File size: 74,493 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# THIS FILE MUST READ EASILY, FOR UNDERSTANDING AND DEBUGGING PURPOSES.
# DO NOT OBSCURE THE TRAINING LOOP
# THIS IS A HARD REQUIREMENT TO CONTRIBUTING TO LIGHTNING
# WE FAVOR READABILITY OVER ENGINEERING-CONSTRUCTS BY DESIGN
# DO NOT REMOVE THIS NOTICE
# - WILLIAM FALCON
"""Trainer to automate the training."""
import logging
import math
import os
from collections.abc import Generator, Iterable
from contextlib import contextmanager
from datetime import timedelta
from typing import Any, Optional, Union
from weakref import proxy
import torch
from lightning_utilities import module_available
from torch.optim import Optimizer
import pytorch_lightning as pl
from lightning_fabric.utilities.apply_func import convert_tensors_to_scalars
from lightning_fabric.utilities.cloud_io import _is_local_file_protocol
from lightning_fabric.utilities.types import _PATH
from pytorch_lightning.accelerators import Accelerator
from pytorch_lightning.callbacks import Callback, Checkpoint, EarlyStopping, ProgressBar
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.loggers import Logger
from pytorch_lightning.loggers.csv_logs import CSVLogger
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.loggers.utilities import _log_hyperparams
from pytorch_lightning.loops import _PredictionLoop, _TrainingEpochLoop
from pytorch_lightning.loops.evaluation_loop import _EvaluationLoop
from pytorch_lightning.loops.fit_loop import _FitLoop
from pytorch_lightning.loops.utilities import _parse_loop_limits, _reset_progress
from pytorch_lightning.plugins import _PLUGIN_INPUT, Precision
from pytorch_lightning.profilers import Profiler
from pytorch_lightning.strategies import ParallelStrategy, Strategy
from pytorch_lightning.trainer import call, setup
from pytorch_lightning.trainer.configuration_validator import _verify_loop_configurations
from pytorch_lightning.trainer.connectors.accelerator_connector import (
_LITERAL_WARN,
_PRECISION_INPUT,
_PRECISION_INPUT_STR,
_AcceleratorConnector,
)
from pytorch_lightning.trainer.connectors.callback_connector import _CallbackConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import _CheckpointConnector
from pytorch_lightning.trainer.connectors.data_connector import _DataConnector
from pytorch_lightning.trainer.connectors.logger_connector import _LoggerConnector
from pytorch_lightning.trainer.connectors.logger_connector.result import _OUT_DICT, _PBAR_DICT, _ResultCollection
from pytorch_lightning.trainer.connectors.signal_connector import _SignalConnector
from pytorch_lightning.trainer.states import RunningStage, TrainerFn, TrainerState, TrainerStatus
from pytorch_lightning.utilities import GradClipAlgorithmType, parsing
from pytorch_lightning.utilities.argparse import _defaults_from_env_vars
from pytorch_lightning.utilities.compile import _maybe_unwrap_optimized, _verify_strategy_supports_compile
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.model_registry import _is_registry, download_model_from_registry
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_warn
from pytorch_lightning.utilities.seed import isolate_rng
from pytorch_lightning.utilities.types import (
_EVALUATE_OUTPUT,
_PREDICT_OUTPUT,
EVAL_DATALOADERS,
TRAIN_DATALOADERS,
LRSchedulerConfig,
)
from pytorch_lightning.utilities.warnings import PossibleUserWarning
log = logging.getLogger(__name__)
class Trainer:
@_defaults_from_env_vars
def __init__(
self,
*,
accelerator: Union[str, Accelerator] = "auto",
strategy: Union[str, Strategy] = "auto",
devices: Union[list[int], str, int] = "auto",
num_nodes: int = 1,
precision: Optional[_PRECISION_INPUT] = None,
logger: Optional[Union[Logger, Iterable[Logger], bool]] = None,
callbacks: Optional[Union[list[Callback], Callback]] = None,
fast_dev_run: Union[int, bool] = False,
max_epochs: Optional[int] = None,
min_epochs: Optional[int] = None,
max_steps: int = -1,
min_steps: Optional[int] = None,
max_time: Optional[Union[str, timedelta, dict[str, int]]] = None,
limit_train_batches: Optional[Union[int, float]] = None,
limit_val_batches: Optional[Union[int, float]] = None,
limit_test_batches: Optional[Union[int, float]] = None,
limit_predict_batches: Optional[Union[int, float]] = None,
overfit_batches: Union[int, float] = 0.0,
val_check_interval: Optional[Union[int, float]] = None,
check_val_every_n_epoch: Optional[int] = 1,
num_sanity_val_steps: Optional[int] = None,
log_every_n_steps: Optional[int] = None,
enable_checkpointing: Optional[bool] = None,
enable_progress_bar: Optional[bool] = None,
enable_model_summary: Optional[bool] = None,
accumulate_grad_batches: int = 1,
gradient_clip_val: Optional[Union[int, float]] = None,
gradient_clip_algorithm: Optional[str] = None,
deterministic: Optional[Union[bool, _LITERAL_WARN]] = None,
benchmark: Optional[bool] = None,
inference_mode: bool = True,
use_distributed_sampler: bool = True,
profiler: Optional[Union[Profiler, str]] = None,
detect_anomaly: bool = False,
barebones: bool = False,
plugins: Optional[Union[_PLUGIN_INPUT, list[_PLUGIN_INPUT]]] = None,
sync_batchnorm: bool = False,
reload_dataloaders_every_n_epochs: int = 0,
default_root_dir: Optional[_PATH] = None,
model_registry: Optional[str] = None,
) -> None:
r"""Customize every aspect of training via flags.
Args:
accelerator: Supports passing different accelerator types ("cpu", "gpu", "tpu", "hpu", "mps", "auto")
as well as custom accelerator instances.
strategy: Supports different training strategies with aliases as well custom strategies.
Default: ``"auto"``.
devices: The devices to use. Can be set to a positive number (int or str), a sequence of device indices
(list or str), the value ``-1`` to indicate all available devices should be used, or ``"auto"`` for
automatic selection based on the chosen accelerator. Default: ``"auto"``.
num_nodes: Number of GPU nodes for distributed training.
Default: ``1``.
precision: Double precision (64, '64' or '64-true'), full precision (32, '32' or '32-true'),
16bit mixed precision (16, '16', '16-mixed') or bfloat16 mixed precision ('bf16', 'bf16-mixed').
Can be used on CPU, GPU, TPUs, or HPUs.
Default: ``'32-true'``.
logger: Logger (or iterable collection of loggers) for experiment tracking. A ``True`` value uses
the default ``TensorBoardLogger`` if it is installed, otherwise ``CSVLogger``.
``False`` will disable logging. If multiple loggers are provided, local files
(checkpoints, profiler traces, etc.) are saved in the ``log_dir`` of the first logger.
Default: ``True``.
callbacks: Add a callback or list of callbacks.
Default: ``None``.
fast_dev_run: Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es)
of train, val and test to find any bugs (ie: a sort of unit test).
Default: ``False``.
max_epochs: Stop training once this number of epochs is reached. Disabled by default (None).
If both max_epochs and max_steps are not specified, defaults to ``max_epochs = 1000``.
To enable infinite training, set ``max_epochs = -1``.
min_epochs: Force training for at least these many epochs. Disabled by default (None).
max_steps: Stop training after this number of steps. Disabled by default (-1). If ``max_steps = -1``
and ``max_epochs = None``, will default to ``max_epochs = 1000``. To enable infinite training, set
``max_epochs`` to ``-1``.
min_steps: Force training for at least these number of steps. Disabled by default (``None``).
max_time: Stop training after this amount of time has passed. Disabled by default (``None``).
The time duration can be specified in the format DD:HH:MM:SS (days, hours, minutes seconds), as a
:class:`datetime.timedelta`, or a dictionary with keys that will be passed to
:class:`datetime.timedelta`.
limit_train_batches: How much of training dataset to check (float = fraction, int = num_batches).
Default: ``1.0``.
limit_val_batches: How much of validation dataset to check (float = fraction, int = num_batches).
Default: ``1.0``.
limit_test_batches: How much of test dataset to check (float = fraction, int = num_batches).
Default: ``1.0``.
limit_predict_batches: How much of prediction dataset to check (float = fraction, int = num_batches).
Default: ``1.0``.
overfit_batches: Overfit a fraction of training/validation data (float) or a set number of batches (int).
Default: ``0.0``.
val_check_interval: How often to check the validation set. Pass a ``float`` in the range [0.0, 1.0] to check
after a fraction of the training epoch. Pass an ``int`` to check after a fixed number of training
batches. An ``int`` value can only be higher than the number of training batches when
``check_val_every_n_epoch=None``, which validates after every ``N`` training batches
across epochs or during iteration-based training.
Default: ``1.0``.
check_val_every_n_epoch: Perform a validation loop after every `N` training epochs. If ``None``,
validation will be done solely based on the number of training batches, requiring ``val_check_interval``
to be an integer value.
Default: ``1``.
num_sanity_val_steps: Sanity check runs n validation batches before starting the training routine.
Set it to `-1` to run all batches in all validation dataloaders.
Default: ``2``.
log_every_n_steps: How often to log within steps.
Default: ``50``.
enable_checkpointing: If ``True``, enable checkpointing.
It will configure a default ModelCheckpoint callback if there is no user-defined ModelCheckpoint in
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks`.
Default: ``True``.
enable_progress_bar: Whether to enable to progress bar by default.
Default: ``True``.
enable_model_summary: Whether to enable model summarization by default.
Default: ``True``.
accumulate_grad_batches: Accumulates gradients over k batches before stepping the optimizer.
Default: 1.
gradient_clip_val: The value at which to clip gradients. Passing ``gradient_clip_val=None`` disables
gradient clipping. If using Automatic Mixed Precision (AMP), the gradients will be unscaled before.
Default: ``None``.
gradient_clip_algorithm: The gradient clipping algorithm to use. Pass ``gradient_clip_algorithm="value"``
to clip by value, and ``gradient_clip_algorithm="norm"`` to clip by norm. By default it will
be set to ``"norm"``.
deterministic: If ``True``, sets whether PyTorch operations must use deterministic algorithms.
Set to ``"warn"`` to use deterministic algorithms whenever possible, throwing warnings on operations
that don't support deterministic mode. If not set, defaults to ``False``. Default: ``None``.
benchmark: The value (``True`` or ``False``) to set ``torch.backends.cudnn.benchmark`` to.
The value for ``torch.backends.cudnn.benchmark`` set in the current session will be used
(``False`` if not manually set). If :paramref:`~pytorch_lightning.trainer.trainer.Trainer.deterministic`
is set to ``True``, this will default to ``False``. Override to manually set a different value.
Default: ``None``.
inference_mode: Whether to use :func:`torch.inference_mode` or :func:`torch.no_grad` during
evaluation (``validate``/``test``/``predict``).
use_distributed_sampler: Whether to wrap the DataLoader's sampler with
:class:`torch.utils.data.DistributedSampler`. If not specified this is toggled automatically for
strategies that require it. By default, it will add ``shuffle=True`` for the train sampler and
``shuffle=False`` for validation/test/predict samplers. If you want to disable this logic, you can pass
``False`` and add your own distributed sampler in the dataloader hooks. If ``True`` and a distributed
sampler was already added, Lightning will not replace the existing one. For iterable-style datasets,
we don't do this automatically.
profiler: To profile individual steps during training and assist in identifying bottlenecks.
Default: ``None``.
detect_anomaly: Enable anomaly detection for the autograd engine.
Default: ``False``.
barebones: Whether to run in "barebones mode", where all features that may impact raw speed are
disabled. This is meant for analyzing the Trainer overhead and is discouraged during regular training
runs. The following features are deactivated:
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_checkpointing`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.logger`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_progress_bar`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.log_every_n_steps`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.enable_model_summary`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.num_sanity_val_steps`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.fast_dev_run`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.detect_anomaly`,
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.profiler`,
:meth:`~pytorch_lightning.core.LightningModule.log`,
:meth:`~pytorch_lightning.core.LightningModule.log_dict`.
plugins: Plugins allow modification of core behavior like ddp and amp, and enable custom lightning plugins.
Default: ``None``.
sync_batchnorm: Synchronize batch norm layers between process groups/whole world.
Default: ``False``.
reload_dataloaders_every_n_epochs: Set to a positive integer to reload dataloaders every n epochs.
Default: ``0``.
default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed.
Default: ``os.getcwd()``.
Can be remote file paths such as `s3://mybucket/path` or 'hdfs://path/'
model_registry: The name of the model being uploaded to Model hub.
Raises:
TypeError:
If ``gradient_clip_val`` is not an int or float.
MisconfigurationException:
If ``gradient_clip_algorithm`` is invalid.
"""
super().__init__()
log.debug(f"{self.__class__.__name__}: Initializing trainer with parameters: {locals()}")
if default_root_dir is not None:
default_root_dir = os.fspath(default_root_dir)
# remove version if accidentally passed
self._model_registry = model_registry.split(":")[0] if model_registry else None
self.barebones = barebones
if barebones:
# opt-outs
if enable_checkpointing:
raise ValueError(
f"`Trainer(barebones=True, enable_checkpointing={enable_checkpointing!r})` was passed."
" Checkpointing can impact raw speed so it is disabled in barebones mode."
)
enable_checkpointing = False
if logger is not None and logger is not False:
raise ValueError(
f"`Trainer(barebones=True, logger={logger!r})` was passed."
" Logging can impact raw speed so it is disabled in barebones mode."
)
logger = False
if enable_progress_bar:
raise ValueError(
f"`Trainer(barebones=True, enable_progress_bar={enable_progress_bar!r})` was passed."
" The progress bar can impact raw speed so it is disabled in barebones mode."
)
enable_progress_bar = False
if log_every_n_steps is not None and log_every_n_steps != 0:
raise ValueError(
f"`Trainer(barebones=True, log_every_n_steps={log_every_n_steps!r})` was passed."
" Logging can impact raw speed so it is disabled in barebones mode."
)
log_every_n_steps = 0
if enable_model_summary:
raise ValueError(
f"`Trainer(barebones=True, enable_model_summary={enable_model_summary!r})` was passed."
" Model summary can impact raw speed so it is disabled in barebones mode."
)
enable_model_summary = False
if num_sanity_val_steps is not None and num_sanity_val_steps != 0:
raise ValueError(
f"`Trainer(barebones=True, num_sanity_val_steps={num_sanity_val_steps!r})` was passed."
" Sanity checking can impact raw speed so it is disabled in barebones mode."
)
num_sanity_val_steps = 0
# opt-ins
if fast_dev_run is not False and fast_dev_run != 0:
raise ValueError(
f"`Trainer(barebones=True, fast_dev_run={fast_dev_run!r})` was passed."
" Development run is not meant for raw speed evaluation so it is disabled in barebones mode."
)
if detect_anomaly:
raise ValueError(
f"`Trainer(barebones=True, detect_anomaly={detect_anomaly!r})` was passed."
" Anomaly detection can impact raw speed so it is disabled in barebones mode."
)
if profiler is not None:
raise ValueError(
f"`Trainer(barebones=True, profiler={profiler!r})` was passed."
" Profiling can impact raw speed so it is disabled in barebones mode."
)
deactivated = (
" - Checkpointing: `Trainer(enable_checkpointing=True)`",
" - Progress bar: `Trainer(enable_progress_bar=True)`",
" - Model summary: `Trainer(enable_model_summary=True)`",
" - Logging: `Trainer(logger=True)`, `Trainer(log_every_n_steps>0)`,"
" `LightningModule.log(...)`, `LightningModule.log_dict(...)`",
" - Sanity checking: `Trainer(num_sanity_val_steps>0)`",
" - Development run: `Trainer(fast_dev_run=True)`",
" - Anomaly detection: `Trainer(detect_anomaly=True)`",
" - Profiling: `Trainer(profiler=...)`",
)
rank_zero_info(
"You are running in `Trainer(barebones=True)` mode. All features that may impact raw speed have been"
" disabled to facilitate analyzing the Trainer overhead. Specifically, the following features are"
f" deactivated:{os.linesep}{os.linesep.join(deactivated)}"
)
else:
# set the opt-out defaults
if enable_checkpointing is None:
enable_checkpointing = True
if logger is None:
logger = True
if enable_progress_bar is None:
enable_progress_bar = True
if log_every_n_steps is None:
log_every_n_steps = 50
if enable_model_summary is None:
enable_model_summary = True
if num_sanity_val_steps is None:
num_sanity_val_steps = 2
# init connectors
self._data_connector = _DataConnector(self)
self._accelerator_connector = _AcceleratorConnector(
devices=devices,
accelerator=accelerator,
strategy=strategy,
num_nodes=num_nodes,
sync_batchnorm=sync_batchnorm,
benchmark=benchmark,
use_distributed_sampler=use_distributed_sampler,
deterministic=deterministic,
precision=precision,
plugins=plugins,
)
self._logger_connector = _LoggerConnector(self)
self._callback_connector = _CallbackConnector(self)
self._checkpoint_connector = _CheckpointConnector(self)
self._signal_connector = _SignalConnector(self)
# init loops
self.fit_loop = _FitLoop(self, min_epochs=min_epochs, max_epochs=max_epochs)
self.fit_loop.epoch_loop = _TrainingEpochLoop(self, min_steps=min_steps, max_steps=max_steps)
self.validate_loop = _EvaluationLoop(
self, TrainerFn.VALIDATING, RunningStage.VALIDATING, inference_mode=inference_mode
)
self.test_loop = _EvaluationLoop(self, TrainerFn.TESTING, RunningStage.TESTING, inference_mode=inference_mode)
self.predict_loop = _PredictionLoop(self, inference_mode=inference_mode)
self.accumulate_grad_batches = accumulate_grad_batches
# init callbacks
# Declare attributes to be set in _callback_connector on_trainer_init
self._callback_connector.on_trainer_init(
callbacks,
enable_checkpointing,
enable_progress_bar,
default_root_dir,
enable_model_summary,
max_time,
)
# init data flags
self.check_val_every_n_epoch: Optional[int]
self._data_connector.on_trainer_init(
val_check_interval,
reload_dataloaders_every_n_epochs,
check_val_every_n_epoch,
)
# gradient clipping
if gradient_clip_val is not None and not isinstance(gradient_clip_val, (int, float)):
raise TypeError(f"`gradient_clip_val` should be an int or a float. Got {gradient_clip_val}.")
if gradient_clip_algorithm is not None and not GradClipAlgorithmType.supported_type(
gradient_clip_algorithm.lower()
):
raise MisconfigurationException(
f"`gradient_clip_algorithm` {gradient_clip_algorithm} is invalid. "
f"Allowed algorithms: {GradClipAlgorithmType.supported_types()}."
)
self.gradient_clip_val: Optional[Union[int, float]] = gradient_clip_val
self.gradient_clip_algorithm: Optional[GradClipAlgorithmType] = (
GradClipAlgorithmType(gradient_clip_algorithm.lower()) if gradient_clip_algorithm is not None else None
)
if detect_anomaly:
rank_zero_info(
"You have turned on `Trainer(detect_anomaly=True)`. This will significantly slow down compute speed and"
" is recommended only for model debugging."
)
self._detect_anomaly: bool = detect_anomaly
setup._log_device_info(self)
self.should_stop = False
self.state = TrainerState()
# configure profiler
setup._init_profiler(self, profiler)
# init logger flags
self._loggers: list[Logger]
self._logger_connector.on_trainer_init(logger, log_every_n_steps)
# init debugging flags
self.val_check_batch: Union[int, float]
self.val_check_interval: Union[int, float]
self.num_sanity_val_steps: Union[int, float]
self.limit_train_batches: Union[int, float]
self.limit_val_batches: Union[int, float]
self.limit_test_batches: Union[int, float]
self.limit_predict_batches: Union[int, float]
setup._init_debugging_flags(
self,
limit_train_batches,
limit_val_batches,
limit_test_batches,
limit_predict_batches,
fast_dev_run,
overfit_batches,
val_check_interval,
num_sanity_val_steps,
)
def fit(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional[LightningDataModule] = None,
ckpt_path: Optional[_PATH] = None,
) -> None:
r"""Runs the full optimization routine.
Args:
model: Model to fit.
train_dataloaders: An iterable or collection of iterables specifying training samples.
Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.train_dataloader` hook.
val_dataloaders: An iterable or collection of iterables specifying validation samples.
datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.train_dataloader` hook.
ckpt_path: Path/URL of the checkpoint from which training is resumed. Could also be one of two special
keywords ``"last"``, ``"hpc"`` and ``"registry"``.
Otherwise, if there is no checkpoint file at the path, an exception is raised.
- best: the best model checkpoint from the previous ``trainer.fit`` call will be loaded
- last: the last model checkpoint from the previous ``trainer.fit`` call will be loaded
- registry: the model will be downloaded from the Lightning Model Registry with following notations:
- ``'registry'``: uses the latest/default version of default model set
with ``Tainer(..., model_registry="my-model")``
- ``'registry:model-name'``: uses the latest/default version of this model `model-name`
- ``'registry:model-name:version:v2'``: uses the specific version 'v2' of the model `model-name`
- ``'registry:version:v2'``: uses the default model set
with ``Tainer(..., model_registry="my-model")`` and version 'v2'
Raises:
TypeError:
If ``model`` is not :class:`~pytorch_lightning.core.LightningModule` for torch version less than
2.0.0 and if ``model`` is not :class:`~pytorch_lightning.core.LightningModule` or
:class:`torch._dynamo.OptimizedModule` for torch versions greater than or equal to 2.0.0 .
For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.
"""
model = _maybe_unwrap_optimized(model)
self.strategy._lightning_module = model
_verify_strategy_supports_compile(model, self.strategy)
self.state.fn = TrainerFn.FITTING
self.state.status = TrainerStatus.RUNNING
self.training = True
self.should_stop = False
call._call_and_handle_interrupt(
self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
)
def _fit_impl(
self,
model: "pl.LightningModule",
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, LightningDataModule]] = None,
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
datamodule: Optional[LightningDataModule] = None,
ckpt_path: Optional[_PATH] = None,
) -> None:
log.debug(f"{self.__class__.__name__}: trainer fit stage")
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(train_dataloaders, LightningDataModule):
datamodule = train_dataloaders
train_dataloaders = None
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if (train_dataloaders is not None or val_dataloaders is not None) and datamodule is not None:
raise MisconfigurationException(
"You cannot pass `train_dataloader` or `val_dataloaders` to `trainer.fit(datamodule=...)`"
)
# links data to the trainer
self._data_connector.attach_data(
model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule
)
assert self.state.fn is not None
if _is_registry(ckpt_path) and module_available("litmodels"):
download_model_from_registry(ckpt_path, self)
ckpt_path = self._checkpoint_connector._select_ckpt_path(
self.state.fn,
ckpt_path,
model_provided=True,
model_connected=self.lightning_module is not None,
)
self._run(model, ckpt_path=ckpt_path)
assert self.state.stopped
self.training = False
return
def validate(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
ckpt_path: Optional[_PATH] = None,
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> _EVALUATE_OUTPUT:
r"""Perform one evaluation epoch over the validation set.
Args:
model: The model to validate.
dataloaders: An iterable or collection of iterables specifying validation samples.
Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.val_dataloader` hook.
ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
to validate. If ``None`` and the model instance was passed, use the current weights.
Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
if a checkpoint callback is configured.
verbose: If True, prints the validation results.
datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.val_dataloader` hook.
For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.
Returns:
List of dictionaries with metrics logged during the validation phase, e.g., in model- or callback hooks
like :meth:`~pytorch_lightning.LightningModule.validation_step` etc.
The length of the list corresponds to the number of validation dataloaders used.
Raises:
TypeError:
If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.
MisconfigurationException:
If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.
RuntimeError:
If a compiled ``model`` is passed and the strategy is not supported.
"""
if model is None:
# do we still have a reference from a previous call?
if self.lightning_module is None:
raise TypeError(
"`Trainer.validate()` requires a `LightningModule` when it hasn't been passed in a previous run"
)
else:
model = _maybe_unwrap_optimized(model)
self.strategy._lightning_module = model
_verify_strategy_supports_compile(self.lightning_module, self.strategy)
self.state.fn = TrainerFn.VALIDATING
self.state.status = TrainerStatus.RUNNING
self.validating = True
return call._call_and_handle_interrupt(
self, self._validate_impl, model, dataloaders, ckpt_path, verbose, datamodule
)
def _validate_impl(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
ckpt_path: Optional[_PATH] = None,
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
# --------------------
# SETUP HOOK
# --------------------
log.debug(f"{self.__class__.__name__}: trainer validate stage")
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(dataloaders, LightningDataModule):
datamodule = dataloaders
dataloaders = None
# If you supply a datamodule you can't supply val_dataloaders
if dataloaders is not None and datamodule:
raise MisconfigurationException("You cannot pass both `trainer.validate(dataloaders=..., datamodule=...)`")
if model is None:
model = self.lightning_module
model_provided = False
else:
model_provided = True
self.validate_loop.verbose = verbose
# links data to the trainer
self._data_connector.attach_data(model, val_dataloaders=dataloaders, datamodule=datamodule)
assert self.state.fn is not None
if _is_registry(ckpt_path) and module_available("litmodels"):
download_model_from_registry(ckpt_path, self)
ckpt_path = self._checkpoint_connector._select_ckpt_path(
self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
)
results = self._run(model, ckpt_path=ckpt_path)
# remove the tensors from the validation results
results = convert_tensors_to_scalars(results)
assert self.state.stopped
self.validating = False
return results
def test(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
ckpt_path: Optional[_PATH] = None,
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> _EVALUATE_OUTPUT:
r"""Perform one evaluation epoch over the test set. It's separated from fit to make sure you never run on your
test set until you want to.
Args:
model: The model to test.
dataloaders: An iterable or collection of iterables specifying test samples.
Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.test_dataloader` hook.
ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
to test. If ``None`` and the model instance was passed, use the current weights.
Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
if a checkpoint callback is configured.
verbose: If True, prints the test results.
datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.test_dataloader` hook.
For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.
Returns:
List of dictionaries with metrics logged during the test phase, e.g., in model- or callback hooks
like :meth:`~pytorch_lightning.LightningModule.test_step` etc.
The length of the list corresponds to the number of test dataloaders used.
Raises:
TypeError:
If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.
MisconfigurationException:
If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.
RuntimeError:
If a compiled ``model`` is passed and the strategy is not supported.
"""
if model is None:
# do we still have a reference from a previous call?
if self.lightning_module is None:
raise TypeError(
"`Trainer.test()` requires a `LightningModule` when it hasn't been passed in a previous run"
)
else:
model = _maybe_unwrap_optimized(model)
self.strategy._lightning_module = model
_verify_strategy_supports_compile(self.lightning_module, self.strategy)
self.state.fn = TrainerFn.TESTING
self.state.status = TrainerStatus.RUNNING
self.testing = True
return call._call_and_handle_interrupt(
self, self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule
)
def _test_impl(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
ckpt_path: Optional[_PATH] = None,
verbose: bool = True,
datamodule: Optional[LightningDataModule] = None,
) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
# --------------------
# SETUP HOOK
# --------------------
log.debug(f"{self.__class__.__name__}: trainer test stage")
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(dataloaders, LightningDataModule):
datamodule = dataloaders
dataloaders = None
# If you supply a datamodule you can't supply test_dataloaders
if dataloaders is not None and datamodule:
raise MisconfigurationException("You cannot pass both `trainer.test(dataloaders=..., datamodule=...)`")
if model is None:
model = self.lightning_module
model_provided = False
else:
model_provided = True
self.test_loop.verbose = verbose
# links data to the trainer
self._data_connector.attach_data(model, test_dataloaders=dataloaders, datamodule=datamodule)
assert self.state.fn is not None
if _is_registry(ckpt_path) and module_available("litmodels"):
download_model_from_registry(ckpt_path, self)
ckpt_path = self._checkpoint_connector._select_ckpt_path(
self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
)
results = self._run(model, ckpt_path=ckpt_path)
# remove the tensors from the test results
results = convert_tensors_to_scalars(results)
assert self.state.stopped
self.testing = False
return results
def predict(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
datamodule: Optional[LightningDataModule] = None,
return_predictions: Optional[bool] = None,
ckpt_path: Optional[_PATH] = None,
) -> Optional[_PREDICT_OUTPUT]:
r"""Run inference on your data. This will call the model forward function to compute predictions. Useful to
perform distributed and batched predictions. Logging is disabled in the predict hooks.
Args:
model: The model to predict with.
dataloaders: An iterable or collection of iterables specifying predict samples.
Alternatively, a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.predict_dataloader` hook.
datamodule: A :class:`~pytorch_lightning.core.datamodule.LightningDataModule` that defines
the :class:`~pytorch_lightning.core.hooks.DataHooks.predict_dataloader` hook.
return_predictions: Whether to return predictions.
``True`` by default except when an accelerator that spawns processes is used (not supported).
ckpt_path: Either ``"best"``, ``"last"``, ``"hpc"``, ``"registry"`` or path to the checkpoint you wish
to predict. If ``None`` and the model instance was passed, use the current weights.
Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
if a checkpoint callback is configured.
For more information about multiple dataloaders, see this :ref:`section <multiple-dataloaders>`.
Returns:
Returns a list of dictionaries, one for each provided dataloader containing their respective predictions.
Raises:
TypeError:
If no ``model`` is passed and there was no ``LightningModule`` passed in the previous run.
If ``model`` passed is not `LightningModule` or `torch._dynamo.OptimizedModule`.
MisconfigurationException:
If both ``dataloaders`` and ``datamodule`` are passed. Pass only one of these.
RuntimeError:
If a compiled ``model`` is passed and the strategy is not supported.
See :ref:`Lightning inference section<deploy/production_basic:Predict step with your LightningModule>` for more.
"""
if model is None:
# do we still have a reference from a previous call?
if self.lightning_module is None:
raise TypeError(
"`Trainer.predict()` requires a `LightningModule` when it hasn't been passed in a previous run"
)
else:
model = _maybe_unwrap_optimized(model)
self.strategy._lightning_module = model
_verify_strategy_supports_compile(self.lightning_module, self.strategy)
self.state.fn = TrainerFn.PREDICTING
self.state.status = TrainerStatus.RUNNING
self.predicting = True
return call._call_and_handle_interrupt(
self, self._predict_impl, model, dataloaders, datamodule, return_predictions, ckpt_path
)
def _predict_impl(
self,
model: Optional["pl.LightningModule"] = None,
dataloaders: Optional[Union[EVAL_DATALOADERS, LightningDataModule]] = None,
datamodule: Optional[LightningDataModule] = None,
return_predictions: Optional[bool] = None,
ckpt_path: Optional[_PATH] = None,
) -> Optional[_PREDICT_OUTPUT]:
# --------------------
# SETUP HOOK
# --------------------
log.debug(f"{self.__class__.__name__}: trainer predict stage")
self.predict_loop.return_predictions = return_predictions
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(dataloaders, LightningDataModule):
datamodule = dataloaders
dataloaders = None
if dataloaders is not None and datamodule:
raise MisconfigurationException("You cannot pass both `trainer.predict(dataloaders=..., datamodule=...)`")
if model is None:
model = self.lightning_module
model_provided = False
else:
model_provided = True
# links data to the trainer
self._data_connector.attach_data(model, predict_dataloaders=dataloaders, datamodule=datamodule)
assert self.state.fn is not None
if _is_registry(ckpt_path) and module_available("litmodels"):
download_model_from_registry(ckpt_path, self)
ckpt_path = self._checkpoint_connector._select_ckpt_path(
self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
)
results = self._run(model, ckpt_path=ckpt_path)
assert self.state.stopped
self.predicting = False
return results
def _run(
self, model: "pl.LightningModule", ckpt_path: Optional[_PATH] = None
) -> Optional[Union[_EVALUATE_OUTPUT, _PREDICT_OUTPUT]]:
if self.state.fn == TrainerFn.FITTING:
min_epochs, max_epochs = _parse_loop_limits(
self.min_steps, self.max_steps, self.min_epochs, self.max_epochs, self
)
self.fit_loop.min_epochs = min_epochs
self.fit_loop.max_epochs = max_epochs
if self.barebones:
# no progress bar in barebones can make it look like the Trainer hung
rank_zero_info(
"`Trainer(barebones=True)` started running. The progress bar is disabled so you might want to"
" manually print the progress in your model."
)
# clean hparams
if hasattr(model, "hparams"):
parsing.clean_namespace(model.hparams)
# attach model to the strategy
self.strategy.connect(model)
self._callback_connector._attach_model_callbacks()
self._callback_connector._attach_model_logging_functions()
_verify_loop_configurations(self)
# ----------------------------
# SET UP THE TRAINER
# ----------------------------
log.debug(f"{self.__class__.__name__}: setting up strategy environment")
self.strategy.setup_environment()
self.__setup_profiler()
log.debug(f"{self.__class__.__name__}: preparing data")
self._data_connector.prepare_data()
call._call_setup_hook(self) # allow user to set up LightningModule in accelerator environment
log.debug(f"{self.__class__.__name__}: configuring model")
call._call_configure_model(self)
# check if we should delay restoring checkpoint till later
if not self.strategy.restore_checkpoint_after_setup:
log.debug(f"{self.__class__.__name__}: restoring module and callbacks from checkpoint path: {ckpt_path}")
self._checkpoint_connector._restore_modules_and_callbacks(ckpt_path)
# reset logger connector
self._logger_connector.reset_results()
self._logger_connector.reset_metrics()
# strategy will configure model and move it to the device
self.strategy.setup(self)
# hook
if self.state.fn == TrainerFn.FITTING:
call._call_callback_hooks(self, "on_fit_start")
call._call_lightning_module_hook(self, "on_fit_start")
_log_hyperparams(self)
if self.strategy.restore_checkpoint_after_setup:
log.debug(f"{self.__class__.__name__}: restoring module and callbacks from checkpoint path: {ckpt_path}")
self._checkpoint_connector._restore_modules_and_callbacks(ckpt_path)
# restore optimizers, etc.
log.debug(f"{self.__class__.__name__}: restoring training state")
self._checkpoint_connector.restore_training_state()
self._checkpoint_connector.resume_end()
self._signal_connector.register_signal_handlers()
# ----------------------------
# RUN THE TRAINER
# ----------------------------
results = self._run_stage()
# ----------------------------
# POST-Training CLEAN UP
# ----------------------------
log.debug(f"{self.__class__.__name__}: trainer tearing down")
self._teardown()
if self.state.fn == TrainerFn.FITTING:
call._call_callback_hooks(self, "on_fit_end")
call._call_lightning_module_hook(self, "on_fit_end")
log.debug(f"{self.__class__.__name__}: calling teardown hooks")
call._call_teardown_hook(self)
self.state.status = TrainerStatus.FINISHED
self.state.stage = None
return results
def _teardown(self) -> None:
"""This is the Trainer's internal teardown, unrelated to the `teardown` hooks in LightningModule and Callback;
those are handled by :meth:`_call_teardown_hook`."""
self.strategy.teardown()
loop = self._active_loop
# loop should never be `None` here but it can because we don't know the trainer stage with `ddp_spawn`
if loop is not None:
loop.teardown()
self._logger_connector.teardown()
self._signal_connector.teardown()
def _run_stage(self) -> Optional[Union[_PREDICT_OUTPUT, _EVALUATE_OUTPUT]]:
# wait for all to join if on distributed
self.strategy.barrier("run-stage")
self.lightning_module.zero_grad()
if self.evaluating:
return self._evaluation_loop.run()
if self.predicting:
return self.predict_loop.run()
if self.training:
with isolate_rng():
self._run_sanity_check()
with torch.autograd.set_detect_anomaly(self._detect_anomaly):
self.fit_loop.run()
return None
raise RuntimeError(f"Unexpected state {self.state}")
def _run_sanity_check(self) -> None:
val_loop = self.fit_loop.epoch_loop.val_loop
should_sanity_check = (
self.enable_validation
and self.num_sanity_val_steps > 0
# do not sanity check if restarting because it would mess up the loaded state
and not val_loop.restarting
)
# run tiny validation (if validation defined)
# to make sure program won't crash during val
if should_sanity_check:
stage = self.state.stage
self.sanity_checking = True
# reset logger connector
self._logger_connector.reset_results()
self._logger_connector.reset_metrics()
call._call_callback_hooks(self, "on_sanity_check_start")
# run eval step
val_loop.run()
call._call_callback_hooks(self, "on_sanity_check_end")
# reset logger connector
self._logger_connector.reset_results()
self._logger_connector.reset_metrics()
# reset the progress tracking state after sanity checking. we don't need to set the state before
# because sanity check only runs when we are not restarting
_reset_progress(val_loop)
# restore the previous stage when the sanity check if finished
self.state.stage = stage
def __setup_profiler(self) -> None:
assert self.state.fn is not None
local_rank = self.local_rank if self.world_size > 1 else None
self.profiler._lightning_module = proxy(self.lightning_module)
self.profiler.setup(stage=self.state.fn, local_rank=local_rank, log_dir=self.log_dir)
@contextmanager
def init_module(self, empty_init: Optional[bool] = None) -> Generator:
"""Tensors that you instantiate under this context manager will be created on the device right away and have
the right data type depending on the precision setting in the Trainer.
The parameters and tensors get created on the device and with the right data type right away without wasting
memory being allocated unnecessarily.
Args:
empty_init: Whether to initialize the model with empty weights (uninitialized memory).
If ``None``, the strategy will decide. Some strategies may not support all options.
Set this to ``True`` if you are loading a checkpoint into a large model.
"""
if is_overridden("model_sharded_context", self.strategy, parent=Strategy):
# warning instead of error so that code changes are not required when changing strategies
# this is a limitation because processes are not expected to have been launched when this is called
rank_zero_warn(
f"`trainer.init_module` cannot fully support proper instantiation of your model with the"
f" `{type(self.strategy).__name__}` strategy. Please instantiate your model inside the"
f"`LightningModule.configure_model` hook instead",
# ideally we would check if `configure_model` is already overridden, but we don't have a reliable
# reference to the model yet
category=PossibleUserWarning,
)
with self.strategy.tensor_init_context(empty_init=empty_init):
yield
def print(self, *args: Any, **kwargs: Any) -> None:
"""Print something only on the first process. If running on multiple machines, it will print from the first
process in each machine.
Arguments passed to this method are forwarded to the Python built-in :func:`print` function.
"""
if self.local_rank == 0:
print(*args, **kwargs)
"""
Accelerator properties
"""
@property
def accelerator(self) -> Accelerator:
assert self.strategy.accelerator
return self.strategy.accelerator
@property
def strategy(self) -> Strategy:
return self._accelerator_connector.strategy
@property
def precision_plugin(self) -> Precision:
return self.strategy.precision_plugin
@property
def global_rank(self) -> int:
return self.strategy.global_rank
@property
def local_rank(self) -> int:
# some strategies define a local rank
return getattr(self.strategy, "local_rank", 0)
@property
def node_rank(self) -> int:
# some strategies define a node rank
return getattr(self.strategy, "node_rank", 0)
@property
def world_size(self) -> int:
# some strategies define a world size
return getattr(self.strategy, "world_size", 1)
@property
def num_nodes(self) -> int:
return getattr(self.strategy, "num_nodes", 1)
@property
def device_ids(self) -> list[int]:
"""List of device indexes per node."""
devices = (
self.strategy.parallel_devices
if isinstance(self.strategy, ParallelStrategy)
else [self.strategy.root_device]
)
assert devices is not None
device_ids = []
for idx, device in enumerate(devices):
if isinstance(device, torch.device):
device_ids.append(device.index or idx)
elif isinstance(device, int):
device_ids.append(device)
return device_ids
@property
def num_devices(self) -> int:
"""Number of devices the trainer uses per node."""
return len(self.device_ids)
@property
def lightning_module(self) -> "pl.LightningModule":
# TODO: this is actually an optional return
return self.strategy.lightning_module # type: ignore[return-value]
@property
def optimizers(self) -> list[Optimizer]:
return self.strategy.optimizers
@optimizers.setter
def optimizers(self, new_optims: list[Optimizer]) -> None:
self.strategy.optimizers = new_optims
@property
def lr_scheduler_configs(self) -> list[LRSchedulerConfig]:
return self.strategy.lr_scheduler_configs
@property
def precision(self) -> _PRECISION_INPUT_STR:
return self.strategy.precision_plugin.precision
@property
def scaler(self) -> Optional[Any]:
return getattr(self.precision_plugin, "scaler", None)
@property
def model(self) -> Optional[torch.nn.Module]:
"""The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel.
To access the pure LightningModule, use
:meth:`~pytorch_lightning.trainer.trainer.Trainer.lightning_module` instead.
"""
return self.strategy.model
"""
General properties
"""
@property
def log_dir(self) -> Optional[str]:
"""The directory for the current experiment. Use this to save images to, etc...
.. note:: You must call this on all processes. Failing to do so will cause your program to stall forever.
.. code-block:: python
def training_step(self, batch, batch_idx):
img = ...
save_img(img, self.trainer.log_dir)
"""
if len(self.loggers) > 0:
if not isinstance(self.loggers[0], (TensorBoardLogger, CSVLogger)):
dirpath = self.loggers[0].save_dir
else:
dirpath = self.loggers[0].log_dir
else:
dirpath = self.default_root_dir
dirpath = self.strategy.broadcast(dirpath)
return dirpath
@property
def is_global_zero(self) -> bool:
"""Whether this process is the global zero in multi-node training.
.. code-block:: python
def training_step(self, batch, batch_idx):
if self.trainer.is_global_zero:
print("in node 0, accelerator 0")
"""
return self.strategy.is_global_zero
@property
def distributed_sampler_kwargs(self) -> Optional[dict[str, Any]]:
if isinstance(self.strategy, ParallelStrategy):
return self.strategy.distributed_sampler_kwargs
return None
@property
def enable_validation(self) -> bool:
"""Check if we should run validation during training."""
return (
self.fit_loop.epoch_loop.val_loop._data_source.is_defined()
and is_overridden("validation_step", self.lightning_module)
and self.limit_val_batches > 0
)
@property
def default_root_dir(self) -> str:
"""The default location to save artifacts of loggers, checkpoints etc.
It is used as a fallback if logger or checkpoint callback do not define specific save paths.
"""
if _is_local_file_protocol(self._default_root_dir):
return os.path.normpath(os.path.expanduser(self._default_root_dir))
return self._default_root_dir
@property
def early_stopping_callback(self) -> Optional[EarlyStopping]:
"""The first :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` callback in the
Trainer.callbacks list, or ``None`` if it doesn't exist."""
callbacks = self.early_stopping_callbacks
return callbacks[0] if len(callbacks) > 0 else None
@property
def early_stopping_callbacks(self) -> list[EarlyStopping]:
"""A list of all instances of :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping` found in the
Trainer.callbacks list."""
return [c for c in self.callbacks if isinstance(c, EarlyStopping)]
@property
def checkpoint_callback(self) -> Optional[Checkpoint]:
"""The first :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callback in the
Trainer.callbacks list, or ``None`` if it doesn't exist."""
callbacks = self.checkpoint_callbacks
return callbacks[0] if len(callbacks) > 0 else None
@property
def checkpoint_callbacks(self) -> list[Checkpoint]:
"""A list of all instances of :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` found in
the Trainer.callbacks list."""
return [c for c in self.callbacks if isinstance(c, Checkpoint)]
@property
def progress_bar_callback(self) -> Optional[ProgressBar]:
"""An instance of :class:`~pytorch_lightning.callbacks.progress.progress_bar.ProgressBar` found in the
Trainer.callbacks list, or ``None`` if one doesn't exist."""
for c in self.callbacks:
if isinstance(c, ProgressBar):
return c
return None
@property
def ckpt_path(self) -> Optional[_PATH]:
"""Set to the path/URL of a checkpoint loaded via :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit`,
:meth:`~pytorch_lightning.trainer.trainer.Trainer.validate`,
:meth:`~pytorch_lightning.trainer.trainer.Trainer.test`, or
:meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`.
``None`` otherwise.
"""
return self._checkpoint_connector._ckpt_path
@ckpt_path.setter
def ckpt_path(self, ckpt_path: Optional[_PATH]) -> None:
"""Allows you to manage which checkpoint is loaded statefully.
.. code-block:: python
trainer = Trainer()
trainer.ckpt_path = "my/checkpoint/file.ckpt"
trainer.fit(model)
...
# you will be in charge of resetting this
trainer.ckpt_path = None
trainer.test(model)
"""
self._checkpoint_connector._ckpt_path = ckpt_path
self._checkpoint_connector._user_managed = bool(ckpt_path)
def save_checkpoint(
self, filepath: _PATH, weights_only: bool = False, storage_options: Optional[Any] = None
) -> None:
r"""Runs routine to create a checkpoint.
This method needs to be called on all processes in case the selected strategy is handling distributed
checkpointing.
Args:
filepath: Path where checkpoint is saved.
weights_only: If ``True``, will only save the model weights.
storage_options: parameter for how to save to storage, passed to ``CheckpointIO`` plugin
Raises:
AttributeError:
If the model is not attached to the Trainer before calling this method.
"""
if self.model is None:
raise AttributeError(
"Saving a checkpoint is only possible if a model is attached to the Trainer. Did you call"
" `Trainer.save_checkpoint()` before calling `Trainer.{fit,validate,test,predict}`?"
)
with self.profiler.profile("save_checkpoint"):
checkpoint = self._checkpoint_connector.dump_checkpoint(weights_only)
self.strategy.save_checkpoint(checkpoint, filepath, storage_options=storage_options)
self.strategy.barrier("Trainer.save_checkpoint")
"""
State properties
"""
@property
def interrupted(self) -> bool:
return self.state.status == TrainerStatus.INTERRUPTED
@property
def training(self) -> bool:
return self.state.stage == RunningStage.TRAINING
@training.setter
def training(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.TRAINING
elif self.training:
self.state.stage = None
@property
def testing(self) -> bool:
return self.state.stage == RunningStage.TESTING
@testing.setter
def testing(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.TESTING
elif self.testing:
self.state.stage = None
@property
def predicting(self) -> bool:
return self.state.stage == RunningStage.PREDICTING
@predicting.setter
def predicting(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.PREDICTING
elif self.predicting:
self.state.stage = None
@property
def validating(self) -> bool:
return self.state.stage == RunningStage.VALIDATING
@validating.setter
def validating(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.VALIDATING
elif self.validating:
self.state.stage = None
@property
def evaluating(self) -> bool:
return self.state.stage is not None and self.state.stage.evaluating
@property
def sanity_checking(self) -> bool:
"""Whether sanity checking is running.
Useful to disable some hooks, logging or callbacks during the sanity checking.
"""
return self.state.stage == RunningStage.SANITY_CHECKING
@sanity_checking.setter
def sanity_checking(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.SANITY_CHECKING
elif self.sanity_checking:
self.state.stage = None
@property
def received_sigterm(self) -> bool:
"""Whether a ``signal.SIGTERM`` signal was received.
For example, this can be checked to exit gracefully.
"""
return self._signal_connector.received_sigterm
"""
Loop properties
"""
@property
def global_step(self) -> int:
"""The number of optimizer steps taken (does not reset each epoch).
This includes multiple optimizers (if enabled).
"""
return self.fit_loop.epoch_loop.global_step
@property
def current_epoch(self) -> int:
"""The current epoch, updated after the epoch end hooks are run."""
return self.fit_loop.epoch_progress.current.completed
@property
def max_epochs(self) -> Optional[int]:
return self.fit_loop.max_epochs
@property
def min_epochs(self) -> Optional[int]:
return self.fit_loop.min_epochs
@property
def max_steps(self) -> int:
return self.fit_loop.max_steps
@property
def min_steps(self) -> Optional[int]:
return self.fit_loop.min_steps
@property
def is_last_batch(self) -> bool:
"""Whether trainer is executing the last batch."""
return self.fit_loop.epoch_loop.batch_progress.is_last_batch
@property
def train_dataloader(self) -> Optional[TRAIN_DATALOADERS]:
"""The training dataloader(s) used during ``trainer.fit()``."""
if (combined_loader := self.fit_loop._combined_loader) is not None:
return combined_loader.iterables
return None
@property
def val_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
"""The validation dataloader(s) used during ``trainer.fit()`` or ``trainer.validate()``."""
if (combined_loader := self.fit_loop.epoch_loop.val_loop._combined_loader) is not None or (
combined_loader := self.validate_loop._combined_loader
) is not None:
return combined_loader.iterables
return None
@property
def test_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
"""The test dataloader(s) used during ``trainer.test()``."""
if (combined_loader := self.test_loop._combined_loader) is not None:
return combined_loader.iterables
return None
@property
def predict_dataloaders(self) -> Optional[EVAL_DATALOADERS]:
"""The prediction dataloader(s) used during ``trainer.predict()``."""
if (combined_loader := self.predict_loop._combined_loader) is not None:
return combined_loader.iterables
return None
@property
def num_training_batches(self) -> Union[int, float]:
"""The number of training batches that will be used during ``trainer.fit()``."""
return self.fit_loop.max_batches
@property
def num_sanity_val_batches(self) -> list[Union[int, float]]:
"""The number of validation batches that will be used during the sanity-checking part of ``trainer.fit()``."""
max_batches = self.fit_loop.epoch_loop.val_loop.max_batches
# re-compute the `min` in case this is called outside the sanity-checking stage
return [min(self.num_sanity_val_steps, batches) for batches in max_batches]
@property
def num_val_batches(self) -> list[Union[int, float]]:
"""The number of validation batches that will be used during ``trainer.fit()`` or ``trainer.validate()``."""
if self.state.fn == TrainerFn.VALIDATING:
return self.validate_loop.max_batches
# if no trainer.fn is set, assume fit's validation
# use the protected access, because it shouldn't return the sanity_val batches
return self.fit_loop.epoch_loop.val_loop._max_batches
@property
def num_test_batches(self) -> list[Union[int, float]]:
"""The number of test batches that will be used during ``trainer.test()``."""
return self.test_loop.max_batches
@property
def num_predict_batches(self) -> list[Union[int, float]]:
"""The number of prediction batches that will be used during ``trainer.predict()``."""
return self.predict_loop.max_batches
@property
def _evaluation_loop(self) -> _EvaluationLoop:
if self.state.fn == TrainerFn.FITTING:
return self.fit_loop.epoch_loop.val_loop
if self.state.fn == TrainerFn.VALIDATING:
return self.validate_loop
if self.state.fn == TrainerFn.TESTING:
return self.test_loop
raise RuntimeError("The `Trainer._evaluation_loop` property isn't defined. Accessed outside of scope")
@property
def _active_loop(self) -> Optional[Union[_FitLoop, _EvaluationLoop, _PredictionLoop]]:
if self.training:
return self.fit_loop
if self.sanity_checking or self.evaluating:
return self._evaluation_loop
if self.predicting:
return self.predict_loop
return None
"""
Logging properties
"""
@property
def logger(self) -> Optional[Logger]:
"""The first :class:`~pytorch_lightning.loggers.logger.Logger` being used."""
return self.loggers[0] if len(self.loggers) > 0 else None
@logger.setter
def logger(self, logger: Optional[Logger]) -> None:
if not logger:
self.loggers = []
else:
self.loggers = [logger]
@property
def loggers(self) -> list[Logger]:
"""The list of :class:`~pytorch_lightning.loggers.logger.Logger` used.
.. code-block:: python
for logger in trainer.loggers:
logger.log_metrics({"foo": 1.0})
"""
return self._loggers
@loggers.setter
def loggers(self, loggers: Optional[list[Logger]]) -> None:
self._loggers = loggers if loggers else []
@property
def callback_metrics(self) -> _OUT_DICT:
"""The metrics available to callbacks.
.. code-block:: python
def training_step(self, batch, batch_idx):
self.log("a_val", 2.0)
callback_metrics = trainer.callback_metrics
assert callback_metrics["a_val"] == 2.0
"""
return self._logger_connector.callback_metrics
@property
def logged_metrics(self) -> _OUT_DICT:
"""The metrics sent to the loggers.
This includes metrics logged via :meth:`~pytorch_lightning.core.LightningModule.log` with the
:paramref:`~pytorch_lightning.core.LightningModule.log.logger` argument set.
"""
return self._logger_connector.logged_metrics
@property
def progress_bar_metrics(self) -> _PBAR_DICT:
"""The metrics sent to the progress bar.
This includes metrics logged via :meth:`~pytorch_lightning.core.LightningModule.log` with the
:paramref:`~pytorch_lightning.core.LightningModule.log.prog_bar` argument set.
"""
return self._logger_connector.progress_bar_metrics
@property
def _results(self) -> Optional[_ResultCollection]:
active_loop = self._active_loop
if active_loop is not None:
return active_loop._results
return None
"""
Other
"""
@property
def estimated_stepping_batches(self) -> Union[int, float]:
r"""The estimated number of batches that will ``optimizer.step()`` during training.
This accounts for gradient accumulation and the current trainer configuration. This might be used when setting
up your training dataloader, if it hasn't been set up already.
.. code-block:: python
def configure_optimizers(self):
optimizer = ...
stepping_batches = self.trainer.estimated_stepping_batches
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-3, total_steps=stepping_batches)
return [optimizer], [scheduler]
Raises:
MisconfigurationException:
If estimated stepping batches cannot be computed due to different `accumulate_grad_batches`
at different epochs.
"""
# infinite training
if self.max_epochs == -1:
return float("inf") if self.max_steps == -1 else self.max_steps
if self.train_dataloader is None:
rank_zero_info("Loading `train_dataloader` to estimate number of stepping batches.")
self.fit_loop.setup_data()
total_batches = self.num_training_batches
# iterable dataset
if total_batches == float("inf"):
return self.max_steps
assert self.max_epochs is not None
max_estimated_steps = math.ceil(total_batches / self.accumulate_grad_batches) * max(self.max_epochs, 1)
max_estimated_steps = min(max_estimated_steps, self.max_steps) if self.max_steps != -1 else max_estimated_steps
return max_estimated_steps
|