File size: 8,152 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright Lightning AI.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Houses the methods used to set up the Trainer."""

from typing import Optional, Union

import pytorch_lightning as pl
from lightning_fabric.utilities.warnings import PossibleUserWarning
from pytorch_lightning.accelerators import CUDAAccelerator, MPSAccelerator, XLAAccelerator
from pytorch_lightning.loggers.logger import DummyLogger
from pytorch_lightning.profilers import (
    AdvancedProfiler,
    PassThroughProfiler,
    Profiler,
    PyTorchProfiler,
    SimpleProfiler,
    XLAProfiler,
)
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _habana_available_and_importable
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_warn


def _init_debugging_flags(
    trainer: "pl.Trainer",
    limit_train_batches: Optional[Union[int, float]],
    limit_val_batches: Optional[Union[int, float]],
    limit_test_batches: Optional[Union[int, float]],
    limit_predict_batches: Optional[Union[int, float]],
    fast_dev_run: Union[int, bool],
    overfit_batches: Union[int, float],
    val_check_interval: Optional[Union[int, float]],
    num_sanity_val_steps: int,
) -> None:
    # init debugging flags
    if isinstance(fast_dev_run, int) and (fast_dev_run < 0):
        raise MisconfigurationException(
            f"fast_dev_run={fast_dev_run!r} is not a valid configuration. It should be >= 0."
        )
    trainer.fast_dev_run = fast_dev_run

    # set fast_dev_run=True when it is 1, used while logging
    if fast_dev_run == 1:
        trainer.fast_dev_run = True

    trainer.overfit_batches = _determine_batch_limits(overfit_batches, "overfit_batches")
    overfit_batches_enabled = overfit_batches > 0

    if fast_dev_run:
        num_batches = int(fast_dev_run)
        if not overfit_batches_enabled:
            trainer.limit_train_batches = num_batches
            trainer.limit_val_batches = num_batches

        trainer.limit_test_batches = num_batches
        trainer.limit_predict_batches = num_batches
        trainer.fit_loop.epoch_loop.max_steps = num_batches
        trainer.num_sanity_val_steps = 0
        trainer.fit_loop.max_epochs = 1
        trainer.val_check_interval = 1.0
        trainer.check_val_every_n_epoch = 1
        trainer.loggers = [DummyLogger()] if trainer.loggers else []
        rank_zero_info(
            f"Running in `fast_dev_run` mode: will run the requested loop using {num_batches} batch(es). "
            "Logging and checkpointing is suppressed."
        )
    else:
        if not overfit_batches_enabled:
            trainer.limit_train_batches = _determine_batch_limits(limit_train_batches, "limit_train_batches")
            trainer.limit_val_batches = _determine_batch_limits(limit_val_batches, "limit_val_batches")
        trainer.limit_test_batches = _determine_batch_limits(limit_test_batches, "limit_test_batches")
        trainer.limit_predict_batches = _determine_batch_limits(limit_predict_batches, "limit_predict_batches")
        trainer.num_sanity_val_steps = float("inf") if num_sanity_val_steps == -1 else num_sanity_val_steps
        trainer.val_check_interval = _determine_batch_limits(val_check_interval, "val_check_interval")

    if overfit_batches_enabled:
        trainer.limit_train_batches = overfit_batches
        trainer.limit_val_batches = overfit_batches


def _determine_batch_limits(batches: Optional[Union[int, float]], name: str) -> Union[int, float]:
    if batches is None:
        # batches is optional to know if the user passed a value so that we can show the above info messages only to the
        # users that set a value explicitly
        return 1.0

    # differentiating based on the type can be error-prone for users. show a message describing the chosen behaviour
    if isinstance(batches, int) and batches == 1:
        if name == "limit_train_batches":
            message = "1 batch per epoch will be used."
        elif name == "val_check_interval":
            message = "validation will run after every batch."
        else:
            message = "1 batch will be used."
        rank_zero_info(f"`Trainer({name}=1)` was configured so {message}")
    elif isinstance(batches, float) and batches == 1.0:
        if name == "limit_train_batches":
            message = "100% of the batches per epoch will be used."
        elif name == "val_check_interval":
            message = "validation will run at the end of the training epoch."
        else:
            message = "100% of the batches will be used."
        rank_zero_info(f"`Trainer({name}=1.0)` was configured so {message}.")

    if 0 <= batches <= 1:
        return batches
    if batches > 1 and batches % 1.0 == 0:
        return int(batches)
    raise MisconfigurationException(
        f"You have passed invalid value {batches} for {name}, it has to be in [0.0, 1.0] or an int."
    )


def _init_profiler(trainer: "pl.Trainer", profiler: Optional[Union[Profiler, str]]) -> None:
    if isinstance(profiler, str):
        PROFILERS = {
            "simple": SimpleProfiler,
            "advanced": AdvancedProfiler,
            "pytorch": PyTorchProfiler,
            "xla": XLAProfiler,
        }
        profiler = profiler.lower()
        if profiler not in PROFILERS:
            raise MisconfigurationException(
                "When passing string value for the `profiler` parameter of `Trainer`,"
                f" it can only be one of {list(PROFILERS.keys())}"
            )
        profiler_class = PROFILERS[profiler]
        profiler = profiler_class()
    trainer.profiler = profiler or PassThroughProfiler()


def _log_device_info(trainer: "pl.Trainer") -> None:
    if CUDAAccelerator.is_available():
        gpu_available = True
        gpu_type = " (cuda)"
    elif MPSAccelerator.is_available():
        gpu_available = True
        gpu_type = " (mps)"
    else:
        gpu_available = False
        gpu_type = ""

    gpu_used = isinstance(trainer.accelerator, (CUDAAccelerator, MPSAccelerator))
    rank_zero_info(f"GPU available: {gpu_available}{gpu_type}, used: {gpu_used}")

    num_tpu_cores = trainer.num_devices if isinstance(trainer.accelerator, XLAAccelerator) else 0
    rank_zero_info(f"TPU available: {XLAAccelerator.is_available()}, using: {num_tpu_cores} TPU cores")

    if _habana_available_and_importable():
        from lightning_habana import HPUAccelerator

        num_hpus = trainer.num_devices if isinstance(trainer.accelerator, HPUAccelerator) else 0
        hpu_available = HPUAccelerator.is_available()
    else:
        num_hpus = 0
        hpu_available = False
    rank_zero_info(f"HPU available: {hpu_available}, using: {num_hpus} HPUs")

    if (
        CUDAAccelerator.is_available()
        and not isinstance(trainer.accelerator, CUDAAccelerator)
        or MPSAccelerator.is_available()
        and not isinstance(trainer.accelerator, MPSAccelerator)
    ):
        rank_zero_warn(
            "GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.",
            category=PossibleUserWarning,
        )

    if XLAAccelerator.is_available() and not isinstance(trainer.accelerator, XLAAccelerator):
        rank_zero_warn("TPU available but not used. You can set it by doing `Trainer(accelerator='tpu')`.")

    if _habana_available_and_importable():
        from lightning_habana import HPUAccelerator

        if HPUAccelerator.is_available() and not isinstance(trainer.accelerator, HPUAccelerator):
            rank_zero_warn("HPU available but not used. You can set it by doing `Trainer(accelerator='hpu')`.")