File size: 6,159 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""Implementation of :class:`ComplexField` class. """
from sympy.external.gmpy import SYMPY_INTS
from sympy.core.numbers import Float, I
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.gaussiandomains import QQ_I
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import DomainError, CoercionFailed
from sympy.utilities import public
from mpmath import MPContext
@public
class ComplexField(Field, CharacteristicZero, SimpleDomain):
"""Complex numbers up to the given precision. """
rep = 'CC'
is_ComplexField = is_CC = True
is_Exact = False
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
_default_precision = 53
@property
def has_default_precision(self):
return self.precision == self._default_precision
@property
def precision(self):
return self._context.prec
@property
def dps(self):
return self._context.dps
@property
def tolerance(self):
return self._tolerance
def __init__(self, prec=None, dps=None, tol=None):
# XXX: The tolerance parameter is ignored but is kept for backward
# compatibility for now.
context = MPContext()
if prec is None and dps is None:
context.prec = self._default_precision
elif dps is None:
context.prec = prec
elif prec is None:
context.dps = dps
else:
raise TypeError("Cannot set both prec and dps")
self._context = context
self._dtype = context.mpc
self.zero = self.dtype(0)
self.one = self.dtype(1)
# XXX: Neither of these is actually used anywhere.
self._max_denom = max(2**context.prec // 200, 99)
self._tolerance = self.one / self._max_denom
@property
def tp(self):
# XXX: Domain treats tp as an alias of dtype. Here we need two separate
# things: dtype is a callable to make/convert instances. We use tp with
# isinstance to check if an object is an instance of the domain
# already.
return self._dtype
def dtype(self, x, y=0):
# XXX: This is needed because mpmath does not recognise fmpz.
# It might be better to add conversion routines to mpmath and if that
# happens then this can be removed.
if isinstance(x, SYMPY_INTS):
x = int(x)
if isinstance(y, SYMPY_INTS):
y = int(y)
return self._dtype(x, y)
def __eq__(self, other):
return isinstance(other, ComplexField) and self.precision == other.precision
def __hash__(self):
return hash((self.__class__.__name__, self._dtype, self.precision))
def to_sympy(self, element):
"""Convert ``element`` to SymPy number. """
return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
def from_sympy(self, expr):
"""Convert SymPy's number to ``dtype``. """
number = expr.evalf(n=self.dps)
real, imag = number.as_real_imag()
if real.is_Number and imag.is_Number:
return self.dtype(real, imag)
else:
raise CoercionFailed("expected complex number, got %s" % expr)
def from_ZZ(self, element, base):
return self.dtype(element)
def from_ZZ_gmpy(self, element, base):
return self.dtype(int(element))
def from_ZZ_python(self, element, base):
return self.dtype(element)
def from_QQ(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_QQ_python(self, element, base):
return self.dtype(element.numerator) / element.denominator
def from_QQ_gmpy(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_GaussianIntegerRing(self, element, base):
return self.dtype(int(element.x), int(element.y))
def from_GaussianRationalField(self, element, base):
x = element.x
y = element.y
return (self.dtype(int(x.numerator)) / int(x.denominator) +
self.dtype(0, int(y.numerator)) / int(y.denominator))
def from_AlgebraicField(self, element, base):
return self.from_sympy(base.to_sympy(element).evalf(self.dps))
def from_RealField(self, element, base):
return self.dtype(element)
def from_ComplexField(self, element, base):
return self.dtype(element)
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError("there is no ring associated with %s" % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
return QQ_I
def is_negative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
return self.one
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
return a*b
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return self._context.almosteq(a, b, tolerance)
def is_square(self, a):
"""Returns ``True``. Every complex number has a complex square root."""
return True
def exsqrt(self, a):
r"""Returns the principal complex square root of ``a``.
Explanation
===========
The argument of the principal square root is always within
$(-\frac{\pi}{2}, \frac{\pi}{2}]$. The square root may be
slightly inaccurate due to floating point rounding error.
"""
return a ** 0.5
CC = ComplexField()
|