File size: 17,718 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
from collections import OrderedDict
from functools import wraps
import sentry_sdk
from sentry_sdk.ai.monitoring import set_ai_pipeline_name, record_token_usage
from sentry_sdk.consts import OP, SPANDATA
from sentry_sdk.ai.utils import set_data_normalized
from sentry_sdk.scope import should_send_default_pii
from sentry_sdk.tracing import Span
from sentry_sdk.integrations import DidNotEnable, Integration
from sentry_sdk.utils import logger, capture_internal_exceptions
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Any, List, Callable, Dict, Union, Optional
from uuid import UUID
try:
from langchain_core.messages import BaseMessage
from langchain_core.outputs import LLMResult
from langchain_core.callbacks import (
manager,
BaseCallbackHandler,
)
from langchain_core.agents import AgentAction, AgentFinish
except ImportError:
raise DidNotEnable("langchain not installed")
DATA_FIELDS = {
"temperature": SPANDATA.AI_TEMPERATURE,
"top_p": SPANDATA.AI_TOP_P,
"top_k": SPANDATA.AI_TOP_K,
"function_call": SPANDATA.AI_FUNCTION_CALL,
"tool_calls": SPANDATA.AI_TOOL_CALLS,
"tools": SPANDATA.AI_TOOLS,
"response_format": SPANDATA.AI_RESPONSE_FORMAT,
"logit_bias": SPANDATA.AI_LOGIT_BIAS,
"tags": SPANDATA.AI_TAGS,
}
# To avoid double collecting tokens, we do *not* measure
# token counts for models for which we have an explicit integration
NO_COLLECT_TOKEN_MODELS = [
"openai-chat",
"anthropic-chat",
"cohere-chat",
"huggingface_endpoint",
]
class LangchainIntegration(Integration):
identifier = "langchain"
origin = f"auto.ai.{identifier}"
# The most number of spans (e.g., LLM calls) that can be processed at the same time.
max_spans = 1024
def __init__(
self, include_prompts=True, max_spans=1024, tiktoken_encoding_name=None
):
# type: (LangchainIntegration, bool, int, Optional[str]) -> None
self.include_prompts = include_prompts
self.max_spans = max_spans
self.tiktoken_encoding_name = tiktoken_encoding_name
@staticmethod
def setup_once():
# type: () -> None
manager._configure = _wrap_configure(manager._configure)
class WatchedSpan:
span = None # type: Span
num_completion_tokens = 0 # type: int
num_prompt_tokens = 0 # type: int
no_collect_tokens = False # type: bool
children = [] # type: List[WatchedSpan]
is_pipeline = False # type: bool
def __init__(self, span):
# type: (Span) -> None
self.span = span
class SentryLangchainCallback(BaseCallbackHandler): # type: ignore[misc]
"""Base callback handler that can be used to handle callbacks from langchain."""
span_map = OrderedDict() # type: OrderedDict[UUID, WatchedSpan]
max_span_map_size = 0
def __init__(self, max_span_map_size, include_prompts, tiktoken_encoding_name=None):
# type: (int, bool, Optional[str]) -> None
self.max_span_map_size = max_span_map_size
self.include_prompts = include_prompts
self.tiktoken_encoding = None
if tiktoken_encoding_name is not None:
import tiktoken # type: ignore
self.tiktoken_encoding = tiktoken.get_encoding(tiktoken_encoding_name)
def count_tokens(self, s):
# type: (str) -> int
if self.tiktoken_encoding is not None:
return len(self.tiktoken_encoding.encode_ordinary(s))
return 0
def gc_span_map(self):
# type: () -> None
while len(self.span_map) > self.max_span_map_size:
run_id, watched_span = self.span_map.popitem(last=False)
self._exit_span(watched_span, run_id)
def _handle_error(self, run_id, error):
# type: (UUID, Any) -> None
if not run_id or run_id not in self.span_map:
return
span_data = self.span_map[run_id]
if not span_data:
return
sentry_sdk.capture_exception(error, span_data.span.scope)
span_data.span.__exit__(None, None, None)
del self.span_map[run_id]
def _normalize_langchain_message(self, message):
# type: (BaseMessage) -> Any
parsed = {"content": message.content, "role": message.type}
parsed.update(message.additional_kwargs)
return parsed
def _create_span(self, run_id, parent_id, **kwargs):
# type: (SentryLangchainCallback, UUID, Optional[Any], Any) -> WatchedSpan
watched_span = None # type: Optional[WatchedSpan]
if parent_id:
parent_span = self.span_map.get(parent_id) # type: Optional[WatchedSpan]
if parent_span:
watched_span = WatchedSpan(parent_span.span.start_child(**kwargs))
parent_span.children.append(watched_span)
if watched_span is None:
watched_span = WatchedSpan(sentry_sdk.start_span(**kwargs))
if kwargs.get("op", "").startswith("ai.pipeline."):
if kwargs.get("name"):
set_ai_pipeline_name(kwargs.get("name"))
watched_span.is_pipeline = True
watched_span.span.__enter__()
self.span_map[run_id] = watched_span
self.gc_span_map()
return watched_span
def _exit_span(self, span_data, run_id):
# type: (SentryLangchainCallback, WatchedSpan, UUID) -> None
if span_data.is_pipeline:
set_ai_pipeline_name(None)
span_data.span.__exit__(None, None, None)
del self.span_map[run_id]
def on_llm_start(
self,
serialized,
prompts,
*,
run_id,
tags=None,
parent_run_id=None,
metadata=None,
**kwargs,
):
# type: (SentryLangchainCallback, Dict[str, Any], List[str], UUID, Optional[List[str]], Optional[UUID], Optional[Dict[str, Any]], Any) -> Any
"""Run when LLM starts running."""
with capture_internal_exceptions():
if not run_id:
return
all_params = kwargs.get("invocation_params", {})
all_params.update(serialized.get("kwargs", {}))
watched_span = self._create_span(
run_id,
kwargs.get("parent_run_id"),
op=OP.LANGCHAIN_RUN,
name=kwargs.get("name") or "Langchain LLM call",
origin=LangchainIntegration.origin,
)
span = watched_span.span
if should_send_default_pii() and self.include_prompts:
set_data_normalized(span, SPANDATA.AI_INPUT_MESSAGES, prompts)
for k, v in DATA_FIELDS.items():
if k in all_params:
set_data_normalized(span, v, all_params[k])
def on_chat_model_start(self, serialized, messages, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Dict[str, Any], List[List[BaseMessage]], UUID, Any) -> Any
"""Run when Chat Model starts running."""
with capture_internal_exceptions():
if not run_id:
return
all_params = kwargs.get("invocation_params", {})
all_params.update(serialized.get("kwargs", {}))
watched_span = self._create_span(
run_id,
kwargs.get("parent_run_id"),
op=OP.LANGCHAIN_CHAT_COMPLETIONS_CREATE,
name=kwargs.get("name") or "Langchain Chat Model",
origin=LangchainIntegration.origin,
)
span = watched_span.span
model = all_params.get(
"model", all_params.get("model_name", all_params.get("model_id"))
)
watched_span.no_collect_tokens = any(
x in all_params.get("_type", "") for x in NO_COLLECT_TOKEN_MODELS
)
if not model and "anthropic" in all_params.get("_type"):
model = "claude-2"
if model:
span.set_data(SPANDATA.AI_MODEL_ID, model)
if should_send_default_pii() and self.include_prompts:
set_data_normalized(
span,
SPANDATA.AI_INPUT_MESSAGES,
[
[self._normalize_langchain_message(x) for x in list_]
for list_ in messages
],
)
for k, v in DATA_FIELDS.items():
if k in all_params:
set_data_normalized(span, v, all_params[k])
if not watched_span.no_collect_tokens:
for list_ in messages:
for message in list_:
self.span_map[run_id].num_prompt_tokens += self.count_tokens(
message.content
) + self.count_tokens(message.type)
def on_llm_new_token(self, token, *, run_id, **kwargs):
# type: (SentryLangchainCallback, str, UUID, Any) -> Any
"""Run on new LLM token. Only available when streaming is enabled."""
with capture_internal_exceptions():
if not run_id or run_id not in self.span_map:
return
span_data = self.span_map[run_id]
if not span_data or span_data.no_collect_tokens:
return
span_data.num_completion_tokens += self.count_tokens(token)
def on_llm_end(self, response, *, run_id, **kwargs):
# type: (SentryLangchainCallback, LLMResult, UUID, Any) -> Any
"""Run when LLM ends running."""
with capture_internal_exceptions():
if not run_id:
return
token_usage = (
response.llm_output.get("token_usage") if response.llm_output else None
)
span_data = self.span_map[run_id]
if not span_data:
return
if should_send_default_pii() and self.include_prompts:
set_data_normalized(
span_data.span,
SPANDATA.AI_RESPONSES,
[[x.text for x in list_] for list_ in response.generations],
)
if not span_data.no_collect_tokens:
if token_usage:
record_token_usage(
span_data.span,
token_usage.get("prompt_tokens"),
token_usage.get("completion_tokens"),
token_usage.get("total_tokens"),
)
else:
record_token_usage(
span_data.span,
span_data.num_prompt_tokens,
span_data.num_completion_tokens,
)
self._exit_span(span_data, run_id)
def on_llm_error(self, error, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any
"""Run when LLM errors."""
with capture_internal_exceptions():
self._handle_error(run_id, error)
def on_chain_start(self, serialized, inputs, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Dict[str, Any], Dict[str, Any], UUID, Any) -> Any
"""Run when chain starts running."""
with capture_internal_exceptions():
if not run_id:
return
watched_span = self._create_span(
run_id,
kwargs.get("parent_run_id"),
op=(
OP.LANGCHAIN_RUN
if kwargs.get("parent_run_id") is not None
else OP.LANGCHAIN_PIPELINE
),
name=kwargs.get("name") or "Chain execution",
origin=LangchainIntegration.origin,
)
metadata = kwargs.get("metadata")
if metadata:
set_data_normalized(watched_span.span, SPANDATA.AI_METADATA, metadata)
def on_chain_end(self, outputs, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Dict[str, Any], UUID, Any) -> Any
"""Run when chain ends running."""
with capture_internal_exceptions():
if not run_id or run_id not in self.span_map:
return
span_data = self.span_map[run_id]
if not span_data:
return
self._exit_span(span_data, run_id)
def on_chain_error(self, error, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any
"""Run when chain errors."""
self._handle_error(run_id, error)
def on_agent_action(self, action, *, run_id, **kwargs):
# type: (SentryLangchainCallback, AgentAction, UUID, Any) -> Any
with capture_internal_exceptions():
if not run_id:
return
watched_span = self._create_span(
run_id,
kwargs.get("parent_run_id"),
op=OP.LANGCHAIN_AGENT,
name=action.tool or "AI tool usage",
origin=LangchainIntegration.origin,
)
if action.tool_input and should_send_default_pii() and self.include_prompts:
set_data_normalized(
watched_span.span, SPANDATA.AI_INPUT_MESSAGES, action.tool_input
)
def on_agent_finish(self, finish, *, run_id, **kwargs):
# type: (SentryLangchainCallback, AgentFinish, UUID, Any) -> Any
with capture_internal_exceptions():
if not run_id:
return
span_data = self.span_map[run_id]
if not span_data:
return
if should_send_default_pii() and self.include_prompts:
set_data_normalized(
span_data.span, SPANDATA.AI_RESPONSES, finish.return_values.items()
)
self._exit_span(span_data, run_id)
def on_tool_start(self, serialized, input_str, *, run_id, **kwargs):
# type: (SentryLangchainCallback, Dict[str, Any], str, UUID, Any) -> Any
"""Run when tool starts running."""
with capture_internal_exceptions():
if not run_id:
return
watched_span = self._create_span(
run_id,
kwargs.get("parent_run_id"),
op=OP.LANGCHAIN_TOOL,
name=serialized.get("name") or kwargs.get("name") or "AI tool usage",
origin=LangchainIntegration.origin,
)
if should_send_default_pii() and self.include_prompts:
set_data_normalized(
watched_span.span,
SPANDATA.AI_INPUT_MESSAGES,
kwargs.get("inputs", [input_str]),
)
if kwargs.get("metadata"):
set_data_normalized(
watched_span.span, SPANDATA.AI_METADATA, kwargs.get("metadata")
)
def on_tool_end(self, output, *, run_id, **kwargs):
# type: (SentryLangchainCallback, str, UUID, Any) -> Any
"""Run when tool ends running."""
with capture_internal_exceptions():
if not run_id or run_id not in self.span_map:
return
span_data = self.span_map[run_id]
if not span_data:
return
if should_send_default_pii() and self.include_prompts:
set_data_normalized(span_data.span, SPANDATA.AI_RESPONSES, output)
self._exit_span(span_data, run_id)
def on_tool_error(self, error, *args, run_id, **kwargs):
# type: (SentryLangchainCallback, Union[Exception, KeyboardInterrupt], UUID, Any) -> Any
"""Run when tool errors."""
self._handle_error(run_id, error)
def _wrap_configure(f):
# type: (Callable[..., Any]) -> Callable[..., Any]
@wraps(f)
def new_configure(*args, **kwargs):
# type: (Any, Any) -> Any
integration = sentry_sdk.get_client().get_integration(LangchainIntegration)
if integration is None:
return f(*args, **kwargs)
with capture_internal_exceptions():
new_callbacks = [] # type: List[BaseCallbackHandler]
if "local_callbacks" in kwargs:
existing_callbacks = kwargs["local_callbacks"]
kwargs["local_callbacks"] = new_callbacks
elif len(args) > 2:
existing_callbacks = args[2]
args = (
args[0],
args[1],
new_callbacks,
) + args[3:]
else:
existing_callbacks = []
if existing_callbacks:
if isinstance(existing_callbacks, list):
for cb in existing_callbacks:
new_callbacks.append(cb)
elif isinstance(existing_callbacks, BaseCallbackHandler):
new_callbacks.append(existing_callbacks)
else:
logger.debug("Unknown callback type: %s", existing_callbacks)
already_added = False
for callback in new_callbacks:
if isinstance(callback, SentryLangchainCallback):
already_added = True
if not already_added:
new_callbacks.append(
SentryLangchainCallback(
integration.max_spans,
integration.include_prompts,
integration.tiktoken_encoding_name,
)
)
return f(*args, **kwargs)
return new_configure
|