File size: 12,864 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright Lightning AI.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import signal
from copy import deepcopy
from typing import Any, Callable, Optional, Union

from packaging.version import Version

import pytorch_lightning as pl
from lightning_fabric.utilities.device_dtype_mixin import _DeviceDtypeModuleMixin
from pytorch_lightning.callbacks import Checkpoint, EarlyStopping
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.strategies.launchers import _SubprocessScriptLauncher
from pytorch_lightning.trainer.connectors.signal_connector import _get_sigkill_signal
from pytorch_lightning.trainer.states import TrainerStatus
from pytorch_lightning.utilities.exceptions import _TunerExitException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_warn

log = logging.getLogger(__name__)


def _call_and_handle_interrupt(trainer: "pl.Trainer", trainer_fn: Callable, *args: Any, **kwargs: Any) -> Any:
    r"""Error handling, intended to be used only for main trainer function entry points (fit, validate, test, predict)
    as all errors should funnel through them.

    Args:
        trainer_fn: one of (fit, validate, test, predict)
        *args: positional arguments to be passed to the `trainer_fn`
        **kwargs: keyword arguments to be passed to `trainer_fn`

    """
    try:
        if trainer.strategy.launcher is not None:
            return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
        return trainer_fn(*args, **kwargs)

    except _TunerExitException:
        _call_teardown_hook(trainer)
        trainer._teardown()
        trainer.state.status = TrainerStatus.FINISHED
        trainer.state.stage = None

    except KeyboardInterrupt as exception:
        rank_zero_info("\nDetected KeyboardInterrupt, attempting graceful shutdown ...")
        # user could press Ctrl+C many times, disable KeyboardInterrupt for shutdown
        signal.signal(signal.SIGINT, signal.SIG_IGN)
        _interrupt(trainer, exception)
        trainer._teardown()
        launcher = trainer.strategy.launcher
        if isinstance(launcher, _SubprocessScriptLauncher):
            launcher.kill(_get_sigkill_signal())
        exit(1)

    except BaseException as exception:
        _interrupt(trainer, exception)
        trainer._teardown()
        # teardown might access the stage so we reset it after
        trainer.state.stage = None
        raise


def _interrupt(trainer: "pl.Trainer", exception: BaseException) -> None:
    trainer.state.status = TrainerStatus.INTERRUPTED
    _call_callback_hooks(trainer, "on_exception", exception)
    if trainer.datamodule is not None:
        _call_lightning_datamodule_hook(trainer, "on_exception", exception)
    trainer.strategy.on_exception(exception)
    for logger in trainer.loggers:
        logger.finalize("failed")


def _call_setup_hook(trainer: "pl.Trainer") -> None:
    assert trainer.state.fn is not None
    fn = trainer.state.fn

    # It is too early to move the model to the device, but we fake the `LightningModule.device` property
    # so the user can access it in the `LightningModule.setup` hook
    for module in trainer.lightning_module.modules():
        if isinstance(module, _DeviceDtypeModuleMixin):
            module._device = trainer.strategy.root_device

    # wandb.init must be called before any tensorboard writers are created in order to sync tensorboard logs to wandb:
    # https://github.com/wandb/wandb/issues/1782#issuecomment-779161203
    loggers = sorted(trainer.loggers, key=lambda logger: not isinstance(logger, WandbLogger))

    # Trigger lazy creation of experiment in loggers so loggers have their metadata available
    for logger in loggers:
        if hasattr(logger, "experiment"):
            _ = logger.experiment

    trainer.strategy.barrier("pre_setup")

    if trainer.datamodule is not None:
        _call_lightning_datamodule_hook(trainer, "setup", stage=fn)
    _call_callback_hooks(trainer, "setup", stage=fn)
    _call_lightning_module_hook(trainer, "setup", stage=fn)

    trainer.strategy.barrier("post_setup")


def _call_configure_model(trainer: "pl.Trainer") -> None:
    # legacy hook
    if is_overridden("configure_sharded_model", trainer.lightning_module):
        with trainer.strategy.model_sharded_context():
            _call_lightning_module_hook(trainer, "configure_sharded_model")

    # we don't normally check for this before calling the hook. it is done here to avoid instantiating the context
    # managers
    if is_overridden("configure_model", trainer.lightning_module):
        with (
            trainer.strategy.tensor_init_context(),
            trainer.strategy.model_sharded_context(),
            trainer.precision_plugin.module_init_context(),
        ):
            _call_lightning_module_hook(trainer, "configure_model")


def _call_teardown_hook(trainer: "pl.Trainer") -> None:
    assert trainer.state.fn is not None
    fn = trainer.state.fn

    if trainer.datamodule is not None:
        _call_lightning_datamodule_hook(trainer, "teardown", stage=fn)

    _call_callback_hooks(trainer, "teardown", stage=fn)
    _call_lightning_module_hook(trainer, "teardown", stage=fn)

    trainer.lightning_module._current_fx_name = None
    # these could have become stale if metrics are defined in `setup`
    trainer.lightning_module._metric_attributes = None

    # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
    # It might be related to xla tensors blocked when moving the cpu kill loggers.
    for logger in trainer.loggers:
        logger.finalize("success")

    # summarize profile results
    trainer.profiler.describe()


def _call_lightning_module_hook(
    trainer: "pl.Trainer",
    hook_name: str,
    *args: Any,
    pl_module: Optional["pl.LightningModule"] = None,
    **kwargs: Any,
) -> Any:
    log.debug(f"{trainer.__class__.__name__}: calling lightning module hook: {hook_name}")

    pl_module = pl_module or trainer.lightning_module

    if pl_module is None:
        raise TypeError("No `LightningModule` is available to call hooks on.")

    fn = getattr(pl_module, hook_name)
    if not callable(fn):
        return None

    prev_fx_name = pl_module._current_fx_name
    pl_module._current_fx_name = hook_name

    with trainer.profiler.profile(f"[LightningModule]{pl_module.__class__.__name__}.{hook_name}"):
        output = fn(*args, **kwargs)

    # restore current_fx when nested context
    pl_module._current_fx_name = prev_fx_name

    return output


def _call_lightning_datamodule_hook(
    trainer: "pl.Trainer",
    hook_name: str,
    *args: Any,
    **kwargs: Any,
) -> Any:
    log.debug(f"{trainer.__class__.__name__}: calling lightning datamodule hook: {hook_name}")

    if trainer.datamodule is None:
        raise TypeError("No `LightningDataModule` is available to call hooks on.")

    fn = getattr(trainer.datamodule, hook_name)
    if callable(fn):
        with trainer.profiler.profile(f"[LightningDataModule]{trainer.datamodule.__class__.__name__}.{hook_name}"):
            return fn(*args, **kwargs)
    return None


def _call_callback_hooks(
    trainer: "pl.Trainer",
    hook_name: str,
    *args: Any,
    monitoring_callbacks: Optional[bool] = None,
    **kwargs: Any,
) -> None:
    log.debug(f"{trainer.__class__.__name__}: calling callback hook: {hook_name}")

    pl_module = trainer.lightning_module
    if pl_module:
        prev_fx_name = pl_module._current_fx_name
        pl_module._current_fx_name = hook_name

    callbacks = trainer.callbacks
    if monitoring_callbacks is True:
        # the list of "monitoring callbacks" is hard-coded to these two. we could add an API to define this
        callbacks = [cb for cb in callbacks if isinstance(cb, (EarlyStopping, Checkpoint))]
    elif monitoring_callbacks is False:
        callbacks = [cb for cb in callbacks if not isinstance(cb, (EarlyStopping, Checkpoint))]

    for callback in callbacks:
        fn = getattr(callback, hook_name)
        if callable(fn):
            with trainer.profiler.profile(f"[Callback]{callback.state_key}.{hook_name}"):
                fn(trainer, trainer.lightning_module, *args, **kwargs)

    if pl_module:
        # restore current_fx when nested context
        pl_module._current_fx_name = prev_fx_name


def _call_callbacks_state_dict(trainer: "pl.Trainer") -> dict[str, dict]:
    """Called when saving a model checkpoint, calls and returns every callback's `state_dict`, keyed by
    `Callback.state_key`."""
    callback_state_dicts = {}
    for callback in trainer.callbacks:
        state_dict = callback.state_dict()
        if state_dict:
            callback_state_dicts[callback.state_key] = state_dict
    return callback_state_dicts


def _call_callbacks_on_save_checkpoint(trainer: "pl.Trainer", checkpoint: dict[str, Any]) -> None:
    """Called when saving a model checkpoint, calls every callback's `on_save_checkpoint` hook."""
    pl_module = trainer.lightning_module
    if pl_module:
        prev_fx_name = pl_module._current_fx_name
        pl_module._current_fx_name = "on_save_checkpoint"

    for callback in trainer.callbacks:
        with trainer.profiler.profile(f"[Callback]{callback.state_key}.on_save_checkpoint"):
            callback.on_save_checkpoint(trainer, trainer.lightning_module, checkpoint)

    if pl_module:
        # restore current_fx when nested context
        pl_module._current_fx_name = prev_fx_name


def _call_callbacks_on_load_checkpoint(trainer: "pl.Trainer", checkpoint: dict[str, Any]) -> None:
    """Called when loading a model checkpoint.

    Calls every callback's `on_load_checkpoint` hook. We have a dedicated function for this rather than using
    `_call_callback_hooks` because we have special logic for getting callback_states.

    """
    pl_module = trainer.lightning_module
    if pl_module:
        prev_fx_name = pl_module._current_fx_name
        pl_module._current_fx_name = "on_load_checkpoint"

    callback_states: Optional[dict[Union[type, str], dict]] = checkpoint.get("callbacks")

    if callback_states is None:
        return

    is_legacy_ckpt = Version(checkpoint["pytorch-lightning_version"]) < Version("1.5.0dev")
    current_callbacks_keys = {cb._legacy_state_key if is_legacy_ckpt else cb.state_key for cb in trainer.callbacks}
    difference = callback_states.keys() - current_callbacks_keys
    if difference:
        rank_zero_warn(
            "Be aware that when using `ckpt_path`,"
            " callbacks used to create the checkpoint need to be provided during `Trainer` instantiation."
            f" Please add the following callbacks: {list(difference)}.",
        )

    for callback in trainer.callbacks:
        with trainer.profiler.profile(f"[Callback]{callback.state_key}.on_load_checkpoint"):
            callback.on_load_checkpoint(trainer, trainer.lightning_module, checkpoint)

    if pl_module:
        # restore current_fx when nested context
        pl_module._current_fx_name = prev_fx_name


def _call_callbacks_load_state_dict(trainer: "pl.Trainer", checkpoint: dict[str, Any]) -> None:
    """Called when loading a model checkpoint, calls every callback's `load_state_dict`."""
    callback_states: Optional[dict[Union[type, str], dict]] = checkpoint.get("callbacks")

    if callback_states is None:
        return

    for callback in trainer.callbacks:
        state = callback_states.get(callback.state_key, callback_states.get(callback._legacy_state_key))
        if state:
            state = deepcopy(state)
            callback.load_state_dict(state)


def _call_strategy_hook(
    trainer: "pl.Trainer",
    hook_name: str,
    *args: Any,
    **kwargs: Any,
) -> Any:
    log.debug(f"{trainer.__class__.__name__}: calling strategy hook: {hook_name}")

    pl_module = trainer.lightning_module
    prev_fx_name = pl_module._current_fx_name
    pl_module._current_fx_name = hook_name

    fn = getattr(trainer.strategy, hook_name)
    if not callable(fn):
        return None

    with trainer.profiler.profile(f"[Strategy]{trainer.strategy.__class__.__name__}.{hook_name}"):
        output = fn(*args, **kwargs)

    # restore current_fx when nested context
    pl_module._current_fx_name = prev_fx_name

    return output