File size: 15,585 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
from functools import wraps
import sentry_sdk
from sentry_sdk import consts
from sentry_sdk.ai.monitoring import record_token_usage
from sentry_sdk.ai.utils import set_data_normalized
from sentry_sdk.consts import SPANDATA
from sentry_sdk.integrations import DidNotEnable, Integration
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.utils import (
capture_internal_exceptions,
event_from_exception,
)
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Any, Iterable, List, Optional, Callable, AsyncIterator, Iterator
from sentry_sdk.tracing import Span
try:
from openai.resources.chat.completions import Completions, AsyncCompletions
from openai.resources import Embeddings, AsyncEmbeddings
if TYPE_CHECKING:
from openai.types.chat import ChatCompletionMessageParam, ChatCompletionChunk
except ImportError:
raise DidNotEnable("OpenAI not installed")
class OpenAIIntegration(Integration):
identifier = "openai"
origin = f"auto.ai.{identifier}"
def __init__(self, include_prompts=True, tiktoken_encoding_name=None):
# type: (OpenAIIntegration, bool, Optional[str]) -> None
self.include_prompts = include_prompts
self.tiktoken_encoding = None
if tiktoken_encoding_name is not None:
import tiktoken # type: ignore
self.tiktoken_encoding = tiktoken.get_encoding(tiktoken_encoding_name)
@staticmethod
def setup_once():
# type: () -> None
Completions.create = _wrap_chat_completion_create(Completions.create)
Embeddings.create = _wrap_embeddings_create(Embeddings.create)
AsyncCompletions.create = _wrap_async_chat_completion_create(
AsyncCompletions.create
)
AsyncEmbeddings.create = _wrap_async_embeddings_create(AsyncEmbeddings.create)
def count_tokens(self, s):
# type: (OpenAIIntegration, str) -> int
if self.tiktoken_encoding is not None:
return len(self.tiktoken_encoding.encode_ordinary(s))
return 0
def _capture_exception(exc):
# type: (Any) -> None
event, hint = event_from_exception(
exc,
client_options=sentry_sdk.get_client().options,
mechanism={"type": "openai", "handled": False},
)
sentry_sdk.capture_event(event, hint=hint)
def _calculate_chat_completion_usage(
messages, response, span, streaming_message_responses, count_tokens
):
# type: (Iterable[ChatCompletionMessageParam], Any, Span, Optional[List[str]], Callable[..., Any]) -> None
completion_tokens = 0 # type: Optional[int]
prompt_tokens = 0 # type: Optional[int]
total_tokens = 0 # type: Optional[int]
if hasattr(response, "usage"):
if hasattr(response.usage, "completion_tokens") and isinstance(
response.usage.completion_tokens, int
):
completion_tokens = response.usage.completion_tokens
if hasattr(response.usage, "prompt_tokens") and isinstance(
response.usage.prompt_tokens, int
):
prompt_tokens = response.usage.prompt_tokens
if hasattr(response.usage, "total_tokens") and isinstance(
response.usage.total_tokens, int
):
total_tokens = response.usage.total_tokens
if prompt_tokens == 0:
for message in messages:
if "content" in message:
prompt_tokens += count_tokens(message["content"])
if completion_tokens == 0:
if streaming_message_responses is not None:
for message in streaming_message_responses:
completion_tokens += count_tokens(message)
elif hasattr(response, "choices"):
for choice in response.choices:
if hasattr(choice, "message"):
completion_tokens += count_tokens(choice.message)
if prompt_tokens == 0:
prompt_tokens = None
if completion_tokens == 0:
completion_tokens = None
if total_tokens == 0:
total_tokens = None
record_token_usage(span, prompt_tokens, completion_tokens, total_tokens)
def _new_chat_completion_common(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return f(*args, **kwargs)
if "messages" not in kwargs:
# invalid call (in all versions of openai), let it return error
return f(*args, **kwargs)
try:
iter(kwargs["messages"])
except TypeError:
# invalid call (in all versions), messages must be iterable
return f(*args, **kwargs)
kwargs["messages"] = list(kwargs["messages"])
messages = kwargs["messages"]
model = kwargs.get("model")
streaming = kwargs.get("stream")
span = sentry_sdk.start_span(
op=consts.OP.OPENAI_CHAT_COMPLETIONS_CREATE,
name="Chat Completion",
origin=OpenAIIntegration.origin,
)
span.__enter__()
res = yield f, args, kwargs
with capture_internal_exceptions():
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, messages)
set_data_normalized(span, SPANDATA.AI_MODEL_ID, model)
set_data_normalized(span, SPANDATA.AI_STREAMING, streaming)
if hasattr(res, "choices"):
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span,
SPANDATA.AI_RESPONSES,
list(map(lambda x: x.message, res.choices)),
)
_calculate_chat_completion_usage(
messages, res, span, None, integration.count_tokens
)
span.__exit__(None, None, None)
elif hasattr(res, "_iterator"):
data_buf: list[list[str]] = [] # one for each choice
old_iterator = res._iterator
def new_iterator():
# type: () -> Iterator[ChatCompletionChunk]
with capture_internal_exceptions():
for x in old_iterator:
if hasattr(x, "choices"):
choice_index = 0
for choice in x.choices:
if hasattr(choice, "delta") and hasattr(
choice.delta, "content"
):
content = choice.delta.content
if len(data_buf) <= choice_index:
data_buf.append([])
data_buf[choice_index].append(content or "")
choice_index += 1
yield x
if len(data_buf) > 0:
all_responses = list(
map(lambda chunk: "".join(chunk), data_buf)
)
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span, SPANDATA.AI_RESPONSES, all_responses
)
_calculate_chat_completion_usage(
messages,
res,
span,
all_responses,
integration.count_tokens,
)
span.__exit__(None, None, None)
async def new_iterator_async():
# type: () -> AsyncIterator[ChatCompletionChunk]
with capture_internal_exceptions():
async for x in old_iterator:
if hasattr(x, "choices"):
choice_index = 0
for choice in x.choices:
if hasattr(choice, "delta") and hasattr(
choice.delta, "content"
):
content = choice.delta.content
if len(data_buf) <= choice_index:
data_buf.append([])
data_buf[choice_index].append(content or "")
choice_index += 1
yield x
if len(data_buf) > 0:
all_responses = list(
map(lambda chunk: "".join(chunk), data_buf)
)
if should_send_default_pii() and integration.include_prompts:
set_data_normalized(
span, SPANDATA.AI_RESPONSES, all_responses
)
_calculate_chat_completion_usage(
messages,
res,
span,
all_responses,
integration.count_tokens,
)
span.__exit__(None, None, None)
if str(type(res._iterator)) == "<class 'async_generator'>":
res._iterator = new_iterator_async()
else:
res._iterator = new_iterator()
else:
set_data_normalized(span, "unknown_response", True)
span.__exit__(None, None, None)
return res
def _wrap_chat_completion_create(f):
# type: (Callable[..., Any]) -> Callable[..., Any]
def _execute_sync(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
gen = _new_chat_completion_common(f, *args, **kwargs)
try:
f, args, kwargs = next(gen)
except StopIteration as e:
return e.value
try:
try:
result = f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
raise e from None
return gen.send(result)
except StopIteration as e:
return e.value
@wraps(f)
def _sentry_patched_create_sync(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None or "messages" not in kwargs:
# no "messages" means invalid call (in all versions of openai), let it return error
return f(*args, **kwargs)
return _execute_sync(f, *args, **kwargs)
return _sentry_patched_create_sync
def _wrap_async_chat_completion_create(f):
# type: (Callable[..., Any]) -> Callable[..., Any]
async def _execute_async(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
gen = _new_chat_completion_common(f, *args, **kwargs)
try:
f, args, kwargs = next(gen)
except StopIteration as e:
return await e.value
try:
try:
result = await f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
raise e from None
return gen.send(result)
except StopIteration as e:
return e.value
@wraps(f)
async def _sentry_patched_create_async(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None or "messages" not in kwargs:
# no "messages" means invalid call (in all versions of openai), let it return error
return await f(*args, **kwargs)
return await _execute_async(f, *args, **kwargs)
return _sentry_patched_create_async
def _new_embeddings_create_common(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return f(*args, **kwargs)
with sentry_sdk.start_span(
op=consts.OP.OPENAI_EMBEDDINGS_CREATE,
description="OpenAI Embedding Creation",
origin=OpenAIIntegration.origin,
) as span:
if "input" in kwargs and (
should_send_default_pii() and integration.include_prompts
):
if isinstance(kwargs["input"], str):
set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, [kwargs["input"]])
elif (
isinstance(kwargs["input"], list)
and len(kwargs["input"]) > 0
and isinstance(kwargs["input"][0], str)
):
set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, kwargs["input"])
if "model" in kwargs:
set_data_normalized(span, SPANDATA.AI_MODEL_ID, kwargs["model"])
response = yield f, args, kwargs
prompt_tokens = 0
total_tokens = 0
if hasattr(response, "usage"):
if hasattr(response.usage, "prompt_tokens") and isinstance(
response.usage.prompt_tokens, int
):
prompt_tokens = response.usage.prompt_tokens
if hasattr(response.usage, "total_tokens") and isinstance(
response.usage.total_tokens, int
):
total_tokens = response.usage.total_tokens
if prompt_tokens == 0:
prompt_tokens = integration.count_tokens(kwargs["input"] or "")
record_token_usage(span, prompt_tokens, None, total_tokens or prompt_tokens)
return response
def _wrap_embeddings_create(f):
# type: (Any) -> Any
def _execute_sync(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
gen = _new_embeddings_create_common(f, *args, **kwargs)
try:
f, args, kwargs = next(gen)
except StopIteration as e:
return e.value
try:
try:
result = f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
raise e from None
return gen.send(result)
except StopIteration as e:
return e.value
@wraps(f)
def _sentry_patched_create_sync(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return f(*args, **kwargs)
return _execute_sync(f, *args, **kwargs)
return _sentry_patched_create_sync
def _wrap_async_embeddings_create(f):
# type: (Any) -> Any
async def _execute_async(f, *args, **kwargs):
# type: (Any, *Any, **Any) -> Any
gen = _new_embeddings_create_common(f, *args, **kwargs)
try:
f, args, kwargs = next(gen)
except StopIteration as e:
return await e.value
try:
try:
result = await f(*args, **kwargs)
except Exception as e:
_capture_exception(e)
raise e from None
return gen.send(result)
except StopIteration as e:
return e.value
@wraps(f)
async def _sentry_patched_create_async(*args, **kwargs):
# type: (*Any, **Any) -> Any
integration = sentry_sdk.get_client().get_integration(OpenAIIntegration)
if integration is None:
return await f(*args, **kwargs)
return await _execute_async(f, *args, **kwargs)
return _sentry_patched_create_async
|