File size: 13,209 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
from typing import TYPE_CHECKING, Any, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from typing_extensions import override
import pytorch_lightning as pl
from lightning_fabric.accelerators.xla import _XLA_AVAILABLE, _XLA_GREATER_EQUAL_2_1
from lightning_fabric.plugins import CheckpointIO, Precision, XLACheckpointIO
from lightning_fabric.plugins.environments import XLAEnvironment
from lightning_fabric.strategies import _StrategyRegistry
from lightning_fabric.utilities.optimizer import _optimizers_to_device
from lightning_fabric.utilities.types import _PATH, ReduceOp
from pytorch_lightning.plugins import XLAPrecision
from pytorch_lightning.plugins.io.wrapper import _WrappingCheckpointIO
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.strategies.launchers.xla import _XLALauncher
from pytorch_lightning.strategies.strategy import TBroadcast
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities import find_shared_parameters, set_shared_parameters
from pytorch_lightning.utilities.rank_zero import rank_zero_only
if TYPE_CHECKING:
from torch_xla.distributed.parallel_loader import MpDeviceLoader
class XLAStrategy(DDPStrategy):
"""Strategy for training multiple TPU devices using the :func:`torch_xla.distributed.xla_multiprocessing.spawn`
method."""
strategy_name = "xla"
def __init__(
self,
accelerator: Optional["pl.accelerators.Accelerator"] = None,
parallel_devices: Optional[list[torch.device]] = None,
checkpoint_io: Optional[Union[XLACheckpointIO, _WrappingCheckpointIO]] = None,
precision_plugin: Optional[XLAPrecision] = None,
debug: bool = False,
sync_module_states: bool = True,
**_: Any,
) -> None:
if not _XLA_AVAILABLE:
raise ModuleNotFoundError(str(_XLA_AVAILABLE))
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=XLAEnvironment(),
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
start_method="fork",
)
self.debug = debug
self._launched = False
self._sync_module_states = sync_module_states
@property
@override
def checkpoint_io(self) -> Union[XLACheckpointIO, _WrappingCheckpointIO]:
plugin = self._checkpoint_io
if plugin is not None:
assert isinstance(plugin, (XLACheckpointIO, _WrappingCheckpointIO))
return plugin
return XLACheckpointIO()
@checkpoint_io.setter
@override
def checkpoint_io(self, io: Optional[CheckpointIO]) -> None:
if io is not None and not isinstance(io, (XLACheckpointIO, _WrappingCheckpointIO)):
raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}")
self._checkpoint_io = io
@property
@override
def precision_plugin(self) -> XLAPrecision:
plugin = self._precision_plugin
if plugin is not None:
assert isinstance(plugin, XLAPrecision)
return plugin
return XLAPrecision()
@precision_plugin.setter
@override
def precision_plugin(self, precision_plugin: Optional[Precision]) -> None:
if precision_plugin is not None and not isinstance(precision_plugin, XLAPrecision):
raise TypeError(f"The XLA strategy can only work with the `XLAPrecision` plugin, found {precision_plugin}")
self._precision_plugin = precision_plugin
@property
@override
def root_device(self) -> torch.device:
if not self._launched:
raise RuntimeError("Accessing the XLA device before processes have spawned is not allowed.")
import torch_xla.core.xla_model as xm
return xm.xla_device()
@property
@override
def global_rank(self) -> int:
return super().global_rank if self._launched else 0
@property
@override
def local_rank(self) -> int:
return super().local_rank if self._launched else 0
@property
@override
def node_rank(self) -> int:
return super().node_rank if self._launched else 0
@property
@override
def world_size(self) -> int:
return super().world_size if self._launched else 1
@override
def _configure_launcher(self) -> None:
self._launcher = _XLALauncher(self)
@override
def setup(self, trainer: "pl.Trainer") -> None:
assert self.accelerator is not None
self.accelerator.setup(trainer)
if self.debug:
os.environ["PT_XLA_DEBUG"] = "1"
assert self.model is not None
self.precision_plugin.convert_module(self.model)
shared_params = find_shared_parameters(self.model)
self.model_to_device()
set_shared_parameters(self.model, shared_params)
self.model = self._setup_model(self.model)
if self._sync_module_states:
if _XLA_GREATER_EQUAL_2_1:
from torch_xla.core.xla_model import broadcast_master_param
else:
from torch_xla.experimental.pjrt import broadcast_master_param
broadcast_master_param(self.model)
if trainer.state.fn == TrainerFn.FITTING:
self.setup_optimizers(trainer)
self.setup_precision_plugin()
if trainer.state.fn == TrainerFn.FITTING:
_optimizers_to_device(self.optimizers, self.root_device)
@override
def _setup_model(self, model: Module) -> Module: # type: ignore
return model
@property
@override
def distributed_sampler_kwargs(self) -> dict[str, int]:
return {"num_replicas": self.world_size, "rank": self.global_rank}
@override
def process_dataloader(self, dataloader: object) -> "MpDeviceLoader":
from torch_xla.distributed.parallel_loader import MpDeviceLoader
if isinstance(dataloader, MpDeviceLoader):
# dataloader is already wrapped by MpDeviceLoader
return dataloader
dataloader = MpDeviceLoader(dataloader, self.root_device)
# Mimic interface to torch.utils.data.DataLoader
dataloader.dataset = dataloader._loader.dataset
dataloader.batch_sampler = getattr(dataloader._loader, "batch_sampler", None)
return dataloader
@override
def configure_ddp(self) -> None:
pass
@override
def model_to_device(self) -> None:
assert self.model is not None
self.model = self.model.to(self.root_device)
@override
def barrier(self, name: Optional[str] = None, *args: Any, **kwargs: Any) -> None:
if not self._launched:
return
import torch_xla.core.xla_model as xm
if name is None:
# `None` is not supported: "TypeError: _xla_rendezvous(): incompatible function arguments"
name = ""
xm.rendezvous(name)
@override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
if not self._launched:
return obj
import torch_xla.core.xla_model as xm
is_tensor = isinstance(obj, Tensor)
if is_tensor:
if obj.dim() == 0:
obj = obj.unsqueeze(0)
original_device = obj.device
# XLA distributed requires that the data is on the XLA device
obj = obj.to(self.root_device)
else:
# support for arbitrary pickle-ables
buffer = io.BytesIO()
torch.save(obj, buffer)
obj = torch.tensor( # type: ignore[assignment]
bytearray(buffer.getbuffer()), device=self.root_device, dtype=torch.float
)
obj = [obj]
xm.collective_broadcast(obj, root_ordinal=src)
obj = obj[0]
if not is_tensor:
# this will preserve the dtype and device of any tensors
buffer = io.BytesIO(obj.cpu().byte().numpy())
obj = torch.load(buffer)
else:
obj = obj.to(original_device)
return obj
@override
def reduce(
self, output: Union[Tensor, Any], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None
) -> Tensor:
if not isinstance(output, Tensor):
output = torch.tensor(output, device=self.root_device)
invalid_reduce_op = isinstance(reduce_op, ReduceOp) and reduce_op != ReduceOp.SUM
invalid_reduce_op_str = isinstance(reduce_op, str) and reduce_op.lower() not in ("sum", "mean", "avg")
if invalid_reduce_op or invalid_reduce_op_str:
raise ValueError(
"Currently, the XLAStrategy only supports `sum`, `mean`, `avg` for the reduce operation, got:"
f" {reduce_op}"
)
import torch_xla.core.xla_model as xm
output = xm.mesh_reduce("reduce", output, sum)
if isinstance(reduce_op, str) and reduce_op.lower() in ("avg", "mean"):
output = output / self.world_size
return output
@override
def setup_environment(self) -> None:
self._launched = True
super().setup_environment()
@override
def setup_distributed(self) -> None:
assert self.parallel_devices is not None
if len(self.parallel_devices) == 1:
# spawning only 1 device with PjRT is not supported:
# https://github.com/Lightning-AI/pytorch-lightning/pull/17408#discussion_r1170671732
raise NotImplementedError(
"The `XLAStrategy` does not support running on a single device with the PjRT runtime."
" Try using all devices or the `SingleDeviceXLAStrategy` strategy"
)
rank_zero_only.rank = self.global_rank
@override
def set_world_ranks(self) -> None:
# accessing global_rank will initialize the XLA computation client. since this is called outside of the spawned
# processes (by the accelerator connector), we cannot run the code that would normally be here.
# instead it's done in `setup_distributed`
pass
@override
def save_checkpoint(
self, checkpoint: dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None
) -> None:
import torch_xla.core.xla_model as xm
# sync any pending lazy tensors on all ranks before saving to prevent potential collective hangs
xm.mark_step()
# save on global rank zero only
super().save_checkpoint(checkpoint, filepath, storage_options=storage_options)
@override
def remove_checkpoint(self, filepath: _PATH) -> None:
"""Remove checkpoint filepath from the filesystem.
Args:
filepath: Path to checkpoint
"""
if self.local_rank == 0:
self.checkpoint_io.remove_checkpoint(filepath)
@override
def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor:
"""Function to gather a tensor from several distributed processes.
Args:
tensor: tensor to all-gather.
group: unused.
sync_grads: flag that allows users to synchronize gradients for the all-gather operation.
Return:
A tensor of shape (world_size, ...)
"""
if not self._launched:
return tensor
if not isinstance(tensor, Tensor):
raise NotImplementedError(
f"`{type(self).__name__}.all_gather` is only implemented for tensors. Given {tensor}"
)
if tensor.dim() == 0:
tensor = tensor.unsqueeze(0)
original_device = tensor.device
tensor = tensor.to(self.root_device)
import torch_xla.core.functions as xf
import torch_xla.core.xla_model as xm
tensor = xf.all_gather(tensor) if sync_grads else xm.all_gather(tensor)
tensor = tensor.to(original_device)
return tensor
@override
def teardown(self) -> None:
super().teardown()
self._launched = False # after the Trainer finishes, we aren't inside the spawned region
os.environ.pop("PT_XLA_DEBUG", None)
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register("xla_debug", cls, description="XLA strategy with `debug` as True", debug=True)
strategy_registry.register(
cls.strategy_name,
cls,
description=cls.__name__,
)
|