)) not simplifying
def test_mrv2b():
assert mmrv(exp(x + exp(-x**2)), x) == {exp(-x**2)}
#sometimes infinite recursion due to log(exp(x**2)) not simplifying
def test_mrv2c():
assert mmrv(
exp(-x + 1/x**2) - exp(x + 1/x), x) == {exp(x + 1/x), exp(1/x**2 - x)}
#sometimes infinite recursion due to log(exp(x**2)) not simplifying
def test_mrv3():
assert mmrv(exp(x**2) + x*exp(x) + log(x)**x/x, x) == {exp(x**2)}
assert mmrv(
exp(x)*(exp(1/x + exp(-x)) - exp(1/x)), x) == {exp(x), exp(-x)}
assert mmrv(log(
x**2 + 2*exp(exp(3*x**3*log(x)))), x) == {exp(exp(3*x**3*log(x)))}
assert mmrv(log(x - log(x))/log(x), x) == {x}
assert mmrv(
(exp(1/x - exp(-x)) - exp(1/x))*exp(x), x) == {exp(x), exp(-x)}
assert mmrv(
1/exp(-x + exp(-x)) - exp(x), x) == {exp(x), exp(-x), exp(x - exp(-x))}
assert mmrv(log(log(x*exp(x*exp(x)) + 1)), x) == {exp(x*exp(x))}
assert mmrv(exp(exp(log(log(x) + 1/x))), x) == {x}
def test_mrv4():
ln = log
assert mmrv((ln(ln(x) + ln(ln(x))) - ln(ln(x)))/ln(ln(x) + ln(ln(ln(x))))*ln(x),
x) == {x}
assert mmrv(log(log(x*exp(x*exp(x)) + 1)) - exp(exp(log(log(x) + 1/x))), x) == \
{exp(x*exp(x))}
def mrewrite(a, b, c):
return rewrite(a[1], a[0], b, c)
def test_rewrite1():
e = exp(x)
assert mrewrite(mrv(e, x), x, m) == (1/m, -x)
e = exp(x**2)
assert mrewrite(mrv(e, x), x, m) == (1/m, -x**2)
e = exp(x + 1/x)
assert mrewrite(mrv(e, x), x, m) == (1/m, -x - 1/x)
e = 1/exp(-x + exp(-x)) - exp(x)
assert mrewrite(mrv(e, x), x, m) == ((-m*exp(m) + m)*exp(-m)/m**2, -x)
def test_rewrite2():
e = exp(x)*log(log(exp(x)))
assert mmrv(e, x) == {exp(x)}
assert mrewrite(mrv(e, x), x, m) == (1/m*log(x), -x)
#sometimes infinite recursion due to log(exp(x**2)) not simplifying
def test_rewrite3():
e = exp(-x + 1/x**2) - exp(x + 1/x)
#both of these are correct and should be equivalent:
assert mrewrite(mrv(e, x), x, m) in [(-1/m + m*exp(
(x**2 + x)/x**3), -x - 1/x), ((m**2 - exp((x**2 + x)/x**3))/m, x**(-2) - x)]
def test_mrv_leadterm1():
assert mrv_leadterm(-exp(1/x), x) == (-1, 0)
assert mrv_leadterm(1/exp(-x + exp(-x)) - exp(x), x) == (-1, 0)
assert mrv_leadterm(
(exp(1/x - exp(-x)) - exp(1/x))*exp(x), x) == (-exp(1/x), 0)
def test_mrv_leadterm2():
#Gruntz: p51, 3.25
assert mrv_leadterm((log(exp(x) + x) - x)/log(exp(x) + log(x))*exp(x), x) == \
(1, 0)
def test_mrv_leadterm3():
#Gruntz: p56, 3.27
assert mmrv(exp(-x + exp(-x)*exp(-x*log(x))), x) == {exp(-x - x*log(x))}
assert mrv_leadterm(exp(-x + exp(-x)*exp(-x*log(x))), x) == (exp(-x), 0)
def test_limit1():
assert gruntz(x, x, oo) is oo
assert gruntz(x, x, -oo) is -oo
assert gruntz(-x, x, oo) is -oo
assert gruntz(x**2, x, -oo) is oo
assert gruntz(-x**2, x, oo) is -oo
assert gruntz(x*log(x), x, 0, dir="+") == 0
assert gruntz(1/x, x, oo) == 0
assert gruntz(exp(x), x, oo) is oo
assert gruntz(-exp(x), x, oo) is -oo
assert gruntz(exp(x)/x, x, oo) is oo
assert gruntz(1/x - exp(-x), x, oo) == 0
assert gruntz(x + 1/x, x, oo) is oo
def test_limit2():
assert gruntz(x**x, x, 0, dir="+") == 1
assert gruntz((exp(x) - 1)/x, x, 0) == 1
assert gruntz(1 + 1/x, x, oo) == 1
assert gruntz(-exp(1/x), x, oo) == -1
assert gruntz(x + exp(-x), x, oo) is oo
assert gruntz(x + exp(-x**2), x, oo) is oo
assert gruntz(x + exp(-exp(x)), x, oo) is oo
assert gruntz(13 + 1/x - exp(-x), x, oo) == 13
def test_limit3():
a = Symbol('a')
assert gruntz(x - log(1 + exp(x)), x, oo) == 0
assert gruntz(x - log(a + exp(x)), x, oo) == 0
assert gruntz(exp(x)/(1 + exp(x)), x, oo) == 1
assert gruntz(exp(x)/(a + exp(x)), x, oo) == 1
def test_limit4():
#issue 3463
assert gruntz((3**x + 5**x)**(1/x), x, oo) == 5
#issue 3463
assert gruntz((3**(1/x) + 5**(1/x))**x, x, 0) == 5
@XFAIL
def test_MrvTestCase_page47_ex3_21():
h = exp(-x/(1 + exp(-x)))
expr = exp(h)*exp(-x/(1 + h))*exp(exp(-x + h))/h**2 - exp(x) + x
assert mmrv(expr, x) == {1/h, exp(-x), exp(x), exp(x - h), exp(x/(1 + h))}
def test_gruntz_I():
y = Symbol("y")
assert gruntz(I*x, x, oo) == I*oo
assert gruntz(y*I*x, x, oo) == y*I*oo
assert gruntz(y*3*I*x, x, oo) == y*I*oo
assert gruntz(y*3*sin(I)*x, x, oo) == y*I*oo
def test_issue_4814():
assert gruntz((x + 1)**(1/log(x + 1)), x, oo) == E
def test_intractable():
assert gruntz(1/gamma(x), x, oo) == 0
assert gruntz(1/loggamma(x), x, oo) == 0
assert gruntz(gamma(x)/loggamma(x), x, oo) is oo
assert gruntz(exp(gamma(x))/gamma(x), x, oo) is oo
assert gruntz(gamma(x), x, 3) == 2
assert gruntz(gamma(Rational(1, 7) + 1/x), x, oo) == gamma(Rational(1, 7))
assert gruntz(log(x**x)/log(gamma(x)), x, oo) == 1
assert gruntz(log(gamma(gamma(x)))/exp(x), x, oo) is oo
def test_aseries_trig():
assert cancel(gruntz(1/log(atan(x)), x, oo)
- 1/(log(pi) + log(S.Half))) == 0
assert gruntz(1/acot(x), x, -oo) is -oo
def test_exp_log_series():
assert gruntz(x/log(log(x*exp(x))), x, oo) is oo
def test_issue_3644():
assert gruntz(((x**7 + x + 1)/(2**x + x**2))**(-1/x), x, oo) == 2
def test_issue_6843():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert gruntz(r, x, 1).simplify() == n/2
def test_issue_4190():
assert gruntz(x - gamma(1/x), x, oo) == S.EulerGamma
@XFAIL
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + \
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
assert gruntz(expr.subs(c, m), n, oo) == 1
# fail:
assert gruntz(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_4109():
assert gruntz(1/gamma(x), x, 0) == 0
assert gruntz(x*gamma(x), x, 0) == 1
def test_issue_6682():
assert gruntz(exp(2*Ei(-x))/x**2, x, 0) == exp(2*EulerGamma)
def test_issue_7096():
from sympy.functions import sign
assert gruntz(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))
def test_issue_7391_8166():
f = Function('f')
# limit should depend on the continuity of the expression at the point passed
raises(ValueError, lambda: gruntz(f(x), x, 4))
raises(ValueError, lambda: gruntz(x*f(x)**2/(x**2 + f(x)**4), x, 0))
def test_issue_24210_25885():
eq = exp(x)/(1+1/x)**x**2
ans = sqrt(E)
assert gruntz(eq, x, oo) == ans
assert gruntz(1/eq, x, oo) == 1/ans
|