File size: 74,493 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# THIS FILE MUST READ EASILY, FOR UNDERSTANDING AND DEBUGGING PURPOSES.
# DO NOT OBSCURE THE TRAINING LOOP
# THIS IS A HARD REQUIREMENT TO CONTRIBUTING TO LIGHTNING
# WE FAVOR READABILITY OVER ENGINEERING-CONSTRUCTS BY DESIGN
# DO NOT REMOVE THIS NOTICE
# - WILLIAM FALCON
"""Trainer to automate the training."""

import logging
import math
import os
from collections.abc import Generator, Iterable
from contextlib import contextmanager
from datetime import timedelta
from typing import Any, Optional, Union
from weakref import proxy

import torch
from lightning_utilities import module_available
from torch.optim import Optimizer

import pytorch_lightning as pl
from lightning_fabric.utilities.apply_func import convert_tensors_to_scalars
from lightning_fabric.utilities.cloud_io import _is_local_file_protocol
from lightning_fabric.utilities.types import _PATH
from pytorch_lightning.accelerators import Accelerator
from pytorch_lightning.callbacks import Callback, Checkpoint, EarlyStopping, ProgressBar
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.loggers import Logger
from pytorch_lightning.loggers.csv_logs import CSVLogger
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.loggers.utilities import _log_hyperparams
from pytorch_lightning.loops import _PredictionLoop, _TrainingEpochLoop
from pytorch_lightning.loops.evaluation_loop import _EvaluationLoop
from pytorch_lightning.loops.fit_loop import _FitLoop
from pytorch_lightning.loops.utilities import _parse_loop_limits, _reset_progress
from pytorch_lightning.plugins import _PLUGIN_INPUT, Precision
from pytorch_lightning.profilers import Profiler
from pytorch_lightning.strategies import ParallelStrategy, Strategy
from pytorch_lightning.trainer import call, setup
from pytorch_lightning.trainer.configuration_validator import _verify_loop_configurations
from pytorch_lightning.trainer.connectors.accelerator_connector import (
    _LITERAL_WARN,
    _PRECISION_INPUT,
    _PRECISION_INPUT_STR,
    _AcceleratorConnector,
)
from pytorch_lightning.trainer.connectors.callback_connector import _CallbackConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import _CheckpointConnector
from pytorch_lightning.trainer.connectors.data_connector import _DataConnector
from pytorch_lightning.trainer.connectors.logger_connector import _LoggerConnector
from pytorch_lightning.trainer.connectors.logger_connector.result import _OUT_DICT, _PBAR_DICT, _ResultCollection
from pytorch_lightning.trainer.connectors.signal_connector import _SignalConnector
from pytorch_lightning.trainer.states import RunningStage, TrainerFn, TrainerState, TrainerStatus
from pytorch_lightning.utilities import GradClipAlgorithmType, parsing
from pytorch_lightning.utilities.argparse import _defaults_from_env_vars
from pytorch_lightning.utilities.compile import _maybe_unwrap_optimized, _verify_strategy_supports_compile
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.model_registry import _is_registry, download_model_from_registry
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_warn
from pytorch_lightning.utilities.seed import isolate_rng
from pytorch_lightning.utilities.types import (
    _EVALUATE_OUTPUT,
    _PREDICT_OUTPUT,
    EVAL_DATALOADERS,
    TRAIN_DATALOADERS,
    LRSchedulerConfig,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning

log = logging.getLogger(__name__)


class Trainer:
    @_defaults_from_env_vars
    def __init__(
        self,
        *,
        accelerator: Union[str, Accelerator] = "auto",
        strategy: Union[str, Strategy] = "auto",
        devices: Union[list[int], str, int] = "auto",
        num_nodes: int = 1,
        precision: Optional[_PRECISION_INPUT] = None,
        logger: Optional[Union[Logger, Iterable[Logger], bool]] = None,
        callbacks: Optional[Union[list[Callback], Callback]] = None,
        fast_dev_run: Union[int, bool] = False,
        max_epochs: Optional[int] = None,
        min_epochs: Optional[int] = None,
        max_steps: int = -1,
        min_steps: Optional[int] = None,
        max_time: Optional[Union[str, timedelta, dict[str, int]]] = None,
        limit_train_batches: Optional[Union[int, float]] = None,
        limit_val_batches: Optional[Union[int, float]] = None,
        limit_test_batches: Optional[Union[int, float]] = None,
        limit_predict_batches: Optional[Union[int, float]] = None,
        overfit_batches: Union[int, float] = 0.0,
        val_check_interval: Optional[Union[int, float]] = None,
        check_val_every_n_epoch: Optional[int] = 1,
        num_sanity_val_steps: Optional[int] = None,
        log_every_n_steps: Optional[int] = None,
        enable_checkpointing: Optional[bool] = None,
        enable_progress_bar: Optional[bool] = None,
        enable_model_summary: Optional[bool] = None,
        accumulate_grad_batches: int = 1,
        gradient_clip_val: Optional[Union[int, float]] = None,
        gradient_clip_algorithm: Optional[str] = None,
        deterministic: Optional[Union[bool, _LITERAL_WARN]] = None,
        benchmark: Optional[bool] = None,
        inference_mode: bool = True,
        use_distributed_sampler: bool = True,
        profiler: Optional[Union[Profiler, str]] = None,
        detect_anomaly: bool = False,
        barebones: bool = False,
        plugins: Optional[Union[_PLUGIN_INPUT, list[_PLUGIN_INPUT]]] = None,
        sync_batchnorm: bool = False,
        reload_dataloaders_every_n_epochs: int = 0,
        default_root_dir: Optional[_PATH] = None,
        model_registry: Optional[str] = None,
    ) -> None:
        r"""Customize every aspect of training via flags.

        Args:
            accelerator: Supports passing different accelerator types ("cpu", "gpu", "tpu", "hpu", "mps", "auto")
                as well as custom accelerator instances.

            strategy: Supports different training strategies with aliases as well custom strategies.
                Default: ``"auto"``.

            devices: The devices to use. Can be set to a positive number (int or str), a sequence of device indices
                (list or str), the value ``-1`` to indicate all available devices should be used, or ``"auto"`` for
                automatic selection based on the chosen accelerator. Default: ``"auto"``.

            num_nodes: Number of GPU nodes for distributed training.
                Default: ``1``.

            precision: Double precision (64, '64' or '64-true'), full precision (32, '32' or '32-true'),
                16bit mixed precision (16, '16', '16-mixed') or bfloat16 mixed precision ('bf16', 'bf16-mixed').
                Can be used on CPU, GPU, TPUs, or HPUs.
                Default: ``'32-true'``.

            logger: Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses
                the default ``TensorBoardLogger`` if it is installed, otherwise ``CSVLogger``.
                ``False`` will disable logging. If multiple loggers are provided, local files
                (checkpoints, profiler traces, etc.) are saved in the ``log_dir`` of the first logger.
                Default: ``True``.

            callbacks: Add a callback or list of callbacks.
                Default: ``None``.

            fast_dev_run: Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
                of train, val and test to find any bugs (ie: a sort of unit test).
                Default: ``False``.

            max_epochs: Stop training once this number of epochs is reached. Disabled by default (None).
                If both max_epochs and max_steps are not specified, defaults to ``max_epochs = 1000``.
                To enable infinite training, set ``max_epochs = -1``.

            min_epochs: Force training for at least these many epochs. Disabled by default (None).

            max_steps: Stop training after this number of steps. Disabled by default (-1). If ``max_steps = -1``
                and ``max_epochs = None``, will default to ``max_epochs = 1000``. To enable infinite training, set
                ``max_epochs`` to ``-1``.

            min_steps: Force training for at least these number of steps. Disabled by default (``None``).

            max_time: Stop training after this amount of time has passed. Disabled by default (``None``).
                The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as a
                :class:`datetime.timedelta`, or a dictionary with keys that will be passed to
                :class:`datetime.timedelta`.

            limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches).
                Default: ``1.0``.

            limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches).
                Default: ``1.0``.

            limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches).
                Default: ``1.0``.

            limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches).
                Default: ``1.0``.

            overfit_batches: Overfit a fraction of training/validation data (float) or a set number of batches (int).
                Default: ``0.0``.

            val_check_interval: How often to check the validation set. Pass a ``float`` in the range [0.0, 1.0] to check
                after a fraction of the training epoch. Pass an ``int`` to check after a fixed number of training
                batches. An ``int`` value can only be higher than the number of training batches when
                ``check_val_every_n_epoch=None``, which validates after every ``N`` training batches
                across epochs or during iteration-based training.
                Default: ``1.0``.

            check_val_every_n_epoch: Perform a validation loop after every `N` training epochs. If ``None``,
                validation will be done solely based on the number of training batches, requiring ``val_check_interval``
                to be an integer value.
                Default: ``1``.

            num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine.
                Set it to `-1` to run all batches in all validation dataloaders.
                Default: ``2``.

            log_every_n_steps: How often to log within steps.
                Default: ``50``.

            enable_checkpointing: If ``True``, enable checkpointing.
                It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`.
                Default: ``True``.

            enable_progress_bar: Whether to enable to progress bar by default.
                Default: ``True``.

            enable_model_summary: Whether to enable model summarization by default.
                Default: ``True``.

            accumulate_grad_batches: Accumulates gradients over k batches before stepping the optimizer.
                Default: 1.

            gradient_clip_val: The value at which to clip gradients. Passing ``gradient_clip_val=None`` disables
                gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before.
                Default: ``None``.

            gradient_clip_algorithm: The gradient clipping algorithm to use. Pass ``gradient_clip_algorithm="value"``
                to clip by value, and ``gradient_clip_algorithm="norm"`` to clip by norm. By default it will
                be set to ``"norm"``.

            deterministic: If ``True``, sets whether PyTorch operations must use deterministic algorithms.
                Set to ``"warn"`` to use deterministic algorithms whenever possible, throwing warnings on operations
                that don't support deterministic mode. If not set, defaults to ``False``. Default: ``None``.

            benchmark: The value (``True`` or ``False``) to set ``torch.backends.cudnn.benchmark`` to.
                The value for ``torch.backends.cudnn.benchmark`` set in the current session will be used
                (``False`` if not manually set). If :paramref:`~pytorch_lightning.trainer.trainer.Trainer.deterministic`
                is set to ``True``, this will default to ``False``. Override to manually set a different value.
                Default: ``None``.

            inference_mode: Whether to use :func:`torch.inference_mode` or :func:`torch.no_grad` during
                evaluation (``validate``/``test``/``predict``).

            use_distributed_sampler: Whether to wrap the DataLoader's sampler with
                :class:`torch.utils.data.DistributedSampler`. If not specified this is toggled automatically for
                strategies that require it. By default, it will add ``shuffle=True`` for the train sampler and
                ``shuffle=False`` for validation/test/predict samplers. If you want to disable this logic, you can pass
                ``False`` and add your own distributed sampler in the dataloader hooks. If ``True`` and a distributed
                sampler was already added, Lightning will not replace the existing one. For iterable-style datasets,
                we don't do this automatically.

            profiler: To profile individual steps during training and assist in identifying bottlenecks.
                Default: ``None``.

            detect_anomaly: Enable anomaly detection for the autograd engine.
                Default: ``False``.

            barebones: Whether to run in "barebones mode", where all features that may impact raw speed are
                disabled. This is meant for analyzing the Trainer overhead and is discouraged during regular training
                runs. The following features are deactivated:
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_checkpointing`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.logger`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_progress_bar`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.log_every_n_steps`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_model_summary`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.num_sanity_val_steps`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.fast_dev_run`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.detect_anomaly`,
                :paramref:`~pytorch_lightning.trainer.trainer.Trainer.profiler`,
                :meth:`~pytorch_lightning.core.LightningModule.log`,
                :meth:`~pytorch_lightning.core.LightningModule.log_dict`.
            plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins.
                Default: ``None``.

            sync_batchnorm: Synchronize batch norm layers between process groups/whole world.
                Default: ``False``.

            reload_dataloaders_every_n_epochs: Set to a positive integer to reload dataloaders every n epochs.
                Default: ``0``.

            default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed.
                Default: ``os.getcwd()``.
                Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'

            model_registry: The name of the model being uploaded to Model hub.

        Raises:
            TypeError:
                If ``gradient_clip_val`` is not an int or float.

            MisconfigurationException:
                If ``gradient_clip_algorithm`` is invalid.

        """
        super().__init__()
        log.debug(f"{self.__class__.__name__}: Initializing trainer with parameters: {locals()}")

        if default_root_dir is not None:
            default_root_dir = os.fspath(default_root_dir)

        # remove version if accidentally passed
        self._model_registry = model_registry.split(":")[0] if model_registry else None

        self.barebones = barebones
        if barebones:
            # opt-outs
            if enable_checkpointing:
                raise ValueError(
                    f"`Trainer(barebones=True, enable_checkpointing={enable_checkpointing!r})` was passed."
                    " Checkpointing can impact raw speed so it is disabled in barebones mode."
                )
            enable_checkpointing = False
            if logger is not None and logger is not False:
                raise ValueError(
                    f"`Trainer(barebones=True, logger={logger!r})` was passed."
                    " Logging can impact raw speed so it is disabled in barebones mode."
                )
            logger = False
            if enable_progress_bar:
                raise ValueError(
                    f"`Trainer(barebones=True, enable_progress_bar={enable_progress_bar!r})` was passed."
                    " The progress bar can impact raw speed so it is disabled in barebones mode."
                )
            enable_progress_bar = False
            if log_every_n_steps is not None and log_every_n_steps != 0:
                raise ValueError(
                    f"`Trainer(barebones=True, log_every_n_steps={log_every_n_steps!r})` was passed."
                    " Logging can impact raw speed so it is disabled in barebones mode."
                )
            log_every_n_steps = 0
            if enable_model_summary:
                raise ValueError(
                    f"`Trainer(barebones=True, enable_model_summary={enable_model_summary!r})` was passed."
                    " Model summary can impact raw speed so it is disabled in barebones mode."
                )
            enable_model_summary = False
            if num_sanity_val_steps is not None and num_sanity_val_steps != 0:
                raise ValueError(
                    f"`Trainer(barebones=True, num_sanity_val_steps={num_sanity_val_steps!r})` was passed."
                    " Sanity checking can impact raw speed so it is disabled in barebones mode."
                )
            num_sanity_val_steps = 0
            # opt-ins
            if fast_dev_run is not False and fast_dev_run != 0:
                raise ValueError(
                    f"`Trainer(barebones=True, fast_dev_run={fast_dev_run!r})` was passed."
                    " Development run is not meant for raw speed evaluation so it is disabled in barebones mode."
                )
            if detect_anomaly:
                raise ValueError(
                    f"`Trainer(barebones=True, detect_anomaly={detect_anomaly!r})` was passed."
                    " Anomaly detection can impact raw speed so it is disabled in barebones mode."
                )
            if profiler is not None:
                raise ValueError(
                    f"`Trainer(barebones=True, profiler={profiler!r})` was passed."
                    " Profiling can impact raw speed so it is disabled in barebones mode."
                )
            deactivated = (
                " - Checkpointing: `Trainer(enable_checkpointing=True)`",
                " - Progress bar: `Trainer(enable_progress_bar=True)`",
                " - Model summary: `Trainer(enable_model_summary=True)`",
                " - Logging: `Trainer(logger=True)`, `Trainer(log_every_n_steps>0)`,"
                " `LightningModule.log(...)`, `LightningModule.log_dict(...)`",
                " - Sanity checking: `Trainer(num_sanity_val_steps>0)`",
                " - Development run: `Trainer(fast_dev_run=True)`",
                " - Anomaly detection: `Trainer(detect_anomaly=True)`",
                " - Profiling: `Trainer(profiler=...)`",
            )
            rank_zero_info(
                "You are running in `Trainer(barebones=True)` mode. All features that may impact raw speed have been"
                " disabled to facilitate analyzing the Trainer overhead. Specifically, the following features are"
                f" deactivated:{os.linesep}{os.linesep.join(deactivated)}"
            )
        else:
            # set the opt-out defaults
            if enable_checkpointing is None:
                enable_checkpointing = True
            if logger is None:
                logger = True
            if enable_progress_bar is None:
                enable_progress_bar = True
            if log_every_n_steps is None:
                log_every_n_steps = 50
            if enable_model_summary is None:
                enable_model_summary = True
            if num_sanity_val_steps is None:
                num_sanity_val_steps = 2

        # init connectors
        self._data_connector = _DataConnector(self)

        self._accelerator_connector = _AcceleratorConnector(
            devices=devices,
            accelerator=accelerator,
            strategy=strategy,
            num_nodes=num_nodes,
            sync_batchnorm=sync_batchnorm,
            benchmark=benchmark,
            use_distributed_sampler=use_distributed_sampler,
            deterministic=deterministic,
            precision=precision,
            plugins=plugins,
        )
        self._logger_connector = _LoggerConnector(self)
        self._callback_connector = _CallbackConnector(self)
        self._checkpoint_connector = _CheckpointConnector(self)
        self._signal_connector = _SignalConnector(self)

        # init loops
        self.fit_loop = _FitLoop(self, min_epochs=min_epochs, max_epochs=max_epochs)
        self.fit_loop.epoch_loop = _TrainingEpochLoop(self, min_steps=min_steps, max_steps=max_steps)
        self.validate_loop = _EvaluationLoop(
            self, TrainerFn.VALIDATING, RunningStage.VALIDATING, inference_mode=inference_mode
        )
        self.test_loop = _EvaluationLoop(self, TrainerFn.TESTING, RunningStage.TESTING, inference_mode=inference_mode)
        self.predict_loop = _PredictionLoop(self, inference_mode=inference_mode)

        self.accumulate_grad_batches = accumulate_grad_batches

        # init callbacks
        # Declare attributes to be set in _callback_connector on_trainer_init
        self._callback_connector.on_trainer_init(
            callbacks,
            enable_checkpointing,
            enable_progress_bar,
            default_root_dir,
            enable_model_summary,
            max_time,
        )

        # init data flags
        self.check_val_every_n_epoch: Optional[int]
        self._data_connector.on_trainer_init(
            val_check_interval,
            reload_dataloaders_every_n_epochs,
            check_val_every_n_epoch,
        )

        # gradient clipping
        if gradient_clip_val is not None and not isinstance(gradient_clip_val, (int, float)):
            raise TypeError(f"`gradient_clip_val` should be an int or a float. Got {gradient_clip_val}.")

        if gradient_clip_algorithm is not None and not GradClipAlgorithmType.supported_type(
            gradient_clip_algorithm.lower()
        ):
            raise MisconfigurationException(
                f"`gradient_clip_algorithm` {gradient_clip_algorithm} is invalid. "
                f"Allowed algorithms: {GradClipAlgorithmType.supported_types()}."
            )

        self.gradient_clip_val: Optional[Union[int, float]] = gradient_clip_val
        self.gradient_clip_algorithm: Optional[GradClipAlgorithmType] = (
            GradClipAlgorithmType(gradient_clip_algorithm.lower()) if gradient_clip_algorithm is not None else None
        )

        if detect_anomaly:
            rank_zero_info(
                "You have turned on `Trainer(detect_anomaly=True)`. This will significantly slow down compute speed and"
                " is recommended only for model debugging."
            )
        self._detect_anomaly: bool = detect_anomaly

        setup._log_device_info(self)

        self.should_stop = False
        self.state = TrainerState()

        # configure profiler
        setup._init_profiler(self, profiler)

        # init logger flags
        self._loggers: list[Logger]
        self._logger_connector.on_trainer_init(logger, log_every_n_steps)

        # init debugging flags
        self.val_check_batch: Union[int, float]
        self.val_check_interval: Union[int, float]
        self.num_sanity_val_steps: Union[int, float]
        self.limit_train_batches: Union[int, float]
        self.limit_val_batches: Union[int, float]
        self.limit_test_batches: Union[int, float]
        self.limit_predict_batches: Union[int, float]
        setup._init_debugging_flags(
            self,
            limit_train_batches,
            limit_val_batches,
            limit_test_batches,
            limit_predict_batches,
            fast_dev_run,
            overfit_batches,
            val_check_interval,
            num_sanity_val_steps,
        )

    def fit(
        self,
        model: "pl.LightningModule",
        train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None,
        val_dataloaders: Optional[EVAL_DATALOADERS] = None,
        datamodule: Optional[LightningDataModule] = None,
        ckpt_path: Optional[_PATH] = None,
    ) -> None:
        r"""Runs the full optimization routine.

        Args:
            model: Model to fit.

            train_dataloaders: An iterable or collection of iterables specifying training samples.
                Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.train_dataloader` hook.

            val_dataloaders: An iterable or collection of iterables specifying validation samples.

            datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.train_dataloader` hook.

            ckpt_path: Path/URL of the checkpoint from which training is resumed. Could also be one of two special
                keywords ``"last"``, ``"hpc"`` and ``"registry"``.
                Otherwise, if there is no checkpoint file at the path, an exception is raised.

                    - best: the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                    - last: the last model checkpoint from the previous ``trainer.fit`` call will be loaded
                    - registry: the model will be downloaded from the Lightning Model Registry with following notations:

                        - ``'registry'``: uses the latest/default version of default model set
                          with ``Tainer(..., model_registry="my-model")``
                        - ``'registry:model-name'``: uses the latest/default version of this model `model-name`
                        - ``'registry:model-name:version:v2'``: uses the specific version 'v2' of the model `model-name`
                        - ``'registry:version:v2'``: uses the default model set
                          with ``Tainer(..., model_registry="my-model")`` and version 'v2'


        Raises:
            TypeError:
                If ``model`` is not :class:`~pytorch_lightning.core.LightningModule` for torch version less than
                2.0.0 and if ``model`` is not :class:`~pytorch_lightning.core.LightningModule` or
                :class:`torch._dynamo.OptimizedModule` for torch versions greater than or equal to 2.0.0 .

        For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.

        """
        model = _maybe_unwrap_optimized(model)
        self.strategy._lightning_module = model
        _verify_strategy_supports_compile(model, self.strategy)
        self.state.fn = TrainerFn.FITTING
        self.state.status = TrainerStatus.RUNNING
        self.training = True
        self.should_stop = False
        call._call_and_handle_interrupt(
            self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
        )

    def _fit_impl(
        self,
        model: "pl.LightningModule",
        train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None,
        val_dataloaders: Optional[EVAL_DATALOADERS] = None,
        datamodule: Optional[LightningDataModule] = None,
        ckpt_path: Optional[_PATH] = None,
    ) -> None:
        log.debug(f"{self.__class__.__name__}: trainer fit stage")

        # if a datamodule comes in as the second arg, then fix it for the user
        if isinstance(train_dataloaders, LightningDataModule):
            datamodule = train_dataloaders
            train_dataloaders = None
        # If you supply a datamodule you can't supply train_dataloader or val_dataloaders
        if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None:
            raise MisconfigurationException(
                "You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.fit(datamodule=...)`"
            )

        # links data to the trainer
        self._data_connector.attach_data(
            model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule
        )

        assert self.state.fn is not None
        if _is_registry(ckpt_path) and module_available("litmodels"):
            download_model_from_registry(ckpt_path, self)
        ckpt_path = self._checkpoint_connector._select_ckpt_path(
            self.state.fn,
            ckpt_path,
            model_provided=True,
            model_connected=self.lightning_module is not None,
        )
        self._run(model, ckpt_path=ckpt_path)

        assert self.state.stopped
        self.training = False
        return

    def validate(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        ckpt_path: Optional[_PATH] = None,
        verbose: bool = True,
        datamodule: Optional[LightningDataModule] = None,
    ) -> _EVALUATE_OUTPUT:
        r"""Perform one evaluation epoch over the validation set.

        Args:
            model: The model to validate.

            dataloaders: An iterable or collection of iterables specifying validation samples.
                Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.val_dataloader` hook.

            ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
                to validate. If ``None`` and the model instance was passed, use the current weights.
                Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                if a checkpoint callback is configured.

            verbose: If True, prints the validation results.

            datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.val_dataloader` hook.

        For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.

        Returns:
            List of dictionaries with metrics logged during the validation phase, e.g., in model- or callback hooks
            like :meth:`~pytorch_lightning.LightningModule.validation_step` etc.
            The length of the list corresponds to the number of validation dataloaders used.

        Raises:
            TypeError:
                If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
                If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.

            MisconfigurationException:
                If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.

            RuntimeError:
                If a compiled ``model`` is passed and the strategy is not supported.

        """
        if model is None:
            # do we still have a reference from a previous call?
            if self.lightning_module is None:
                raise TypeError(
                    "`Trainer.validate()` requires a `LightningModule` when it hasn't been passed in a previous run"
                )
        else:
            model = _maybe_unwrap_optimized(model)
            self.strategy._lightning_module = model
        _verify_strategy_supports_compile(self.lightning_module, self.strategy)
        self.state.fn = TrainerFn.VALIDATING
        self.state.status = TrainerStatus.RUNNING
        self.validating = True
        return call._call_and_handle_interrupt(
            self, self._validate_impl, model, dataloaders, ckpt_path, verbose, datamodule
        )

    def _validate_impl(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        ckpt_path: Optional[_PATH] = None,
        verbose: bool = True,
        datamodule: Optional[LightningDataModule] = None,
    ) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
        # --------------------
        # SETUP HOOK
        # --------------------
        log.debug(f"{self.__class__.__name__}: trainer validate stage")

        # if a datamodule comes in as the second arg, then fix it for the user
        if isinstance(dataloaders, LightningDataModule):
            datamodule = dataloaders
            dataloaders = None
        # If you supply a datamodule you can't supply val_dataloaders
        if dataloaders is not None and datamodule:
            raise MisconfigurationException("You cannot pass both `trainer.validate(dataloaders=..., datamodule=...)`")

        if model is None:
            model = self.lightning_module
            model_provided = False
        else:
            model_provided = True

        self.validate_loop.verbose = verbose

        # links data to the trainer
        self._data_connector.attach_data(model, val_dataloaders=dataloaders, datamodule=datamodule)

        assert self.state.fn is not None
        if _is_registry(ckpt_path) and module_available("litmodels"):
            download_model_from_registry(ckpt_path, self)
        ckpt_path = self._checkpoint_connector._select_ckpt_path(
            self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
        )
        results = self._run(model, ckpt_path=ckpt_path)
        # remove the tensors from the validation results
        results = convert_tensors_to_scalars(results)

        assert self.state.stopped
        self.validating = False

        return results

    def test(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        ckpt_path: Optional[_PATH] = None,
        verbose: bool = True,
        datamodule: Optional[LightningDataModule] = None,
    ) -> _EVALUATE_OUTPUT:
        r"""Perform one evaluation epoch over the test set. It's separated from fit to make sure you never run on your
        test set until you want to.

        Args:
            model: The model to test.

            dataloaders: An iterable or collection of iterables specifying test samples.
                Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.test_dataloader` hook.

            ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
                to test. If ``None`` and the model instance was passed, use the current weights.
                Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                if a checkpoint callback is configured.

            verbose: If True, prints the test results.

            datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.test_dataloader` hook.

        For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.

        Returns:
            List of dictionaries with metrics logged during the test phase, e.g., in model- or callback hooks
            like :meth:`~pytorch_lightning.LightningModule.test_step` etc.
            The length of the list corresponds to the number of test dataloaders used.

        Raises:
            TypeError:
                If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
                If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.

            MisconfigurationException:
                If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.

            RuntimeError:
                If a compiled ``model`` is passed and the strategy is not supported.

        """
        if model is None:
            # do we still have a reference from a previous call?
            if self.lightning_module is None:
                raise TypeError(
                    "`Trainer.test()` requires a `LightningModule` when it hasn't been passed in a previous run"
                )
        else:
            model = _maybe_unwrap_optimized(model)
            self.strategy._lightning_module = model
        _verify_strategy_supports_compile(self.lightning_module, self.strategy)
        self.state.fn = TrainerFn.TESTING
        self.state.status = TrainerStatus.RUNNING
        self.testing = True
        return call._call_and_handle_interrupt(
            self, self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule
        )

    def _test_impl(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        ckpt_path: Optional[_PATH] = None,
        verbose: bool = True,
        datamodule: Optional[LightningDataModule] = None,
    ) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
        # --------------------
        # SETUP HOOK
        # --------------------
        log.debug(f"{self.__class__.__name__}: trainer test stage")

        # if a datamodule comes in as the second arg, then fix it for the user
        if isinstance(dataloaders, LightningDataModule):
            datamodule = dataloaders
            dataloaders = None
        # If you supply a datamodule you can't supply test_dataloaders
        if dataloaders is not None and datamodule:
            raise MisconfigurationException("You cannot pass both `trainer.test(dataloaders=..., datamodule=...)`")

        if model is None:
            model = self.lightning_module
            model_provided = False
        else:
            model_provided = True

        self.test_loop.verbose = verbose

        # links data to the trainer
        self._data_connector.attach_data(model, test_dataloaders=dataloaders, datamodule=datamodule)

        assert self.state.fn is not None
        if _is_registry(ckpt_path) and module_available("litmodels"):
            download_model_from_registry(ckpt_path, self)
        ckpt_path = self._checkpoint_connector._select_ckpt_path(
            self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
        )
        results = self._run(model, ckpt_path=ckpt_path)
        # remove the tensors from the test results
        results = convert_tensors_to_scalars(results)

        assert self.state.stopped
        self.testing = False

        return results

    def predict(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        datamodule: Optional[LightningDataModule] = None,
        return_predictions: Optional[bool] = None,
        ckpt_path: Optional[_PATH] = None,
    ) -> Optional[_PREDICT_OUTPUT]:
        r"""Run inference on your data. This will call the model forward function to compute predictions. Useful to
        perform distributed and batched predictions. Logging is disabled in the predict hooks.

        Args:
            model: The model to predict with.

            dataloaders: An iterable or collection of iterables specifying predict samples.
                Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.predict_dataloader` hook.

            datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
                the :class:`~pytorch_lightning.core.hooks.DataHooks.predict_dataloader` hook.

            return_predictions: Whether to return predictions.
                ``True`` by default except when an accelerator that spawns processes is used (not supported).

            ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
                to predict. If ``None`` and the model instance was passed, use the current weights.
                Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                if a checkpoint callback is configured.

        For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.

        Returns:
            Returns a list of dictionaries, one for each provided dataloader containing their respective predictions.

        Raises:
            TypeError:
                If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
                If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.

            MisconfigurationException:
                If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.

            RuntimeError:
                If a compiled ``model`` is passed and the strategy is not supported.

        See :ref:`Lightning inference section<deploy/production_basic:Predict step with your LightningModule>` for more.

        """
        if model is None:
            # do we still have a reference from a previous call?
            if self.lightning_module is None:
                raise TypeError(
                    "`Trainer.predict()` requires a `LightningModule` when it hasn't been passed in a previous run"
                )
        else:
            model = _maybe_unwrap_optimized(model)
            self.strategy._lightning_module = model
        _verify_strategy_supports_compile(self.lightning_module, self.strategy)
        self.state.fn = TrainerFn.PREDICTING
        self.state.status = TrainerStatus.RUNNING
        self.predicting = True
        return call._call_and_handle_interrupt(
            self, self._predict_impl, model, dataloaders, datamodule, return_predictions, ckpt_path
        )

    def _predict_impl(
        self,
        model: Optional["pl.LightningModule"] = None,
        dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
        datamodule: Optional[LightningDataModule] = None,
        return_predictions: Optional[bool] = None,
        ckpt_path: Optional[_PATH] = None,
    ) -> Optional[_PREDICT_OUTPUT]:
        # --------------------
        # SETUP HOOK
        # --------------------
        log.debug(f"{self.__class__.__name__}: trainer predict stage")

        self.predict_loop.return_predictions = return_predictions

        # if a datamodule comes in as the second arg, then fix it for the user
        if isinstance(dataloaders, LightningDataModule):
            datamodule = dataloaders
            dataloaders = None
        if dataloaders is not None and datamodule:
            raise MisconfigurationException("You cannot pass both `trainer.predict(dataloaders=..., datamodule=...)`")

        if model is None:
            model = self.lightning_module
            model_provided = False
        else:
            model_provided = True

        # links data to the trainer
        self._data_connector.attach_data(model, predict_dataloaders=dataloaders, datamodule=datamodule)

        assert self.state.fn is not None
        if _is_registry(ckpt_path) and module_available("litmodels"):
            download_model_from_registry(ckpt_path, self)
        ckpt_path = self._checkpoint_connector._select_ckpt_path(
            self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
        )
        results = self._run(model, ckpt_path=ckpt_path)

        assert self.state.stopped
        self.predicting = False

        return results

    def _run(
        self, model: "pl.LightningModule", ckpt_path: Optional[_PATH] = None
    ) -> Optional[Union[_EVALUATE_OUTPUT, _PREDICT_OUTPUT]]:
        if self.state.fn == TrainerFn.FITTING:
            min_epochs, max_epochs = _parse_loop_limits(
                self.min_steps, self.max_steps, self.min_epochs, self.max_epochs, self
            )
            self.fit_loop.min_epochs = min_epochs
            self.fit_loop.max_epochs = max_epochs

        if self.barebones:
            # no progress bar in barebones can make it look like the Trainer hung
            rank_zero_info(
                "`Trainer(barebones=True)` started running. The progress bar is disabled so you might want to"
                " manually print the progress in your model."
            )

        # clean hparams
        if hasattr(model, "hparams"):
            parsing.clean_namespace(model.hparams)

        # attach model to the strategy
        self.strategy.connect(model)

        self._callback_connector._attach_model_callbacks()
        self._callback_connector._attach_model_logging_functions()

        _verify_loop_configurations(self)

        # ----------------------------
        # SET UP THE TRAINER
        # ----------------------------
        log.debug(f"{self.__class__.__name__}: setting up strategy environment")
        self.strategy.setup_environment()
        self.__setup_profiler()

        log.debug(f"{self.__class__.__name__}: preparing data")
        self._data_connector.prepare_data()

        call._call_setup_hook(self)  # allow user to set up LightningModule in accelerator environment
        log.debug(f"{self.__class__.__name__}: configuring model")
        call._call_configure_model(self)

        # check if we should delay restoring checkpoint till later
        if not self.strategy.restore_checkpoint_after_setup:
            log.debug(f"{self.__class__.__name__}: restoring module and callbacks from checkpoint path: {ckpt_path}")
            self._checkpoint_connector._restore_modules_and_callbacks(ckpt_path)

        # reset logger connector
        self._logger_connector.reset_results()
        self._logger_connector.reset_metrics()

        # strategy will configure model and move it to the device
        self.strategy.setup(self)

        # hook
        if self.state.fn == TrainerFn.FITTING:
            call._call_callback_hooks(self, "on_fit_start")
            call._call_lightning_module_hook(self, "on_fit_start")

        _log_hyperparams(self)

        if self.strategy.restore_checkpoint_after_setup:
            log.debug(f"{self.__class__.__name__}: restoring module and callbacks from checkpoint path: {ckpt_path}")
            self._checkpoint_connector._restore_modules_and_callbacks(ckpt_path)

        # restore optimizers, etc.
        log.debug(f"{self.__class__.__name__}: restoring training state")
        self._checkpoint_connector.restore_training_state()

        self._checkpoint_connector.resume_end()

        self._signal_connector.register_signal_handlers()

        # ----------------------------
        # RUN THE TRAINER
        # ----------------------------
        results = self._run_stage()

        # ----------------------------
        # POST-Training CLEAN UP
        # ----------------------------
        log.debug(f"{self.__class__.__name__}: trainer tearing down")
        self._teardown()

        if self.state.fn == TrainerFn.FITTING:
            call._call_callback_hooks(self, "on_fit_end")
            call._call_lightning_module_hook(self, "on_fit_end")

        log.debug(f"{self.__class__.__name__}: calling teardown hooks")
        call._call_teardown_hook(self)

        self.state.status = TrainerStatus.FINISHED
        self.state.stage = None

        return results

    def _teardown(self) -> None:
        """This is the Trainer's internal teardown, unrelated to the `teardown` hooks in LightningModule and Callback;
        those are handled by :meth:`_call_teardown_hook`."""
        self.strategy.teardown()
        loop = self._active_loop
        # loop should never be `None` here but it can because we don't know the trainer stage with `ddp_spawn`
        if loop is not None:
            loop.teardown()
        self._logger_connector.teardown()
        self._signal_connector.teardown()

    def _run_stage(self) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
        # wait for all to join if on distributed
        self.strategy.barrier("run-stage")
        self.lightning_module.zero_grad()

        if self.evaluating:
            return self._evaluation_loop.run()
        if self.predicting:
            return self.predict_loop.run()
        if self.training:
            with isolate_rng():
                self._run_sanity_check()
            with torch.autograd.set_detect_anomaly(self._detect_anomaly):
                self.fit_loop.run()
            return None
        raise RuntimeError(f"Unexpected state {self.state}")

    def _run_sanity_check(self) -> None:
        val_loop = self.fit_loop.epoch_loop.val_loop

        should_sanity_check = (
            self.enable_validation
            and self.num_sanity_val_steps > 0
            # do not sanity check if restarting because it would mess up the loaded state
            and not val_loop.restarting
        )

        # run tiny validation (if validation defined)
        # to make sure program won't crash during val
        if should_sanity_check:
            stage = self.state.stage
            self.sanity_checking = True

            # reset logger connector
            self._logger_connector.reset_results()
            self._logger_connector.reset_metrics()

            call._call_callback_hooks(self, "on_sanity_check_start")

            # run eval step
            val_loop.run()

            call._call_callback_hooks(self, "on_sanity_check_end")

            # reset logger connector
            self._logger_connector.reset_results()
            self._logger_connector.reset_metrics()

            # reset the progress tracking state after sanity checking. we don't need to set the state before
            # because sanity check only runs when we are not restarting
            _reset_progress(val_loop)

            # restore the previous stage when the sanity check if finished
            self.state.stage = stage

    def __setup_profiler(self) -> None:
        assert self.state.fn is not None
        local_rank = self.local_rank if self.world_size > 1 else None
        self.profiler._lightning_module = proxy(self.lightning_module)
        self.profiler.setup(stage=self.state.fn, local_rank=local_rank, log_dir=self.log_dir)

    @contextmanager
    def init_module(self, empty_init: Optional[bool] = None) -> Generator:
        """Tensors that you instantiate under this context manager will be created on the device right away and have
        the right data type depending on the precision setting in the Trainer.

        The parameters and tensors get created on the device and with the right data type right away without wasting
        memory being allocated unnecessarily.

        Args:
            empty_init: Whether to initialize the model with empty weights (uninitialized memory).
                If ``None``, the strategy will decide. Some strategies may not support all options.
                Set this to ``True`` if you are loading a checkpoint into a large model.

        """
        if is_overridden("model_sharded_context", self.strategy, parent=Strategy):
            # warning instead of error so that code changes are not required when changing strategies
            # this is a limitation because processes are not expected to have been launched when this is called
            rank_zero_warn(
                f"`trainer.init_module` cannot fully support proper instantiation of your model with the"
                f" `{type(self.strategy).__name__}` strategy. Please instantiate your model inside the"
                f"`LightningModule.configure_model` hook instead",
                # ideally we would check if `configure_model` is already overridden, but we don't have a reliable
                # reference to the model yet
                category=PossibleUserWarning,
            )
        with self.strategy.tensor_init_context(empty_init=empty_init):
            yield

    def print(self, *args: Any, **kwargs: Any) -> None:
        """Print something only on the first process. If running on multiple machines, it will print from the first
        process in each machine.

        Arguments passed to this method are forwarded to the Python built-in :func:`print` function.

        """
        if self.local_rank == 0:
            print(*args, **kwargs)

    """
    Accelerator properties
    """

    @property
    def accelerator(self) -> Accelerator:
        assert self.strategy.accelerator
        return self.strategy.accelerator

    @property
    def strategy(self) -> Strategy:
        return self._accelerator_connector.strategy

    @property
    def precision_plugin(self) -> Precision:
        return self.strategy.precision_plugin

    @property
    def global_rank(self) -> int:
        return self.strategy.global_rank

    @property
    def local_rank(self) -> int:
        # some strategies define a local rank
        return getattr(self.strategy, "local_rank", 0)

    @property
    def node_rank(self) -> int:
        # some strategies define a node rank
        return getattr(self.strategy, "node_rank", 0)

    @property
    def world_size(self) -> int:
        # some strategies define a world size
        return getattr(self.strategy, "world_size", 1)

    @property
    def num_nodes(self) -> int:
        return getattr(self.strategy, "num_nodes", 1)

    @property
    def device_ids(self) -> list[int]:
        """List of device indexes per node."""
        devices = (
            self.strategy.parallel_devices
            if isinstance(self.strategy, ParallelStrategy)
            else [self.strategy.root_device]
        )
        assert devices is not None
        device_ids = []
        for idx, device in enumerate(devices):
            if isinstance(device, torch.device):
                device_ids.append(device.index or idx)
            elif isinstance(device, int):
                device_ids.append(device)
        return device_ids

    @property
    def num_devices(self) -> int:
        """Number of devices the trainer uses per node."""
        return len(self.device_ids)

    @property
    def lightning_module(self) -> "pl.LightningModule":
        # TODO: this is actually an optional return
        return self.strategy.lightning_module  # type: ignore[return-value]

    @property
    def optimizers(self) -> list[Optimizer]:
        return self.strategy.optimizers

    @optimizers.setter
    def optimizers(self, new_optims: list[Optimizer]) -> None:
        self.strategy.optimizers = new_optims

    @property
    def lr_scheduler_configs(self) -> list[LRSchedulerConfig]:
        return self.strategy.lr_scheduler_configs

    @property
    def precision(self) -> _PRECISION_INPUT_STR:
        return self.strategy.precision_plugin.precision

    @property
    def scaler(self) -> Optional[Any]:
        return getattr(self.precision_plugin, "scaler", None)

    @property
    def model(self) -> Optional[torch.nn.Module]:
        """The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel.

        To access the pure LightningModule, use
        :meth:`~pytorch_lightning.trainer.trainer.Trainer.lightning_module` instead.

        """
        return self.strategy.model

    """
    General properties
    """

    @property
    def log_dir(self) -> Optional[str]:
        """The directory for the current experiment. Use this to save images to, etc...

        .. note:: You must call this on all processes. Failing to do so will cause your program to stall forever.

         .. code-block:: python

             def training_step(self, batch, batch_idx):
                 img = ...
                 save_img(img, self.trainer.log_dir)

        """
        if len(self.loggers) > 0:
            if not isinstance(self.loggers[0], (TensorBoardLogger, CSVLogger)):
                dirpath = self.loggers[0].save_dir
            else:
                dirpath = self.loggers[0].log_dir
        else:
            dirpath = self.default_root_dir

        dirpath = self.strategy.broadcast(dirpath)
        return dirpath

    @property
    def is_global_zero(self) -> bool:
        """Whether this process is the global zero in multi-node training.

        .. code-block:: python

            def training_step(self, batch, batch_idx):
                if self.trainer.is_global_zero:
                    print("in node 0, accelerator 0")

        """
        return self.strategy.is_global_zero

    @property
    def distributed_sampler_kwargs(self) -> Optional[dict[str, Any]]:
        if isinstance(self.strategy, ParallelStrategy):
            return self.strategy.distributed_sampler_kwargs
        return None

    @property
    def enable_validation(self) -> bool:
        """Check if we should run validation during training."""
        return (
            self.fit_loop.epoch_loop.val_loop._data_source.is_defined()
            and is_overridden("validation_step", self.lightning_module)
            and self.limit_val_batches > 0
        )

    @property
    def default_root_dir(self) -> str:
        """The default location to save artifacts of loggers, checkpoints etc.

        It is used as a fallback if logger or checkpoint callback do not define specific save paths.

        """
        if _is_local_file_protocol(self._default_root_dir):
            return os.path.normpath(os.path.expanduser(self._default_root_dir))
        return self._default_root_dir

    @property
    def early_stopping_callback(self) -> Optional[EarlyStopping]:
        """The first :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` callback in the
        Trainer.callbacks list, or ``None`` if it doesn't exist."""
        callbacks = self.early_stopping_callbacks
        return callbacks[0] if len(callbacks) > 0 else None

    @property
    def early_stopping_callbacks(self) -> list[EarlyStopping]:
        """A list of all instances of :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` found in the
        Trainer.callbacks list."""
        return [c for c in self.callbacks if isinstance(c, EarlyStopping)]

    @property
    def checkpoint_callback(self) -> Optional[Checkpoint]:
        """The first :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callback in the
        Trainer.callbacks list, or ``None`` if it doesn't exist."""
        callbacks = self.checkpoint_callbacks
        return callbacks[0] if len(callbacks) > 0 else None

    @property
    def checkpoint_callbacks(self) -> list[Checkpoint]:
        """A list of all instances of :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` found in
        the Trainer.callbacks list."""
        return [c for c in self.callbacks if isinstance(c, Checkpoint)]

    @property
    def progress_bar_callback(self) -> Optional[ProgressBar]:
        """An instance of :class:`~pytorch_lightning.callbacks.progress.progress_bar.ProgressBar` found in the
        Trainer.callbacks list, or ``None`` if one doesn't exist."""
        for c in self.callbacks:
            if isinstance(c, ProgressBar):
                return c
        return None

    @property
    def ckpt_path(self) -> Optional[_PATH]:
        """Set to the path/URL of a checkpoint loaded via :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit`,
        :meth:`~pytorch_lightning.trainer.trainer.Trainer.validate`,
        :meth:`~pytorch_lightning.trainer.trainer.Trainer.test`, or
        :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`.

        ``None`` otherwise.

        """
        return self._checkpoint_connector._ckpt_path

    @ckpt_path.setter
    def ckpt_path(self, ckpt_path: Optional[_PATH]) -> None:
        """Allows you to manage which checkpoint is loaded statefully.

        .. code-block:: python

            trainer = Trainer()
            trainer.ckpt_path = "my/checkpoint/file.ckpt"
            trainer.fit(model)
            ...

            # you will be in charge of resetting this
            trainer.ckpt_path = None
            trainer.test(model)

        """
        self._checkpoint_connector._ckpt_path = ckpt_path
        self._checkpoint_connector._user_managed = bool(ckpt_path)

    def save_checkpoint(
        self, filepath: _PATH, weights_only: bool = False, storage_options: Optional[Any] = None
    ) -> None:
        r"""Runs routine to create a checkpoint.

        This method needs to be called on all processes in case the selected strategy is handling distributed
        checkpointing.

        Args:
            filepath: Path where checkpoint is saved.
            weights_only: If ``True``, will only save the model weights.
            storage_options: parameter for how to save to storage, passed to ``CheckpointIO`` plugin

        Raises:
            AttributeError:
                If the model is not attached to the Trainer before calling this method.

        """
        if self.model is None:
            raise AttributeError(
                "Saving a checkpoint is only possible if a model is attached to the Trainer. Did you call"
                " `Trainer.save_checkpoint()` before calling `Trainer.{fit,validate,test,predict}`?"
            )
        with self.profiler.profile("save_checkpoint"):
            checkpoint = self._checkpoint_connector.dump_checkpoint(weights_only)
            self.strategy.save_checkpoint(checkpoint, filepath, storage_options=storage_options)
            self.strategy.barrier("Trainer.save_checkpoint")

    """
    State properties
    """

    @property
    def interrupted(self) -> bool:
        return self.state.status == TrainerStatus.INTERRUPTED

    @property
    def training(self) -> bool:
        return self.state.stage == RunningStage.TRAINING

    @training.setter
    def training(self, val: bool) -> None:
        if val:
            self.state.stage = RunningStage.TRAINING
        elif self.training:
            self.state.stage = None

    @property
    def testing(self) -> bool:
        return self.state.stage == RunningStage.TESTING

    @testing.setter
    def testing(self, val: bool) -> None:
        if val:
            self.state.stage = RunningStage.TESTING
        elif self.testing:
            self.state.stage = None

    @property
    def predicting(self) -> bool:
        return self.state.stage == RunningStage.PREDICTING

    @predicting.setter
    def predicting(self, val: bool) -> None:
        if val:
            self.state.stage = RunningStage.PREDICTING
        elif self.predicting:
            self.state.stage = None

    @property
    def validating(self) -> bool:
        return self.state.stage == RunningStage.VALIDATING

    @validating.setter
    def validating(self, val: bool) -> None:
        if val:
            self.state.stage = RunningStage.VALIDATING
        elif self.validating:
            self.state.stage = None

    @property
    def evaluating(self) -> bool:
        return self.state.stage is not None and self.state.stage.evaluating

    @property
    def sanity_checking(self) -> bool:
        """Whether sanity checking is running.

        Useful to disable some hooks, logging or callbacks during the sanity checking.

        """
        return self.state.stage == RunningStage.SANITY_CHECKING

    @sanity_checking.setter
    def sanity_checking(self, val: bool) -> None:
        if val:
            self.state.stage = RunningStage.SANITY_CHECKING
        elif self.sanity_checking:
            self.state.stage = None

    @property
    def received_sigterm(self) -> bool:
        """Whether a ``signal.SIGTERM`` signal was received.

        For example, this can be checked to exit gracefully.

        """
        return self._signal_connector.received_sigterm

    """
    Loop properties
    """

    @property
    def global_step(self) -> int:
        """The number of optimizer steps taken (does not reset each epoch).

        This includes multiple optimizers (if enabled).

        """
        return self.fit_loop.epoch_loop.global_step

    @property
    def current_epoch(self) -> int:
        """The current epoch, updated after the epoch end hooks are run."""
        return self.fit_loop.epoch_progress.current.completed

    @property
    def max_epochs(self) -> Optional[int]:
        return self.fit_loop.max_epochs

    @property
    def min_epochs(self) -> Optional[int]:
        return self.fit_loop.min_epochs

    @property
    def max_steps(self) -> int:
        return self.fit_loop.max_steps

    @property
    def min_steps(self) -> Optional[int]:
        return self.fit_loop.min_steps

    @property
    def is_last_batch(self) -> bool:
        """Whether trainer is executing the last batch."""
        return self.fit_loop.epoch_loop.batch_progress.is_last_batch

    @property
    def train_dataloader(self) -> Optional[TRAIN_DATALOADERS]:
        """The training dataloader(s) used during ``trainer.fit()``."""
        if (combined_loader := self.fit_loop._combined_loader) is not None:
            return combined_loader.iterables
        return None

    @property
    def val_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
        """The validation dataloader(s) used during ``trainer.fit()`` or ``trainer.validate()``."""
        if (combined_loader := self.fit_loop.epoch_loop.val_loop._combined_loader) is not None or (
            combined_loader := self.validate_loop._combined_loader
        ) is not None:
            return combined_loader.iterables
        return None

    @property
    def test_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
        """The test dataloader(s) used during ``trainer.test()``."""
        if (combined_loader := self.test_loop._combined_loader) is not None:
            return combined_loader.iterables
        return None

    @property
    def predict_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
        """The prediction dataloader(s) used during ``trainer.predict()``."""
        if (combined_loader := self.predict_loop._combined_loader) is not None:
            return combined_loader.iterables
        return None

    @property
    def num_training_batches(self) -> Union[int, float]:
        """The number of training batches that will be used during ``trainer.fit()``."""
        return self.fit_loop.max_batches

    @property
    def num_sanity_val_batches(self) -> list[Union[int, float]]:
        """The number of validation batches that will be used during the sanity-checking part of ``trainer.fit()``."""
        max_batches = self.fit_loop.epoch_loop.val_loop.max_batches
        # re-compute the `min` in case this is called outside the sanity-checking stage
        return [min(self.num_sanity_val_steps, batches) for batches in max_batches]

    @property
    def num_val_batches(self) -> list[Union[int, float]]:
        """The number of validation batches that will be used during ``trainer.fit()`` or ``trainer.validate()``."""
        if self.state.fn == TrainerFn.VALIDATING:
            return self.validate_loop.max_batches
        # if no trainer.fn is set, assume fit's validation
        # use the protected access, because it shouldn't return the sanity_val batches
        return self.fit_loop.epoch_loop.val_loop._max_batches

    @property
    def num_test_batches(self) -> list[Union[int, float]]:
        """The number of test batches that will be used during ``trainer.test()``."""
        return self.test_loop.max_batches

    @property
    def num_predict_batches(self) -> list[Union[int, float]]:
        """The number of prediction batches that will be used during ``trainer.predict()``."""
        return self.predict_loop.max_batches

    @property
    def _evaluation_loop(self) -> _EvaluationLoop:
        if self.state.fn == TrainerFn.FITTING:
            return self.fit_loop.epoch_loop.val_loop
        if self.state.fn == TrainerFn.VALIDATING:
            return self.validate_loop
        if self.state.fn == TrainerFn.TESTING:
            return self.test_loop
        raise RuntimeError("The `Trainer._evaluation_loop` property isn't defined. Accessed outside of scope")

    @property
    def _active_loop(self) -> Optional[Union[_FitLoop, _EvaluationLoop, _PredictionLoop]]:
        if self.training:
            return self.fit_loop
        if self.sanity_checking or self.evaluating:
            return self._evaluation_loop
        if self.predicting:
            return self.predict_loop
        return None

    """
    Logging properties
    """

    @property
    def logger(self) -> Optional[Logger]:
        """The first :class:`~pytorch_lightning.loggers.logger.Logger` being used."""
        return self.loggers[0] if len(self.loggers) > 0 else None

    @logger.setter
    def logger(self, logger: Optional[Logger]) -> None:
        if not logger:
            self.loggers = []
        else:
            self.loggers = [logger]

    @property
    def loggers(self) -> list[Logger]:
        """The list of :class:`~pytorch_lightning.loggers.logger.Logger` used.

        .. code-block:: python

            for logger in trainer.loggers:
                logger.log_metrics({"foo": 1.0})

        """
        return self._loggers

    @loggers.setter
    def loggers(self, loggers: Optional[list[Logger]]) -> None:
        self._loggers = loggers if loggers else []

    @property
    def callback_metrics(self) -> _OUT_DICT:
        """The metrics available to callbacks.

        .. code-block:: python

            def training_step(self, batch, batch_idx):
                self.log("a_val", 2.0)


            callback_metrics = trainer.callback_metrics
            assert callback_metrics["a_val"] == 2.0

        """
        return self._logger_connector.callback_metrics

    @property
    def logged_metrics(self) -> _OUT_DICT:
        """The metrics sent to the loggers.

        This includes metrics logged via :meth:`~pytorch_lightning.core.LightningModule.log` with the
        :paramref:`~pytorch_lightning.core.LightningModule.log.logger` argument set.

        """
        return self._logger_connector.logged_metrics

    @property
    def progress_bar_metrics(self) -> _PBAR_DICT:
        """The metrics sent to the progress bar.

        This includes metrics logged via :meth:`~pytorch_lightning.core.LightningModule.log` with the
        :paramref:`~pytorch_lightning.core.LightningModule.log.prog_bar` argument set.

        """
        return self._logger_connector.progress_bar_metrics

    @property
    def _results(self) -> Optional[_ResultCollection]:
        active_loop = self._active_loop
        if active_loop is not None:
            return active_loop._results
        return None

    """
    Other
    """

    @property
    def estimated_stepping_batches(self) -> Union[int, float]:
        r"""The estimated number of batches that will ``optimizer.step()`` during training.

        This accounts for gradient accumulation and the current trainer configuration. This might be used when setting
        up your training dataloader, if it hasn't been set up already.

        .. code-block:: python

            def configure_optimizers(self):
                optimizer = ...
                stepping_batches = self.trainer.estimated_stepping_batches
                scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-3, total_steps=stepping_batches)
                return [optimizer], [scheduler]

        Raises:
            MisconfigurationException:
                If estimated stepping batches cannot be computed due to different `accumulate_grad_batches`
                at different epochs.

        """
        # infinite training
        if self.max_epochs == -1:
            return float("inf") if self.max_steps == -1 else self.max_steps

        if self.train_dataloader is None:
            rank_zero_info("Loading `train_dataloader` to estimate number of stepping batches.")
            self.fit_loop.setup_data()

        total_batches = self.num_training_batches

        # iterable dataset
        if total_batches == float("inf"):
            return self.max_steps

        assert self.max_epochs is not None
        max_estimated_steps = math.ceil(total_batches / self.accumulate_grad_batches) * max(self.max_epochs, 1)

        max_estimated_steps = min(max_estimated_steps, self.max_steps) if self.max_steps != -1 else max_estimated_steps
        return max_estimated_steps