File size: 7,304 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#
# Tests for PuiseuxRing and PuiseuxPoly
#

from sympy.testing.pytest import raises

from sympy import ZZ, QQ, ring
from sympy.polys.puiseux import PuiseuxRing, PuiseuxPoly, puiseux_ring

from sympy.abc import x, y


def test_puiseux_ring():
    R, px = puiseux_ring('x', QQ)
    R2, px2 = puiseux_ring([x], QQ)
    assert isinstance(R, PuiseuxRing)
    assert isinstance(px, PuiseuxPoly)
    assert R == R2
    assert px == px2
    assert R == PuiseuxRing('x', QQ)
    assert R == PuiseuxRing([x], QQ)
    assert R != PuiseuxRing('y', QQ)
    assert R != PuiseuxRing('x', ZZ)
    assert R != PuiseuxRing('x, y', QQ)
    assert R != QQ
    assert str(R) == 'PuiseuxRing((x,), QQ)'


def test_puiseux_ring_attributes():
    R1, px1, py1 = ring('x, y', QQ)
    R2, px2, py2 = puiseux_ring('x, y', QQ)
    assert R2.domain == QQ
    assert R2.symbols == (x, y)
    assert R2.gens == (px2, py2)
    assert R2.ngens == 2
    assert R2.poly_ring == R1
    assert R2.zero == PuiseuxPoly(R1.zero, R2)
    assert R2.one == PuiseuxPoly(R1.one, R2)
    assert R2.zero_monom == R1.zero_monom == (0, 0) # type: ignore
    assert R2.monomial_mul((1, 2), (3, 4)) == (4, 6)


def test_puiseux_ring_methods():
    R1, px1, py1 = ring('x, y', QQ)
    R2, px2, py2 = puiseux_ring('x, y', QQ)
    assert R2({(1, 2): 3}) == 3*px2*py2**2
    assert R2(px1) == px2
    assert R2(1) == R2.one
    assert R2(QQ(1,2)) == QQ(1,2)*R2.one
    assert R2.from_poly(px1) == px2
    assert R2.from_poly(px1) != py2
    assert R2.from_dict({(1, 2): QQ(3)}) == 3*px2*py2**2
    assert R2.from_dict({(QQ(1,2), 2): QQ(3)}) == 3*px2**QQ(1,2)*py2**2
    assert R2.from_int(3) == 3*R2.one
    assert R2.domain_new(3) == QQ(3)
    assert QQ.of_type(R2.domain_new(3))
    assert R2.ground_new(3) == 3*R2.one
    assert isinstance(R2.ground_new(3), PuiseuxPoly)
    assert R2.index(px2) == 0
    assert R2.index(py2) == 1


def test_puiseux_poly():
    R1, px1 = ring('x', QQ)
    R2, px2 = puiseux_ring('x', QQ)
    assert PuiseuxPoly(px1, R2) == px2
    assert px2.ring == R2
    assert px2.as_expr() == px1.as_expr() == x
    assert px1 != px2
    assert R2.one == px2**0 == 1
    assert px2 == px1
    assert px2 != 2.0
    assert px2**QQ(1,2) != px1


def test_puiseux_poly_normalization():
    R, x = puiseux_ring('x', QQ)
    assert (x**2 + 1) / x == x + 1/x == R({(1,): 1, (-1,): 1})
    assert (x**QQ(1,6))**2 == x**QQ(1,3) == R({(QQ(1,3),): 1})
    assert (x**QQ(1,6))**(-2) == x**(-QQ(1,3)) == R({(-QQ(1,3),): 1})
    assert (x**QQ(1,6))**QQ(1,2) == x**QQ(1,12) == R({(QQ(1,12),): 1})
    assert (x**QQ(1,6))**6 == x == R({(1,): 1})
    assert x**QQ(1,6) * x**QQ(1,3) == x**QQ(1,2) == R({(QQ(1,2),): 1})
    assert 1/x * x**2 == x == R({(1,): 1})
    assert 1/x**QQ(1,3) * x**QQ(1,3) == 1 == R({(0,): 1})


def test_puiseux_poly_monoms():
    R, x = puiseux_ring('x', QQ)
    assert x.monoms() == [(1,)]
    assert list(x) == [(1,)]
    assert (x**2 + 1).monoms() == [(2,), (0,)]
    assert R({(1,): 1, (-1,): 1}).monoms() == [(1,), (-1,)]
    assert R({(QQ(1,3),): 1}).monoms() == [(QQ(1,3),)]
    assert R({(-QQ(1,3),): 1}).monoms() == [(-QQ(1,3),)]
    p = x**QQ(1,6)
    assert p[(QQ(1,6),)] == 1
    raises(KeyError, lambda: p[(1,)])
    assert p.to_dict() == {(QQ(1,6),): 1}
    assert R(p.to_dict()) == p
    assert PuiseuxPoly.from_dict({(QQ(1,6),): 1}, R) == p


def test_puiseux_poly_repr():
    R, x = puiseux_ring('x', QQ)
    assert repr(x) == 'x'
    assert repr(x**QQ(1,2)) == 'x**(1/2)'
    assert repr(1/x) == 'x**(-1)'
    assert repr(2*x**2 + 1) == '1 + 2*x**2'
    assert repr(R.one) == '1'
    assert repr(2*R.one) == '2'


def test_puiseux_poly_unify():
    R, x = puiseux_ring('x', QQ)
    assert 1/x + x == x + 1/x == R({(1,): 1, (-1,): 1})
    assert repr(1/x + x) == 'x**(-1) + x'
    assert 1/x + 1/x == 2/x == R({(-1,): 2})
    assert repr(1/x + 1/x) == '2*x**(-1)'
    assert x**QQ(1,2) + x**QQ(1,2) == 2*x**QQ(1,2) == R({(QQ(1,2),): 2})
    assert repr(x**QQ(1,2) + x**QQ(1,2)) == '2*x**(1/2)'
    assert x**QQ(1,2) + x**QQ(1,3) == R({(QQ(1,2),): 1, (QQ(1,3),): 1})
    assert repr(x**QQ(1,2) + x**QQ(1,3)) == 'x**(1/3) + x**(1/2)'
    assert x + x**QQ(1,2) == R({(1,): 1, (QQ(1,2),): 1})
    assert repr(x + x**QQ(1,2)) == 'x**(1/2) + x'
    assert 1/x**QQ(1,2) + 1/x**QQ(1,3) == R({(-QQ(1,2),): 1, (-QQ(1,3),): 1})
    assert repr(1/x**QQ(1,2) + 1/x**QQ(1,3)) == 'x**(-1/2) + x**(-1/3)'
    assert 1/x + x**QQ(1,2) == x**QQ(1,2) + 1/x == R({(-1,): 1, (QQ(1,2),): 1})
    assert repr(1/x + x**QQ(1,2)) == 'x**(-1) + x**(1/2)'


def test_puiseux_poly_arit():
    R, x = puiseux_ring('x', QQ)
    R2, y = puiseux_ring('y', QQ)
    p = x**2 + 1
    assert +p == p
    assert -p == -1 - x**2
    assert p + p == 2*p == 2*x**2 + 2
    assert p + 1 == 1 + p == x**2 + 2
    assert p + QQ(1,2) == QQ(1,2) + p == x**2 + QQ(3,2)
    assert p - p == 0
    assert p - 1 == -1 + p == x**2
    assert p - QQ(1,2) == -QQ(1,2) + p == x**2 + QQ(1,2)
    assert 1 - p == -p + 1 == -x**2
    assert QQ(1,2) - p == -p + QQ(1,2) == -x**2 - QQ(1,2)
    assert p * p == x**4 + 2*x**2 + 1
    assert p * 1 == 1 * p == p
    assert 2 * p == p * 2 == 2*x**2 + 2
    assert p * QQ(1,2) == QQ(1,2) * p == QQ(1,2)*x**2 + QQ(1,2)
    assert x**QQ(1,2) * x**QQ(1,2) == x
    raises(ValueError, lambda: x + y)
    raises(ValueError, lambda: x - y)
    raises(ValueError, lambda: x * y)
    raises(TypeError, lambda: x + None)
    raises(TypeError, lambda: x - None)
    raises(TypeError, lambda: x * None)
    raises(TypeError, lambda: None + x)
    raises(TypeError, lambda: None - x)
    raises(TypeError, lambda: None * x)


def test_puiseux_poly_div():
    R, x = puiseux_ring('x', QQ)
    R2, y = puiseux_ring('y', QQ)
    p = x**2 - 1
    assert p / 1 == p
    assert p / QQ(1,2) == 2*p == 2*x**2 - 2
    assert p / x == x - 1/x == R({(1,): 1, (-1,): -1})
    assert 2 / x == 2*x**-1 == R({(-1,): 2})
    assert QQ(1,2) / x == QQ(1,2)*x**-1 == 1/(2*x) == 1/x/2 == R({(-1,): QQ(1,2)})
    raises(ZeroDivisionError, lambda: p / 0)
    raises(ValueError, lambda: (x + 1) / (x + 2))
    raises(ValueError, lambda: (x + 1) / (x + 1))
    raises(ValueError, lambda: x / y)
    raises(TypeError, lambda: x / None)
    raises(TypeError, lambda: None / x)


def test_puiseux_poly_pow():
    R, x = puiseux_ring('x', QQ)
    Rz, xz = puiseux_ring('x', ZZ)
    assert x**0 == 1 == R({(0,): 1})
    assert x**1 == x == R({(1,): 1})
    assert x**2 == x*x == R({(2,): 1})
    assert x**QQ(1,2) == R({(QQ(1,2),): 1})
    assert x**-1 == 1/x == R({(-1,): 1})
    assert x**-QQ(1,2) == 1/x**QQ(1,2) == R({(-QQ(1,2),): 1})
    assert (2*x)**-1 == 1/(2*x) == QQ(1,2)/x == QQ(1,2)*x**-1 == R({(-1,): QQ(1,2)})
    assert 2/x**2 == 2*x**-2 == R({(-2,): 2})
    assert 2/xz**2 == 2*xz**-2 == Rz({(-2,): 2})
    raises(TypeError, lambda: x**None)
    raises(ValueError, lambda: (x + 1)**-1)
    raises(ValueError, lambda: (x + 1)**QQ(1,2))
    raises(ValueError, lambda: (2*x)**QQ(1,2))
    raises(ValueError, lambda: (2*xz)**-1)


def test_puiseux_poly_diff():
    R, x, y = puiseux_ring('x, y', QQ)
    assert (x**2 + 1).diff(x) == 2*x
    assert (x**2 + 1).diff(y) == 0
    assert (x**2 + y**2).diff(x) == 2*x
    assert (x**QQ(1,2) + y**QQ(1,2)).diff(x) == QQ(1,2)*x**-QQ(1,2)
    assert ((x*y)**QQ(1,2)).diff(x) == QQ(1,2)*y**QQ(1,2)*x**-QQ(1,2)