File size: 26,518 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
"""
Puiseux rings. These are used by the ring_series module to represented
truncated Puiseux series. Elements of a Puiseux ring are like polynomials
except that the exponents can be negative or rational rather than just
non-negative integers.
"""

# Previously the ring_series module used PolyElement to represent Puiseux
# series. This is problematic because it means that PolyElement has to support
# negative and non-integer exponents which most polynomial representations do
# not support. This module provides an implementation of a ring for Puiseux
# series that can be used by ring_series without breaking the basic invariants
# of polynomial rings.
#
# Ideally there would be more of a proper series type that can keep track of
# not just the leading terms of a truncated series but also the precision
# of the series. For now the rings here are just introduced to keep the
# interface that ring_series was using before.

from __future__ import annotations

from sympy.polys.domains import QQ
from sympy.polys.rings import PolyRing, PolyElement
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.external.gmpy import gcd, lcm


from typing import TYPE_CHECKING


if TYPE_CHECKING:
    from typing import Any, Unpack
    from sympy.core.expr import Expr
    from sympy.polys.domains import Domain
    from collections.abc import Iterable, Iterator


def puiseux_ring(
    symbols: str | list[Expr], domain: Domain
) -> tuple[PuiseuxRing, Unpack[tuple[PuiseuxPoly, ...]]]:
    """Construct a Puiseux ring.

    This function constructs a Puiseux ring with the given symbols and domain.

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.puiseux import puiseux_ring
    >>> R, x, y = puiseux_ring('x y', QQ)
    >>> R
    PuiseuxRing((x, y), QQ)
    >>> p = 5*x**QQ(1,2) + 7/y
    >>> p
    7*y**(-1) + 5*x**(1/2)
    """
    ring = PuiseuxRing(symbols, domain)
    return (ring,) + ring.gens # type: ignore


class PuiseuxRing:
    """Ring of Puiseux polynomials.

    A Puiseux polynomial is a truncated Puiseux series. The exponents of the
    monomials can be negative or rational numbers. This ring is used by the
    ring_series module:

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.puiseux import puiseux_ring
    >>> from sympy.polys.ring_series import rs_exp, rs_nth_root
    >>> ring, x, y = puiseux_ring('x y', QQ)
    >>> f = x**2 + y**3
    >>> f
    y**3 + x**2
    >>> f.diff(x)
    2*x
    >>> rs_exp(x, x, 5)
    1 + x + 1/2*x**2 + 1/6*x**3 + 1/24*x**4

    Importantly the Puiseux ring can represent truncated series with negative
    and fractional exponents:

    >>> f = 1/x + 1/y**2
    >>> f
    x**(-1) + y**(-2)
    >>> f.diff(x)
    -1*x**(-2)

    >>> rs_nth_root(8*x + x**2 + x**3, 3, x, 5)
    2*x**(1/3) + 1/12*x**(4/3) + 23/288*x**(7/3) + -139/20736*x**(10/3)

    See Also
    ========

    sympy.polys.ring_series.rs_series
    PuiseuxPoly
    """
    def __init__(self, symbols: str | list[Expr], domain: Domain):

        poly_ring = PolyRing(symbols, domain)

        domain = poly_ring.domain
        ngens = poly_ring.ngens

        self.poly_ring = poly_ring
        self.domain = domain

        self.symbols = poly_ring.symbols
        self.gens = tuple([self.from_poly(g) for g in poly_ring.gens])
        self.ngens = ngens

        self.zero = self.from_poly(poly_ring.zero)
        self.one = self.from_poly(poly_ring.one)

        self.zero_monom = poly_ring.zero_monom # type: ignore
        self.monomial_mul = poly_ring.monomial_mul # type: ignore

    def __repr__(self) -> str:
        return f"PuiseuxRing({self.symbols}, {self.domain})"

    def __eq__(self, other: Any) -> bool:
        if not isinstance(other, PuiseuxRing):
            return NotImplemented
        return self.symbols == other.symbols and self.domain == other.domain

    def from_poly(self, poly: PolyElement) -> PuiseuxPoly:
        """Create a Puiseux polynomial from a polynomial.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.rings import ring
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R1, x1 = ring('x', QQ)
        >>> R2, x2 = puiseux_ring('x', QQ)
        >>> R2.from_poly(x1**2)
        x**2
        """
        return PuiseuxPoly(poly, self)

    def from_dict(self, terms: dict[tuple[int, ...], Any]) -> PuiseuxPoly:
        """Create a Puiseux polynomial from a dictionary of terms.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x = puiseux_ring('x', QQ)
        >>> R.from_dict({(QQ(1,2),): QQ(3)})
        3*x**(1/2)
        """
        return PuiseuxPoly.from_dict(terms, self)

    def from_int(self, n: int) -> PuiseuxPoly:
        """Create a Puiseux polynomial from an integer.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x = puiseux_ring('x', QQ)
        >>> R.from_int(3)
        3
        """
        return self.from_poly(self.poly_ring(n))

    def domain_new(self, arg: Any) -> Any:
        """Create a new element of the domain.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x = puiseux_ring('x', QQ)
        >>> R.domain_new(3)
        3
        >>> QQ.of_type(_)
        True
        """
        return self.poly_ring.domain_new(arg)

    def ground_new(self, arg: Any) -> PuiseuxPoly:
        """Create a new element from a ground element.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring, PuiseuxPoly
        >>> R, x = puiseux_ring('x', QQ)
        >>> R.ground_new(3)
        3
        >>> isinstance(_, PuiseuxPoly)
        True
        """
        return self.from_poly(self.poly_ring.ground_new(arg))

    def __call__(self, arg: Any) -> PuiseuxPoly:
        """Coerce an element into the ring.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x = puiseux_ring('x', QQ)
        >>> R(3)
        3
        >>> R({(QQ(1,2),): QQ(3)})
        3*x**(1/2)
        """
        if isinstance(arg, dict):
            return self.from_dict(arg)
        else:
            return self.from_poly(self.poly_ring(arg))

    def index(self, x: PuiseuxPoly) -> int:
        """Return the index of a generator.

        >>> from sympy.polys.domains import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x, y = puiseux_ring('x y', QQ)
        >>> R.index(x)
        0
        >>> R.index(y)
        1
        """
        return self.gens.index(x)


def _div_poly_monom(poly: PolyElement, monom: Iterable[int]) -> PolyElement:
    ring = poly.ring
    div = ring.monomial_div
    return ring.from_dict({div(m, monom): c for m, c in poly.terms()})


def _mul_poly_monom(poly: PolyElement, monom: Iterable[int]) -> PolyElement:
    ring = poly.ring
    mul = ring.monomial_mul
    return ring.from_dict({mul(m, monom): c for m, c in poly.terms()})


def _div_monom(monom: Iterable[int], div: Iterable[int]) -> tuple[int, ...]:
    return tuple(mi - di for mi, di in zip(monom, div))


class PuiseuxPoly:
    """Puiseux polynomial. Represents a truncated Puiseux series.

    See the :class:`PuiseuxRing` class for more information.

    >>> from sympy import QQ
    >>> from sympy.polys.puiseux import puiseux_ring
    >>> R, x, y = puiseux_ring('x, y', QQ)
    >>> p = 5*x**2 + 7*y**3
    >>> p
    7*y**3 + 5*x**2

    The internal representation of a Puiseux polynomial wraps a normal
    polynomial. To support negative powers the polynomial is considered to be
    divided by a monomial.

    >>> p2 = 1/x + 1/y**2
    >>> p2.monom # x*y**2
    (1, 2)
    >>> p2.poly
    x + y**2
    >>> (y**2 + x) / (x*y**2) == p2
    True

    To support fractional powers the polynomial is considered to be a function
    of ``x**(1/nx), y**(1/ny), ...``. The representation keeps track of a
    monomial and a list of exponent denominators so that the polynomial can be
    used to represent both negative and fractional powers.

    >>> p3 = x**QQ(1,2) + y**QQ(2,3)
    >>> p3.ns
    (2, 3)
    >>> p3.poly
    x + y**2

    See Also
    ========

    sympy.polys.puiseux.PuiseuxRing
    sympy.polys.rings.PolyElement
    """

    ring: PuiseuxRing
    poly: PolyElement
    monom: tuple[int, ...] | None
    ns: tuple[int, ...] | None

    def __new__(cls, poly: PolyElement, ring: PuiseuxRing) -> PuiseuxPoly:
        return cls._new(ring, poly, None, None)

    @classmethod
    def _new(
        cls,
        ring: PuiseuxRing,
        poly: PolyElement,
        monom: tuple[int, ...] | None,
        ns: tuple[int, ...] | None,
    ) -> PuiseuxPoly:
        poly, monom, ns = cls._normalize(poly, monom, ns)
        return cls._new_raw(ring, poly, monom, ns)

    @classmethod
    def _new_raw(
        cls,
        ring: PuiseuxRing,
        poly: PolyElement,
        monom: tuple[int, ...] | None,
        ns: tuple[int, ...] | None,
    ) -> PuiseuxPoly:
        obj = object.__new__(cls)
        obj.ring = ring
        obj.poly = poly
        obj.monom = monom
        obj.ns = ns
        return obj

    def __eq__(self, other: Any) -> bool:
        if isinstance(other, PuiseuxPoly):
            return (
                self.poly == other.poly
                and self.monom == other.monom
                and self.ns == other.ns
            )
        elif self.monom is None and self.ns is None:
            return self.poly.__eq__(other)
        else:
            return NotImplemented

    @classmethod
    def _normalize(
        cls,
        poly: PolyElement,
        monom: tuple[int, ...] | None,
        ns: tuple[int, ...] | None,
    ) -> tuple[PolyElement, tuple[int, ...] | None, tuple[int, ...] | None]:
        if monom is None and ns is None:
            return poly, None, None

        if monom is not None:
            degs = [max(d, 0) for d in poly.tail_degrees()]
            if all(di >= mi for di, mi in zip(degs, monom)):
                poly = _div_poly_monom(poly, monom)
                monom = None
            elif any(degs):
                poly = _div_poly_monom(poly, degs)
                monom = _div_monom(monom, degs)

        if ns is not None:
            factors_d, [poly_d] = poly.deflate()
            degrees = poly.degrees()
            monom_d = monom if monom is not None else [0] * len(degrees)
            ns_new = []
            monom_new = []
            inflations = []
            for fi, ni, di, mi in zip(factors_d, ns, degrees, monom_d):
                if di == 0:
                    g = gcd(ni, mi)
                else:
                    g = gcd(fi, ni, mi)
                ns_new.append(ni // g)
                monom_new.append(mi // g)
                inflations.append(fi // g)

            if any(infl > 1 for infl in inflations):
                poly_d = poly_d.inflate(inflations)

            poly = poly_d

            if monom is not None:
                monom = tuple(monom_new)

            if all(n == 1 for n in ns_new):
                ns = None
            else:
                ns = tuple(ns_new)

        return poly, monom, ns

    @classmethod
    def _monom_fromint(
        cls,
        monom: tuple[int, ...],
        dmonom: tuple[int, ...] | None,
        ns: tuple[int, ...] | None,
    ) -> tuple[Any, ...]:
        if dmonom is not None and ns is not None:
            return tuple(QQ(mi - di, ni) for mi, di, ni in zip(monom, dmonom, ns))
        elif dmonom is not None:
            return tuple(QQ(mi - di) for mi, di in zip(monom, dmonom))
        elif ns is not None:
            return tuple(QQ(mi, ni) for mi, ni in zip(monom, ns))
        else:
            return tuple(QQ(mi) for mi in monom)

    @classmethod
    def _monom_toint(
        cls,
        monom: tuple[Any, ...],
        dmonom: tuple[int, ...] | None,
        ns: tuple[int, ...] | None,
    ) -> tuple[int, ...]:
        if dmonom is not None and ns is not None:
            return tuple(
                int((mi * ni).numerator + di) for mi, di, ni in zip(monom, dmonom, ns)
            )
        elif dmonom is not None:
            return tuple(int(mi.numerator + di) for mi, di in zip(monom, dmonom))
        elif ns is not None:
            return tuple(int((mi * ni).numerator) for mi, ni in zip(monom, ns))
        else:
            return tuple(int(mi.numerator) for mi in monom)

    def itermonoms(self) -> Iterator[tuple[Any, ...]]:
        """Iterate over the monomials of a Puiseux polynomial.

        >>> from sympy import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x, y = puiseux_ring('x, y', QQ)
        >>> p = 5*x**2 + 7*y**3
        >>> list(p.itermonoms())
        [(2, 0), (0, 3)]
        >>> p[(2, 0)]
        5
        """
        monom, ns = self.monom, self.ns
        for m in self.poly.itermonoms():
            yield self._monom_fromint(m, monom, ns)

    def monoms(self) -> list[tuple[Any, ...]]:
        """Return a list of the monomials of a Puiseux polynomial."""
        return list(self.itermonoms())

    def __iter__(self) -> Iterator[tuple[tuple[Any, ...], Any]]:
        return self.itermonoms()

    def __getitem__(self, monom: tuple[int, ...]) -> Any:
        monom = self._monom_toint(monom, self.monom, self.ns)
        return self.poly[monom]

    def __len__(self) -> int:
        return len(self.poly)

    def iterterms(self) -> Iterator[tuple[tuple[Any, ...], Any]]:
        """Iterate over the terms of a Puiseux polynomial.

        >>> from sympy import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x, y = puiseux_ring('x, y', QQ)
        >>> p = 5*x**2 + 7*y**3
        >>> list(p.iterterms())
        [((2, 0), 5), ((0, 3), 7)]
        """
        monom, ns = self.monom, self.ns
        for m, coeff in self.poly.iterterms():
            mq = self._monom_fromint(m, monom, ns)
            yield mq, coeff

    def terms(self) -> list[tuple[tuple[Any, ...], Any]]:
        """Return a list of the terms of a Puiseux polynomial."""
        return list(self.iterterms())

    @property
    def is_term(self) -> bool:
        """Return True if the Puiseux polynomial is a single term."""
        return self.poly.is_term

    def to_dict(self) -> dict[tuple[int, ...], Any]:
        """Return a dictionary representation of a Puiseux polynomial."""
        return dict(self.iterterms())

    @classmethod
    def from_dict(
        cls, terms: dict[tuple[Any, ...], Any], ring: PuiseuxRing
    ) -> PuiseuxPoly:
        """Create a Puiseux polynomial from a dictionary of terms.

        >>> from sympy import QQ
        >>> from sympy.polys.puiseux import puiseux_ring, PuiseuxPoly
        >>> R, x = puiseux_ring('x', QQ)
        >>> PuiseuxPoly.from_dict({(QQ(1,2),): QQ(3)}, R)
        3*x**(1/2)
        >>> R.from_dict({(QQ(1,2),): QQ(3)})
        3*x**(1/2)
        """
        ns = [1] * ring.ngens
        mon = [0] * ring.ngens
        for mo in terms:
            ns = [lcm(n, m.denominator) for n, m in zip(ns, mo)]
            mon = [min(m, n) for m, n in zip(mo, mon)]

        if not any(mon):
            monom = None
        else:
            monom = tuple(-int((m * n).numerator) for m, n in zip(mon, ns))

        if all(n == 1 for n in ns):
            ns_final = None
        else:
            ns_final = tuple(ns)

        terms_p = {cls._monom_toint(m, monom, ns_final): coeff for m, coeff in terms.items()}

        poly = ring.poly_ring.from_dict(terms_p)

        return cls._new(ring, poly, monom, ns_final)

    def as_expr(self) -> Expr:
        """Convert a Puiseux polynomial to :class:`~sympy.core.expr.Expr`.

        >>> from sympy import QQ, Expr
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x = puiseux_ring('x', QQ)
        >>> p = 5*x**2 + 7*x**3
        >>> p.as_expr()
        7*x**3 + 5*x**2
        >>> isinstance(_, Expr)
        True
        """
        ring = self.ring
        dom = ring.domain
        symbols = ring.symbols
        terms = []
        for monom, coeff in self.iterterms():
            coeff_expr = dom.to_sympy(coeff)
            monoms_expr = []
            for i, m in enumerate(monom):
                monoms_expr.append(symbols[i] ** m)
            terms.append(Mul(coeff_expr, *monoms_expr))
        return Add(*terms)

    def __repr__(self) -> str:

        def format_power(base: str, exp: int) -> str:
            if exp == 1:
                return base
            elif exp >= 0 and int(exp) == exp:
                return f"{base}**{exp}"
            else:
                return f"{base}**({exp})"

        ring = self.ring
        dom = ring.domain

        syms = [str(s) for s in ring.symbols]
        terms_str = []
        for monom, coeff in sorted(self.terms()):
            monom_str = "*".join(format_power(s, e) for s, e in zip(syms, monom) if e)
            if coeff == dom.one:
                if monom_str:
                    terms_str.append(monom_str)
                else:
                    terms_str.append("1")
            elif not monom_str:
                terms_str.append(str(coeff))
            else:
                terms_str.append(f"{coeff}*{monom_str}")

        return " + ".join(terms_str)

    def _unify(
        self, other: PuiseuxPoly
    ) -> tuple[
        PolyElement, PolyElement, tuple[int, ...] | None, tuple[int, ...] | None
    ]:
        """Bring two Puiseux polynomials to a common monom and ns."""
        poly1, monom1, ns1 = self.poly, self.monom, self.ns
        poly2, monom2, ns2 = other.poly, other.monom, other.ns

        if monom1 == monom2 and ns1 == ns2:
            return poly1, poly2, monom1, ns1

        if ns1 == ns2:
            ns = ns1
        elif ns1 is not None and ns2 is not None:
            ns = tuple(lcm(n1, n2) for n1, n2 in zip(ns1, ns2))
            f1 = [n // n1 for n, n1 in zip(ns, ns1)]
            f2 = [n // n2 for n, n2 in zip(ns, ns2)]
            poly1 = poly1.inflate(f1)
            poly2 = poly2.inflate(f2)
            if monom1 is not None:
                monom1 = tuple(m * f for m, f in zip(monom1, f1))
            if monom2 is not None:
                monom2 = tuple(m * f for m, f in zip(monom2, f2))
        elif ns2 is not None:
            ns = ns2
            poly1 = poly1.inflate(ns)
            if monom1 is not None:
                monom1 = tuple(m * n for m, n in zip(monom1, ns))
        elif ns1 is not None:
            ns = ns1
            poly2 = poly2.inflate(ns)
            if monom2 is not None:
                monom2 = tuple(m * n for m, n in zip(monom2, ns))
        else:
            assert False

        if monom1 == monom2:
            monom = monom1
        elif monom1 is not None and monom2 is not None:
            monom = tuple(max(m1, m2) for m1, m2 in zip(monom1, monom2))
            poly1 = _mul_poly_monom(poly1, _div_monom(monom, monom1))
            poly2 = _mul_poly_monom(poly2, _div_monom(monom, monom2))
        elif monom2 is not None:
            monom = monom2
            poly1 = _mul_poly_monom(poly1, monom2)
        elif monom1 is not None:
            monom = monom1
            poly2 = _mul_poly_monom(poly2, monom1)
        else:
            assert False

        return poly1, poly2, monom, ns

    def __pos__(self) -> PuiseuxPoly:
        return self

    def __neg__(self) -> PuiseuxPoly:
        return self._new_raw(self.ring, -self.poly, self.monom, self.ns)

    def __add__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, PuiseuxPoly):
            if self.ring != other.ring:
                raise ValueError("Cannot add Puiseux polynomials from different rings")
            return self._add(other)
        domain = self.ring.domain
        if isinstance(other, int):
            return self._add_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._add_ground(other)
        else:
            return NotImplemented

    def __radd__(self, other: Any) -> PuiseuxPoly:
        domain = self.ring.domain
        if isinstance(other, int):
            return self._add_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._add_ground(other)
        else:
            return NotImplemented

    def __sub__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, PuiseuxPoly):
            if self.ring != other.ring:
                raise ValueError(
                    "Cannot subtract Puiseux polynomials from different rings"
                )
            return self._sub(other)
        domain = self.ring.domain
        if isinstance(other, int):
            return self._sub_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._sub_ground(other)
        else:
            return NotImplemented

    def __rsub__(self, other: Any) -> PuiseuxPoly:
        domain = self.ring.domain
        if isinstance(other, int):
            return self._rsub_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._rsub_ground(other)
        else:
            return NotImplemented

    def __mul__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, PuiseuxPoly):
            if self.ring != other.ring:
                raise ValueError(
                    "Cannot multiply Puiseux polynomials from different rings"
                )
            return self._mul(other)
        domain = self.ring.domain
        if isinstance(other, int):
            return self._mul_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._mul_ground(other)
        else:
            return NotImplemented

    def __rmul__(self, other: Any) -> PuiseuxPoly:
        domain = self.ring.domain
        if isinstance(other, int):
            return self._mul_ground(domain.convert_from(QQ(other), QQ))
        elif domain.of_type(other):
            return self._mul_ground(other)
        else:
            return NotImplemented

    def __pow__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, int):
            if other >= 0:
                return self._pow_pint(other)
            else:
                return self._pow_nint(-other)
        elif QQ.of_type(other):
            return self._pow_rational(other)
        else:
            return NotImplemented

    def __truediv__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, PuiseuxPoly):
            if self.ring != other.ring:
                raise ValueError(
                    "Cannot divide Puiseux polynomials from different rings"
                )
            return self._mul(other._inv())
        domain = self.ring.domain
        if isinstance(other, int):
            return self._mul_ground(domain.convert_from(QQ(1, other), QQ))
        elif domain.of_type(other):
            return self._div_ground(other)
        else:
            return NotImplemented

    def __rtruediv__(self, other: Any) -> PuiseuxPoly:
        if isinstance(other, int):
            return self._inv()._mul_ground(self.ring.domain.convert_from(QQ(other), QQ))
        elif self.ring.domain.of_type(other):
            return self._inv()._mul_ground(other)
        else:
            return NotImplemented

    def _add(self, other: PuiseuxPoly) -> PuiseuxPoly:
        poly1, poly2, monom, ns = self._unify(other)
        return self._new(self.ring, poly1 + poly2, monom, ns)

    def _add_ground(self, ground: Any) -> PuiseuxPoly:
        return self._add(self.ring.ground_new(ground))

    def _sub(self, other: PuiseuxPoly) -> PuiseuxPoly:
        poly1, poly2, monom, ns = self._unify(other)
        return self._new(self.ring, poly1 - poly2, monom, ns)

    def _sub_ground(self, ground: Any) -> PuiseuxPoly:
        return self._sub(self.ring.ground_new(ground))

    def _rsub_ground(self, ground: Any) -> PuiseuxPoly:
        return self.ring.ground_new(ground)._sub(self)

    def _mul(self, other: PuiseuxPoly) -> PuiseuxPoly:
        poly1, poly2, monom, ns = self._unify(other)
        if monom is not None:
            monom = tuple(2 * e for e in monom)
        return self._new(self.ring, poly1 * poly2, monom, ns)

    def _mul_ground(self, ground: Any) -> PuiseuxPoly:
        return self._new_raw(self.ring, self.poly * ground, self.monom, self.ns)

    def _div_ground(self, ground: Any) -> PuiseuxPoly:
        return self._new_raw(self.ring, self.poly / ground, self.monom, self.ns)

    def _pow_pint(self, n: int) -> PuiseuxPoly:
        assert n >= 0
        monom = self.monom
        if monom is not None:
            monom = tuple(m * n for m in monom)
        return self._new(self.ring, self.poly**n, monom, self.ns)

    def _pow_nint(self, n: int) -> PuiseuxPoly:
        return self._inv()._pow_pint(n)

    def _pow_rational(self, n: Any) -> PuiseuxPoly:
        if not self.is_term:
            raise ValueError("Only monomials can be raised to a rational power")
        [(monom, coeff)] = self.terms()
        domain = self.ring.domain
        if not domain.is_one(coeff):
            raise ValueError("Only monomials can be raised to a rational power")
        monom = tuple(m * n for m in monom)
        return self.ring.from_dict({monom: domain.one})

    def _inv(self) -> PuiseuxPoly:
        if not self.is_term:
            raise ValueError("Only terms can be inverted")
        [(monom, coeff)] = self.terms()
        domain = self.ring.domain
        if not domain.is_Field and not domain.is_one(coeff):
            raise ValueError("Cannot invert non-unit coefficient")
        monom = tuple(-m for m in monom)
        coeff = 1 / coeff
        return self.ring.from_dict({monom: coeff})

    def diff(self, x: PuiseuxPoly) -> PuiseuxPoly:
        """Differentiate a Puiseux polynomial with respect to a variable.

        >>> from sympy import QQ
        >>> from sympy.polys.puiseux import puiseux_ring
        >>> R, x, y = puiseux_ring('x, y', QQ)
        >>> p = 5*x**2 + 7*y**3
        >>> p.diff(x)
        10*x
        >>> p.diff(y)
        21*y**2
        """
        ring = self.ring
        i = ring.index(x)
        g = {}
        for expv, coeff in self.iterterms():
            n = expv[i]
            if n:
                e = list(expv)
                e[i] -= 1
                g[tuple(e)] = coeff * n
        return ring(g)